summaryrefslogtreecommitdiffstats
path: root/include/asm-ppc64/pgtable.h
diff options
context:
space:
mode:
authorLinus Torvalds <torvalds@ppc970.osdl.org>2005-04-16 15:20:36 -0700
committerLinus Torvalds <torvalds@ppc970.osdl.org>2005-04-16 15:20:36 -0700
commit1da177e4c3f41524e886b7f1b8a0c1fc7321cac2 (patch)
tree0bba044c4ce775e45a88a51686b5d9f90697ea9d /include/asm-ppc64/pgtable.h
downloadtalos-obmc-linux-1da177e4c3f41524e886b7f1b8a0c1fc7321cac2.tar.gz
talos-obmc-linux-1da177e4c3f41524e886b7f1b8a0c1fc7321cac2.zip
Linux-2.6.12-rc2v2.6.12-rc2
Initial git repository build. I'm not bothering with the full history, even though we have it. We can create a separate "historical" git archive of that later if we want to, and in the meantime it's about 3.2GB when imported into git - space that would just make the early git days unnecessarily complicated, when we don't have a lot of good infrastructure for it. Let it rip!
Diffstat (limited to 'include/asm-ppc64/pgtable.h')
-rw-r--r--include/asm-ppc64/pgtable.h602
1 files changed, 602 insertions, 0 deletions
diff --git a/include/asm-ppc64/pgtable.h b/include/asm-ppc64/pgtable.h
new file mode 100644
index 000000000000..4c4824653e80
--- /dev/null
+++ b/include/asm-ppc64/pgtable.h
@@ -0,0 +1,602 @@
+#ifndef _PPC64_PGTABLE_H
+#define _PPC64_PGTABLE_H
+
+#include <asm-generic/4level-fixup.h>
+
+/*
+ * This file contains the functions and defines necessary to modify and use
+ * the ppc64 hashed page table.
+ */
+
+#ifndef __ASSEMBLY__
+#include <linux/config.h>
+#include <linux/stddef.h>
+#include <asm/processor.h> /* For TASK_SIZE */
+#include <asm/mmu.h>
+#include <asm/page.h>
+#include <asm/tlbflush.h>
+#endif /* __ASSEMBLY__ */
+
+/* PMD_SHIFT determines what a second-level page table entry can map */
+#define PMD_SHIFT (PAGE_SHIFT + PAGE_SHIFT - 3)
+#define PMD_SIZE (1UL << PMD_SHIFT)
+#define PMD_MASK (~(PMD_SIZE-1))
+
+/* PGDIR_SHIFT determines what a third-level page table entry can map */
+#define PGDIR_SHIFT (PAGE_SHIFT + (PAGE_SHIFT - 3) + (PAGE_SHIFT - 2))
+#define PGDIR_SIZE (1UL << PGDIR_SHIFT)
+#define PGDIR_MASK (~(PGDIR_SIZE-1))
+
+/*
+ * Entries per page directory level. The PTE level must use a 64b record
+ * for each page table entry. The PMD and PGD level use a 32b record for
+ * each entry by assuming that each entry is page aligned.
+ */
+#define PTE_INDEX_SIZE 9
+#define PMD_INDEX_SIZE 10
+#define PGD_INDEX_SIZE 10
+
+#define PTRS_PER_PTE (1 << PTE_INDEX_SIZE)
+#define PTRS_PER_PMD (1 << PMD_INDEX_SIZE)
+#define PTRS_PER_PGD (1 << PGD_INDEX_SIZE)
+
+#define USER_PTRS_PER_PGD (1024)
+#define FIRST_USER_PGD_NR 0
+
+#define EADDR_SIZE (PTE_INDEX_SIZE + PMD_INDEX_SIZE + \
+ PGD_INDEX_SIZE + PAGE_SHIFT)
+
+/*
+ * Size of EA range mapped by our pagetables.
