summaryrefslogtreecommitdiffstats
path: root/include/linux/mmzone.h
diff options
context:
space:
mode:
authorChristoph Lameter <clameter@sgi.com>2006-06-30 01:55:33 -0700
committerLinus Torvalds <torvalds@g5.osdl.org>2006-06-30 11:25:34 -0700
commit2244b95a7bcf8d24196f8a3a44187ba5dfff754c (patch)
tree771ef8eae45c2794fd73f870109c74d67c28888a /include/linux/mmzone.h
parentf6ac2354d791195ca40822b84d73d48a4e8b7f2b (diff)
downloadtalos-obmc-linux-2244b95a7bcf8d24196f8a3a44187ba5dfff754c.tar.gz
talos-obmc-linux-2244b95a7bcf8d24196f8a3a44187ba5dfff754c.zip
[PATCH] zoned vm counters: basic ZVC (zoned vm counter) implementation
Per zone counter infrastructure The counters that we currently have for the VM are split per processor. The processor however has not much to do with the zone these pages belong to. We cannot tell f.e. how many ZONE_DMA pages are dirty. So we are blind to potentially inbalances in the usage of memory in various zones. F.e. in a NUMA system we cannot tell how many pages are dirty on a particular node. If we knew then we could put measures into the VM to balance the use of memory between different zones and different nodes in a NUMA system. For example it would be possible to limit the dirty pages per node so that fast local memory is kept available even if a process is dirtying huge amounts of pages. Another example is zone reclaim. We do not know how many unmapped pages exist per zone. So we just have to try to reclaim. If it is not working then we pause and try again later. It would be better if we knew when it makes sense to reclaim unmapped pages from a zone. This patchset allows the determination of the number of unmapped pages per zone. We can remove the zone reclaim interval with the counters introduced here. Futhermore the ability to have various usage statistics available will allow the development of new NUMA balancing algorithms that may be able to improve the decision making in the scheduler of when to move a process to another node and hopefully will also enable automatic page migration through a user space program that can analyse the memory load distribution and then rebalance memory use in order to increase performance. The counter framework here implements differential counters for each processor in struct zone. The differential counters are consolidated when a threshold is exceeded (like done in the current implementation for nr_pageache), when slab reaping occurs or when a consolidation function is called. Consolidation uses atomic operations and accumulates counters per zone in the zone structure and also globally in the vm_stat array. VM functions can access the counts by simply indexing a global or zone specific array. The arrangement of counters in an array also simplifies processing when output has to be generated for /proc/*. Counters can be updated by calling inc/dec_zone_page_state or _inc/dec_zone_page_state analogous to *_page_state. The second group of functions can be called if it is known that interrupts are disabled. Special optimized increment and decrement functions are provided. These can avoid certain checks and use increment or decrement instructions that an architecture may provide. We also add a new CONFIG_DMA_IS_NORMAL that signifies that an architecture can do DMA to all memory and therefore ZONE_NORMAL will not be populated. This is only currently set for IA64 SGI SN2 and currently only affects node_page_state(). In the best case node_page_state can be reduced to retrieving a single counter for the one zone on the node. [akpm@osdl.org: cleanups] [akpm@osdl.org: export vm_stat[] for filesystems] Signed-off-by: Christoph Lameter <clameter@sgi.com> Cc: Trond Myklebust <trond.myklebust@fys.uio.no> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
Diffstat (limited to 'include/linux/mmzone.h')
-rw-r--r--include/linux/mmzone.h9
1 files changed, 9 insertions, 0 deletions
diff --git a/include/linux/mmzone.h b/include/linux/mmzone.h
index d6120fa69116..543f9e411563 100644
--- a/include/linux/mmzone.h
+++ b/include/linux/mmzone.h
@@ -46,6 +46,9 @@ struct zone_padding {
#define ZONE_PADDING(name)
#endif
+enum zone_stat_item {
+ NR_VM_ZONE_STAT_ITEMS };
+
struct per_cpu_pages {
int count; /* number of pages in the list */
int high; /* high watermark, emptying needed */
@@ -55,6 +58,10 @@ struct per_cpu_pages {
struct per_cpu_pageset {
struct per_cpu_pages pcp[2]; /* 0: hot. 1: cold */
+#ifdef CONFIG_SMP
+ s8 vm_stat_diff[NR_VM_ZONE_STAT_ITEMS];
+#endif
+
#ifdef CONFIG_NUMA
unsigned long numa_hit; /* allocated in intended node */
unsigned long numa_miss; /* allocated in non intended node */
@@ -165,6 +172,8 @@ struct zone {
/* A count of how many reclaimers are scanning this zone */
atomic_t reclaim_in_progress;
+ /* Zone statistics */
+ atomic_long_t vm_stat[NR_VM_ZONE_STAT_ITEMS];
/*
* timestamp (in jiffies) of the last zone reclaim that did not
* result in freeing of pages. This is used to avoid repeated scans
OpenPOWER on IntegriCloud