+ */
+#define PGTABLE_EA_BITS 41
+#define PGTABLE_EA_MASK ((1UL<<PGTABLE_EA_BITS)-1)
+
+/*
+ * Define the address range of the vmalloc VM area.
+ */
+#define VMALLOC_START (0xD000000000000000ul)
+#define VMALLOC_END (VMALLOC_START + PGTABLE_EA_MASK)
+
+/*
+ * Define the address range of the imalloc VM area.
+ * (used for ioremap)
+ */
+#define IMALLOC_START (ioremap_bot)
+#define IMALLOC_VMADDR(x) ((unsigned long)(x))
+#define PHBS_IO_BASE (0xE000000000000000ul) /* Reserve 2 gigs for PHBs */
+#define IMALLOC_BASE (0xE000000080000000ul)
+#define IMALLOC_END (IMALLOC_BASE + PGTABLE_EA_MASK)
+
+/*
+ * Define the user address range
+ */
+#define USER_START (0UL)
+#define USER_END (USER_START + PGTABLE_EA_MASK)
+
+
+/*
+ * Bits in a linux-style PTE. These match the bits in the
+ * (hardware-defined) PowerPC PTE as closely as possible.
+ */
+#define _PAGE_PRESENT 0x0001 /* software: pte contains a translation */
+#define _PAGE_USER 0x0002 /* matches one of the PP bits */
+#define _PAGE_FILE 0x0002 /* (!present only) software: pte holds file offset */
+#define _PAGE_EXEC 0x0004 /* No execute on POWER4 and newer (we invert) */
+#define _PAGE_GUARDED 0x0008
+#define _PAGE_COHERENT 0x0010 /* M: enforce memory coherence (SMP systems) */
+#define _PAGE_NO_CACHE 0x0020 /* I: cache inhibit */
+#define _PAGE_WRITETHRU 0x0040 /* W: cache write-through */
+#define _PAGE_DIRTY 0x0080 /* C: page changed */
+#define _PAGE_ACCESSED 0x0100 /* R: page referenced */
+#define _PAGE_RW 0x0200 /* software: user write access allowed */
+#define _PAGE_HASHPTE 0x0400 /* software: pte has an associated HPTE */
+#define _PAGE_BUSY 0x0800 /* software: PTE & hash are busy */
+#define _PAGE_SECONDARY 0x8000 /* software: HPTE is in secondary group */
+#define _PAGE_GROUP_IX 0x7000 /* software: HPTE index within group */
+#define _PAGE_HUGE 0x10000 /* 16MB page */
+/* Bits 0x7000 identify the index within an HPT Group */
+#define _PAGE_HPTEFLAGS (_PAGE_BUSY | _PAGE_HASHPTE | _PAGE_SECONDARY | _PAGE_GROUP_IX)
+/* PAGE_MASK gives the right answer below, but only by accident */
+/* It should be preserving the high 48 bits and then specifically */
+/* preserving _PAGE_SECONDARY | _PAGE_GROUP_IX */
+#define _PAGE_CHG_MASK (PAGE_MASK | _PAGE_ACCESSED | _PAGE_DIRTY | _PAGE_HPTEFLAGS)
+
+#define _PAGE_BASE (_PAGE_PRESENT | _PAGE_ACCESSED | _PAGE_COHERENT)
+
+#define _PAGE_WRENABLE (_PAGE_RW | _PAGE_DIRTY)
+
+/* __pgprot defined in asm-ppc64/page.h */
+#define PAGE_NONE __pgprot(_PAGE_PRESENT | _PAGE_ACCESSED)
+
+#define PAGE_SHARED __pgprot(_PAGE_BASE | _PAGE_RW | _PAGE_USER)
+#define PAGE_SHARED_X __pgprot(_PAGE_BASE | _PAGE_RW | _PAGE_USER | _PAGE_EXEC)
+#define PAGE_COPY __pgprot(_PAGE_BASE | _PAGE_USER)
+#define PAGE_COPY_X __pgprot(_PAGE_BASE | _PAGE_USER | _PAGE_EXEC)
+#define PAGE_READONLY __pgprot(_PAGE_BASE | _PAGE_USER)
+#define PAGE_READONLY_X __pgprot(_PAGE_BASE | _PAGE_USER | _PAGE_EXEC)
+#define PAGE_KERNEL __pgprot(_PAGE_BASE | _PAGE_WRENABLE)
+#define PAGE_KERNEL_CI __pgprot(_PAGE_PRESENT | _PAGE_ACCESSED | \
+ _PAGE_WRENABLE | _PAGE_NO_CACHE | _PAGE_GUARDED)
+#define PAGE_KERNEL_EXEC __pgprot(_PAGE_BASE | _PAGE_WRENABLE | _PAGE_EXEC)
+
+#define PAGE_AGP __pgprot(_PAGE_BASE | _PAGE_WRENABLE | _PAGE_NO_CACHE)
+#define HAVE_PAGE_AGP
+
+/*
+ * This bit in a hardware PTE indicates that the page is *not* executable.
+ */
+#define HW_NO_EXEC _PAGE_EXEC
+
+/*
+ * POWER4 and newer have per page execute protection, older chips can only
+ * do this on a segment (256MB) basis.
+ *
+ * Also, write permissions imply read permissions.
+ * This is the closest we can get..
+ *
+ * Note due to the way vm flags are laid out, the bits are XWR
+ */
+#define __P000 PAGE_NONE
+#define __P001 PAGE_READONLY
+#define __P010 PAGE_COPY
+#define __P011 PAGE_COPY
+#define __P100 PAGE_READONLY_X
+#define __P101 PAGE_READONLY_X
+#define __P110 PAGE_COPY_X
+#define __P111 PAGE_COPY_X
+
+#define __S000 PAGE_NONE
+#define __S001 PAGE_READONLY
+#define __S010 PAGE_SHARED
+#define __S011 PAGE_SHARED
+#define __S100 PAGE_READONLY_X
+#define __S101 PAGE_READONLY_X
+#define __S110 PAGE_SHARED_X
+#define __S111 PAGE_SHARED_X
+
+#ifndef __ASSEMBLY__
+
+/*
+ * ZERO_PAGE is a global shared page that is always zero: used
+ * for zero-mapped memory areas etc..
+ */
+extern unsigned long empty_zero_page[PAGE_SIZE/sizeof(unsigned long)];
+#define ZERO_PAGE(vaddr) (virt_to_page(empty_zero_page))
+#endif /* __ASSEMBLY__ */
+
+/* shift to put page number into pte */
+#define PTE_SHIFT (17)
+
+/* We allow 2^41 bytes of real memory, so we need 29 bits in the PMD
+ * to give the PTE page number. The bottom two bits are for flags. */
+#define PMD_TO_PTEPAGE_SHIFT (2)
+
+#ifdef CONFIG_HUGETLB_PAGE
+
+#ifndef __ASSEMBLY__
+int hash_huge_page(struct mm_struct *mm, unsigned long access,
+ unsigned long ea, unsigned long vsid, int local);
+
+void hugetlb_mm_free_pgd(struct mm_struct *mm);
+#endif /* __ASSEMBLY__ */
+
+#define HAVE_ARCH_UNMAPPED_AREA
+#define HAVE_ARCH_UNMAPPED_AREA_TOPDOWN
+#else
+
+#define hash_huge_page(mm,a,ea,vsid,local) -1
+#define hugetlb_mm_free_pgd(mm) do {} while (0)
+
+#endif
+
+#ifndef __ASSEMBLY__
+
+/*
+ * Conversion functions: convert a page and protection to a page entry,
+ * and a page entry and page directory to the page they refer to.
+ *
+ * mk_pte takes a (struct page *) as input
+ */
+#define mk_pte(page, pgprot) pfn_pte(page_to_pfn(page), (pgprot))
+
+#define pfn_pte(pfn,pgprot) \
+({ \
+ pte_t pte; \
+ pte_val(pte) = ((unsigned long)(pfn) << PTE_SHIFT) | \
+ pgprot_val(pgprot); \
+ pte; \
+})
+
+#define pte_modify(_pte, newprot) \
+ (__pte((pte_val(_pte) & _PAGE_CHG_MASK) | pgprot_val(newprot)))
+
+#define pte_none(pte) ((pte_val(pte) & ~_PAGE_HPTEFLAGS) == 0)
+#define pte_present(pte) (pte_val(pte) & _PAGE_PRESENT)
+
+/* pte_clear moved to later in this file */
+
+#define pte_pfn(x) ((unsigned long)((pte_val(x) >> PTE_SHIFT)))
+#define pte_page(x) pfn_to_page(pte_pfn(x))
+
+#define pmd_set(pmdp, ptep) \
+ (pmd_val(*(pmdp)) = (__ba_to_bpn(ptep) << PMD_TO_PTEPAGE_SHIFT))
+#define pmd_none(pmd) (!pmd_val(pmd))
+#define pmd_bad(pmd) (pmd_val(pmd) == 0)
+#define pmd_present(pmd) (pmd_val(pmd) != 0)
+#define pmd_clear(pmdp) (pmd_val(*(pmdp)) = 0)
+#define pmd_page_kernel(pmd) \
+ (__bpn_to_ba(pmd_val(pmd) >> PMD_TO_PTEPAGE_SHIFT))
+#define pmd_page(pmd) virt_to_page(pmd_page_kernel(pmd))
+#define pgd_set(pgdp, pmdp) (pgd_val(*(pgdp)) = (__ba_to_bpn(pmdp)))
+#define pgd_none(pgd) (!pgd_val(pgd))
+#define pgd_bad(pgd) ((pgd_val(pgd)) == 0)
+#define pgd_present(pgd) (pgd_val(pgd) != 0UL)
+#define pgd_clear(pgdp) (pgd_val(*(pgdp)) = 0UL)
+#define pgd_page(pgd) (__bpn_to_ba(pgd_val(pgd)))
+
+/*
+ * Find an entry in a page-table-directory. We combine the address region
+ * (the high order N bits) and the pgd portion of the address.
+ */
+/* to avoid overflow in free_pgtables we don't use PTRS_PER_PGD here */
+#define pgd_index(address) (((address) >> (PGDIR_SHIFT)) & 0x7ff)
+
+#define pgd_offset(mm, address) ((mm)->pgd + pgd_index(address))
+
+/* Find an entry in the second-level page table.. */
+#define pmd_offset(dir,addr) \
+ ((pmd_t *) pgd_page(*(dir)) + (((addr) >> PMD_SHIFT) & (PTRS_PER_PMD - 1)))
+
+/* Find an entry in the third-level page table.. */
+#define pte_offset_kernel(dir,addr) \
+ ((pte_t *) pmd_page_kernel(*(dir)) + (((addr) >> PAGE_SHIFT) & (PTRS_PER_PTE - 1)))
+
+#define pte_offset_map(dir,addr) pte_offset_kernel((dir), (addr))
+#define pte_offset_map_nested(dir,addr) pte_offset_kernel((dir), (addr))
+#define pte_unmap(pte) do { } while(0)
+#define pte_unmap_nested(pte) do { } while(0)
+
+/* to find an entry in a kernel page-table-directory */
+/* This now only contains the vmalloc pages */
+#define pgd_offset_k(address) pgd_offset(&init_mm, address)
+
+/* to find an entry in the ioremap page-table-directory */
+#define pgd_offset_i(address) (ioremap_pgd + pgd_index(address))
+
+#define pages_to_mb(x) ((x) >> (20-PAGE_SHIFT))
+
+/*
+ * The following only work if pte_present() is true.
+ * Undefined behaviour if not..
+ */
+static inline int pte_read(pte_t pte) { return pte_val(pte) & _PAGE_USER;}
+static inline int pte_write(pte_t pte) { return pte_val(pte) & _PAGE_RW;}
+static inline int pte_exec(pte_t pte) { return pte_val(pte) & _PAGE_EXEC;}
+static inline int pte_dirty(pte_t pte) { return pte_val(pte) & _PAGE_DIRTY;}
+static inline int pte_young(pte_t pte) { return pte_val(pte) & _PAGE_ACCESSED;}
+static inline int pte_file(pte_t pte) { return pte_val(pte) & _PAGE_FILE;}
+static inline int pte_huge(pte_t pte) { return pte_val(pte) & _PAGE_HUGE;}
+
+static inline void pte_uncache(pte_t pte) { pte_val(pte) |= _PAGE_NO_CACHE; }
+static inline void pte_cache(pte_t pte) { pte_val(pte) &= ~_PAGE_NO_CACHE; }
+
+static inline pte_t pte_rdprotect(pte_t pte) {
+ pte_val(pte) &= ~_PAGE_USER; return pte; }
+static inline pte_t pte_exprotect(pte_t pte) {
+ pte_val(pte) &= ~_PAGE_EXEC; return pte; }
+static inline pte_t pte_wrprotect(pte_t pte) {
+ pte_val(pte) &= ~(_PAGE_RW); return pte; }
+static inline pte_t pte_mkclean(pte_t pte) {
+ pte_val(pte) &= ~(_PAGE_DIRTY); return pte; }
+static inline pte_t pte_mkold(pte_t pte) {
+ pte_val(pte) &= ~_PAGE_ACCESSED; return pte; }
+
+static inline pte_t pte_mkread(pte_t pte) {
+ pte_val(pte) |= _PAGE_USER; return pte; }
+static inline pte_t pte_mkexec(pte_t pte) {
+ pte_val(pte) |= _PAGE_USER | _PAGE_EXEC; return pte; }
+static inline pte_t pte_mkwrite(pte_t pte) {
+ pte_val(pte) |= _PAGE_RW; return pte; }
+static inline pte_t pte_mkdirty(pte_t pte) {
+ pte_val(pte) |= _PAGE_DIRTY; return pte; }
+static inline pte_t pte_mkyoung(pte_t pte) {
+ pte_val(pte) |= _PAGE_ACCESSED; return pte; }
+static inline pte_t pte_mkhuge(pte_t pte) {
+ pte_val(pte) |= _PAGE_HUGE; return pte; }
+
+/* Atomic PTE updates */
+static inline unsigned long pte_update(pte_t *p, unsigned long clr)
+{
+ unsigned long old, tmp;
+
+ __asm__ __volatile__(
+ "1: ldarx %0,0,%3 # pte_update\n\
+ andi. %1,%0,%6\n\
+ bne- 1b \n\
+ andc %1,%0,%4 \n\
+ stdcx. %1,0,%3 \n\
+ bne- 1b"
+ : "=&r" (old), "=&r" (tmp), "=m" (*p)
+ : "r" (p), "r" (clr), "m" (*p), "i" (_PAGE_BUSY)
+ : "cc" );
+ return old;
+}
+
+/* PTE updating functions, this function puts the PTE in the
+ * batch, doesn't actually triggers the hash flush immediately,
+ * you need to call flush_tlb_pending() to do that.
+ */
+extern void hpte_update(struct mm_struct *mm, unsigned long addr, unsigned long pte,
+ int wrprot);
+
+static inline int __ptep_test_and_clear_young(struct mm_struct *mm, unsigned long addr, pte_t *ptep)
+{
+ unsigned long old;
+
+ if ((pte_val(*ptep) & (_PAGE_ACCESSED | _PAGE_HASHPTE)) == 0)
+ return 0;
+ old = pte_update(ptep, _PAGE_ACCESSED);
+ if (old & _PAGE_HASHPTE) {
+ hpte_update(mm, addr, old, 0);
+ flush_tlb_pending();
+ }
+ return (old & _PAGE_ACCESSED) != 0;
+}
+#define __HAVE_ARCH_PTEP_TEST_AND_CLEAR_YOUNG
+#define ptep_test_and_clear_young(__vma, __addr, __ptep) \
+({ \
+ int __r; \
+ __r = __ptep_test_and_clear_young((__vma)->vm_mm, __addr, __ptep); \
+ __r; \
+})
+
+/*
+ * On RW/DIRTY bit transitions we can avoid flushing the hpte. For the
+ * moment we always flush but we need to fix hpte_update and test if the
+ * optimisation is worth it.
+ */
+static inline int __ptep_test_and_clear_dirty(struct mm_struct *mm, unsigned long addr, pte_t *ptep)
+{
+ unsigned long old;
+
+ if ((pte_val(*ptep) & _PAGE_DIRTY) == 0)
+ return 0;
+ old = pte_update(ptep, _PAGE_DIRTY);
+ if (old & _PAGE_HASHPTE)
+ hpte_update(mm, addr, old, 0);
+ return (old & _PAGE_DIRTY) != 0;
+}
+#define __HAVE_ARCH_PTEP_TEST_AND_CLEAR_DIRTY
+#define ptep_test_and_clear_dirty(__vma, __addr, __ptep) \
+({ \
+ int __r; \
+ __r = __ptep_test_and_clear_dirty((__vma)->vm_mm, __addr, __ptep); \
+ __r; \
+})
+
+#define __HAVE_ARCH_PTEP_SET_WRPROTECT
+static inline void ptep_set_wrprotect(struct mm_struct *mm, unsigned long addr, pte_t *ptep)
+{
+ unsigned long old;
+
+ if ((pte_val(*ptep) & _PAGE_RW) == 0)
+ return;
+ old = pte_update(ptep, _PAGE_RW);
+ if (old & _PAGE_HASHPTE)
+ hpte_update(mm, addr, old, 0);
+}
+
+/*
+ * We currently remove entries from the hashtable regardless of whether
+ * the entry was young or dirty. The generic routines only flush if the
+ * entry was young or dirty which is not good enough.
+ *
+ * We should be more intelligent about this but for the moment we override
+ * these functions and force a tlb flush unconditionally
+ */
+#define __HAVE_ARCH_PTEP_CLEAR_YOUNG_FLUSH
+#define ptep_clear_flush_young(__vma, __address, __ptep) \
+({ \
+ int __young = __ptep_test_and_clear_young((__vma)->vm_mm, __address, \
+ __ptep); \
+ __young; \
+})
+
+#define __HAVE_ARCH_PTEP_CLEAR_DIRTY_FLUSH
+#define ptep_clear_flush_dirty(__vma, __address, __ptep) \
+({ \
+ int __dirty = __ptep_test_and_clear_dirty((__vma)->vm_mm, __address, \
+ __ptep); \
+ flush_tlb_page(__vma, __address); \
+ __dirty; \
+})
+
+#define __HAVE_ARCH_PTEP_GET_AND_CLEAR
+static inline pte_t ptep_get_and_clear(struct mm_struct *mm, unsigned long addr, pte_t *ptep)
+{
+ unsigned long old = pte_update(ptep, ~0UL);
+
+ if (old & _PAGE_HASHPTE)
+ hpte_update(mm, addr, old, 0);
+ return __pte(old);
+}
+
+static inline void pte_clear(struct mm_struct *mm, unsigned long addr, pte_t * ptep)
+{
+ unsigned long old = pte_update(ptep, ~0UL);
+
+ if (old & _PAGE_HASHPTE)
+ hpte_update(mm, addr, old, 0);
+}
+
+/*
+ * set_pte stores a linux PTE into the linux page table.
+ */
+static inline void set_pte_at(struct mm_struct *mm, unsigned long addr,
+ pte_t *ptep, pte_t pte)
+{
+ if (pte_present(*ptep)) {
+ pte_clear(mm, addr, ptep);
+ flush_tlb_pending();
+ }
+ *ptep = __pte(pte_val(pte)) & ~_PAGE_HPTEFLAGS;
+}
+
+/* Set the dirty and/or accessed bits atomically in a linux PTE, this
+ * function doesn't need to flush the hash entry
+ */
+#define __HAVE_ARCH_PTEP_SET_ACCESS_FLAGS
+static inline void __ptep_set_access_flags(pte_t *ptep, pte_t entry, int dirty)
+{
+ unsigned long bits = pte_val(entry) &
+ (_PAGE_DIRTY | _PAGE_ACCESSED | _PAGE_RW | _PAGE_EXEC);
+ unsigned long old, tmp;
+
+ __asm__ __volatile__(
+ "1: ldarx %0,0,%4\n\
+ andi. %1,%0,%6\n\
+ bne- 1b \n\
+ or %0,%3,%0\n\
+ stdcx. %0,0,%4\n\
+ bne- 1b"
+ :"=&r" (old), "=&r" (tmp), "=m" (*ptep)
+ :"r" (bits), "r" (ptep), "m" (*ptep), "i" (_PAGE_BUSY)
+ :"cc");
+}
+#define ptep_set_access_flags(__vma, __address, __ptep, __entry, __dirty) \
+ do { \
+ __ptep_set_access_flags(__ptep, __entry, __dirty); \
+ flush_tlb_page_nohash(__vma, __address); \
+ } while(0)
+
+/*
+ * Macro to mark a page protection value as "uncacheable".
+ */
+#define pgprot_noncached(prot) (__pgprot(pgprot_val(prot) | _PAGE_NO_CACHE | _PAGE_GUARDED))
+
+struct file;
+extern pgprot_t phys_mem_access_prot(struct file *file, unsigned long addr,
+ unsigned long size, pgprot_t vma_prot);
+#define __HAVE_PHYS_MEM_ACCESS_PROT
+
+#define __HAVE_ARCH_PTE_SAME
+#define pte_same(A,B) (((pte_val(A) ^ pte_val(B)) & ~_PAGE_HPTEFLAGS) == 0)
+
+extern unsigned long ioremap_bot, ioremap_base;
+
+#define USER_PGD_PTRS (PAGE_OFFSET >> PGDIR_SHIFT)
+#define KERNEL_PGD_PTRS (PTRS_PER_PGD-USER_PGD_PTRS)
+
+#define pte_ERROR(e) \
+ printk("%s:%d: bad pte %016lx.\n", __FILE__, __LINE__, pte_val(e))
+#define pmd_ERROR(e) \
+ printk("%s:%d: bad pmd %08x.\n", __FILE__, __LINE__, pmd_val(e))
+#define pgd_ERROR(e) \
+ printk("%s:%d: bad pgd %08x.\n", __FILE__, __LINE__, pgd_val(e))
+
+extern pgd_t swapper_pg_dir[1024];
+extern pgd_t ioremap_dir[1024];
+
+extern void paging_init(void);
+
+struct mmu_gather;
+void hugetlb_free_pgtables(struct mmu_gather *tlb, struct vm_area_struct *prev,
+ unsigned long start, unsigned long end);
+
+/*
+ * This gets called at the end of handling a page fault, when
+ * the kernel has put a new PTE into the page table for the process.
+ * We use it to put a corresponding HPTE into the hash table
+ * ahead of time, instead of waiting for the inevitable extra
+ * hash-table miss exception.
+ */
+struct vm_area_struct;
+extern void update_mmu_cache(struct vm_area_struct *, unsigned long, pte_t);
+
+/* Encode and de-code a swap entry */
+#define __swp_type(entry) (((entry).val >> 1) & 0x3f)
+#define __swp_offset(entry) ((entry).val >> 8)
+#define __swp_entry(type, offset) ((swp_entry_t) { ((type) << 1) | ((offset) << 8) })
+#define __pte_to_swp_entry(pte) ((swp_entry_t) { pte_val(pte) >> PTE_SHIFT })
+#define __swp_entry_to_pte(x) ((pte_t) { (x).val << PTE_SHIFT })
+#define pte_to_pgoff(pte) (pte_val(pte) >> PTE_SHIFT)
+#define pgoff_to_pte(off) ((pte_t) {((off) << PTE_SHIFT)|_PAGE_FILE})
+#define PTE_FILE_MAX_BITS (BITS_PER_LONG - PTE_SHIFT)
+
+/*
+ * kern_addr_valid is intended to indicate whether an address is a valid
+ * kernel address. Most 32-bit archs define it as always true (like this)
+ * but most 64-bit archs actually perform a test. What should we do here?
+ * The only use is in fs/ncpfs/dir.c
+ */
+#define kern_addr_valid(addr) (1)
+
+#define io_remap_page_range(vma, vaddr, paddr, size, prot) \
+ remap_pfn_range(vma, vaddr, (paddr) >> PAGE_SHIFT, size, prot)
+
+#define io_remap_pfn_range(vma, vaddr, pfn, size, prot) \
+ remap_pfn_range(vma, vaddr, pfn, size, prot)
+
+#define MK_IOSPACE_PFN(space, pfn) (pfn)
+#define GET_IOSPACE(pfn) 0
+#define GET_PFN(pfn) (pfn)
+
+void pgtable_cache_init(void);
+
+extern void hpte_init_native(void);
+extern void hpte_init_lpar(void);
+extern void hpte_init_iSeries(void);
+
+/* imalloc region types */
+#define IM_REGION_UNUSED 0x1
+#define IM_REGION_SUBSET 0x2
+#define IM_REGION_EXISTS 0x4
+#define IM_REGION_OVERLAP 0x8
+#define IM_REGION_SUPERSET 0x10
+
+extern struct vm_struct * im_get_free_area(unsigned long size);
+extern struct vm_struct * im_get_area(unsigned long v_addr, unsigned long size,
+ int region_type);
+unsigned long im_free(void *addr);
+
+extern long pSeries_lpar_hpte_insert(unsigned long hpte_group,
+ unsigned long va, unsigned long prpn,
+ int secondary, unsigned long hpteflags,
+ int bolted, int large);
+
+extern long native_hpte_insert(unsigned long hpte_group, unsigned long va,
+ unsigned long prpn, int secondary,
+ unsigned long hpteflags, int bolted, int large);
+
+/*
+ * find_linux_pte returns the address of a linux pte for a given
+ * effective address and directory. If not found, it returns zero.
+ */
+static inline pte_t *find_linux_pte(pgd_t *pgdir, unsigned long ea)
+{
+ pgd_t *pg;
+ pmd_t *pm;
+ pte_t *pt = NULL;
+ pte_t pte;
+
+ pg = pgdir + pgd_index(ea);
+ if (!pgd_none(*pg)) {
+
+ pm = pmd_offset(pg, ea);
+ if (pmd_present(*pm)) {
+ pt = pte_offset_kernel(pm, ea);
+ pte = *pt;
+ if (!pte_present(pte))
+ pt = NULL;
+ }
+ }
+
+ return pt;
+}
+
+#include <asm-generic/pgtable.h>
+
+#endif /* __ASSEMBLY__ */
+
+#endif /* _PPC64_PGTABLE_H */
OpenPOWER on IntegriCloud