diff options
author | Rex Zhu <Rex.Zhu@amd.com> | 2016-08-11 11:01:01 +0800 |
---|---|---|
committer | Alex Deucher <alexander.deucher@amd.com> | 2016-09-19 13:22:12 -0400 |
commit | 1486022088dea351805e4db4fc76c4d7c68733d6 (patch) | |
tree | 8c37221805728c4fd175347206293cb284fed29f /drivers/gpu/drm/amd/powerplay | |
parent | b859c2070354ad8a2512e1524533d9f3291174c7 (diff) | |
download | talos-obmc-linux-1486022088dea351805e4db4fc76c4d7c68733d6.tar.gz talos-obmc-linux-1486022088dea351805e4db4fc76c4d7c68733d6.zip |
drm/amd/powerplay: implement fw image related smum interface for tonga.
Signed-off-by: Rex Zhu <Rex.Zhu@amd.com>
Reviewed-by: Alex Deucher <alexander.deucher@amd.com>
Signed-off-by: Alex Deucher <alexander.deucher@amd.com>
Diffstat (limited to 'drivers/gpu/drm/amd/powerplay')
-rw-r--r-- | drivers/gpu/drm/amd/powerplay/hwmgr/tonga_hwmgr.c | 2 | ||||
-rw-r--r-- | drivers/gpu/drm/amd/powerplay/smumgr/Makefile | 2 | ||||
-rw-r--r-- | drivers/gpu/drm/amd/powerplay/smumgr/tonga_smc.c | 3214 | ||||
-rw-r--r-- | drivers/gpu/drm/amd/powerplay/smumgr/tonga_smc.h | 60 | ||||
-rw-r--r-- | drivers/gpu/drm/amd/powerplay/smumgr/tonga_smumgr.c | 17 | ||||
-rw-r--r-- | drivers/gpu/drm/amd/powerplay/smumgr/tonga_smumgr.h | 37 |
6 files changed, 3329 insertions, 3 deletions
diff --git a/drivers/gpu/drm/amd/powerplay/hwmgr/tonga_hwmgr.c b/drivers/gpu/drm/amd/powerplay/hwmgr/tonga_hwmgr.c index 42783bf7647c..3110bf0eeacc 100644 --- a/drivers/gpu/drm/amd/powerplay/hwmgr/tonga_hwmgr.c +++ b/drivers/gpu/drm/amd/powerplay/hwmgr/tonga_hwmgr.c @@ -800,7 +800,7 @@ static int tonga_process_firmware_header(struct pp_hwmgr *hwmgr) if (0 == result) { data->soft_regs_start = tmp; - tonga_smu->ulSoftRegsStart = tmp; + tonga_smu->soft_regs_start = tmp; } error |= (0 != result); diff --git a/drivers/gpu/drm/amd/powerplay/smumgr/Makefile b/drivers/gpu/drm/amd/powerplay/smumgr/Makefile index 7561239eb874..2ff4aa031b1a 100644 --- a/drivers/gpu/drm/amd/powerplay/smumgr/Makefile +++ b/drivers/gpu/drm/amd/powerplay/smumgr/Makefile @@ -3,7 +3,7 @@ # It provides the smu management services for the driver. SMU_MGR = smumgr.o cz_smumgr.o tonga_smumgr.o fiji_smumgr.o fiji_smc.o\ - polaris10_smumgr.o iceland_smumgr.o polaris10_smc.o + polaris10_smumgr.o iceland_smumgr.o polaris10_smc.o tonga_smc.o AMD_PP_SMUMGR = $(addprefix $(AMD_PP_PATH)/smumgr/,$(SMU_MGR)) diff --git a/drivers/gpu/drm/amd/powerplay/smumgr/tonga_smc.c b/drivers/gpu/drm/amd/powerplay/smumgr/tonga_smc.c new file mode 100644 index 000000000000..3acdbffed88c --- /dev/null +++ b/drivers/gpu/drm/amd/powerplay/smumgr/tonga_smc.c @@ -0,0 +1,3214 @@ +/* + * Copyright 2015 Advanced Micro Devices, Inc. + * + * Permission is hereby granted, free of charge, to any person obtaining a + * copy of this software and associated documentation files (the "Software"), + * to deal in the Software without restriction, including without limitation + * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR + * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, + * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL + * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR + * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, + * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR + * OTHER DEALINGS IN THE SOFTWARE. + * the rights to use, copy, modify, merge, publish, distribute, sublicense, + * and/or sell copies of the Software, and to permit persons to whom the + * Software is furnished to do so, subject to the following conditions: + * + * The above copyright notice and this permission notice shall be included in + * all copies or substantial portions of the Software. + * + * + */ + +#include "tonga_smc.h" +#include "smu7_dyn_defaults.h" + +#include "smu7_hwmgr.h" +#include "hardwaremanager.h" +#include "ppatomctrl.h" +#include "pp_debug.h" +#include "cgs_common.h" +#include "atombios.h" +#include "tonga_smumgr.h" +#include "pppcielanes.h" +#include "pp_endian.h" +#include "smu7_ppsmc.h" + +#include "smu72_discrete.h" + +#include "smu/smu_7_1_2_d.h" +#include "smu/smu_7_1_2_sh_mask.h" + +#include "gmc/gmc_8_1_d.h" +#include "gmc/gmc_8_1_sh_mask.h" + +#include "bif/bif_5_0_d.h" +#include "bif/bif_5_0_sh_mask.h" + +#include "dce/dce_10_0_d.h" +#include "dce/dce_10_0_sh_mask.h" + + +#define VOLTAGE_SCALE 4 +#define POWERTUNE_DEFAULT_SET_MAX 1 +#define VOLTAGE_VID_OFFSET_SCALE1 625 +#define VOLTAGE_VID_OFFSET_SCALE2 100 +#define MC_CG_ARB_FREQ_F1 0x0b +#define VDDC_VDDCI_DELTA 200 + + +static struct tonga_pt_defaults tonga_power_tune_data_set_array[POWERTUNE_DEFAULT_SET_MAX] = { +/* sviLoadLIneEn, SviLoadLineVddC, TDC_VDDC_ThrottleReleaseLimitPerc, TDC_MAWt, + * TdcWaterfallCtl, DTEAmbientTempBase, DisplayCac, BAPM_TEMP_GRADIENT + */ + {1, 0xF, 0xFD, 0x19, + 5, 45, 0, 0xB0000, + {0x79, 0x253, 0x25D, 0xAE, 0x72, 0x80, 0x83, 0x86, 0x6F, 0xC8, + 0xC9, 0xC9, 0x2F, 0x4D, 0x61}, + {0x17C, 0x172, 0x180, 0x1BC, 0x1B3, 0x1BD, 0x206, 0x200, 0x203, + 0x25D, 0x25A, 0x255, 0x2C3, 0x2C5, 0x2B4} + }, +}; + +/* [Fmin, Fmax, LDO_REFSEL, USE_FOR_LOW_FREQ] */ +static const uint16_t tonga_clock_stretcher_lookup_table[2][4] = { + {600, 1050, 3, 0}, + {600, 1050, 6, 1} +}; + +/* [FF, SS] type, [] 4 voltage ranges, + * and [Floor Freq, Boundary Freq, VID min , VID max] + */ +static const uint32_t tonga_clock_stretcher_ddt_table[2][4][4] = { + { {265, 529, 120, 128}, {325, 650, 96, 119}, {430, 860, 32, 95}, {0, 0, 0, 31} }, + { {275, 550, 104, 112}, {319, 638, 96, 103}, {360, 720, 64, 95}, {384, 768, 32, 63} } +}; + +/* [Use_For_Low_freq] value, [0%, 5%, 10%, 7.14%, 14.28%, 20%] */ +static const uint8_t tonga_clock_stretch_amount_conversion[2][6] = { + {0, 1, 3, 2, 4, 5}, + {0, 2, 4, 5, 6, 5} +}; + +/* PPGen has the gain setting generated in x * 100 unit + * This function is to convert the unit to x * 4096(0x1000) unit. + * This is the unit expected by SMC firmware + */ + + +static int tonga_get_dependecy_volt_by_clk(struct pp_hwmgr *hwmgr, + phm_ppt_v1_clock_voltage_dependency_table *allowed_clock_voltage_table, + uint32_t clock, SMU_VoltageLevel *voltage, uint32_t *mvdd) +{ + uint32_t i = 0; + struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend); + struct phm_ppt_v1_information *pptable_info = + (struct phm_ppt_v1_information *)(hwmgr->pptable); + + /* clock - voltage dependency table is empty table */ + if (allowed_clock_voltage_table->count == 0) + return -EINVAL; + + for (i = 0; i < allowed_clock_voltage_table->count; i++) { + /* find first sclk bigger than request */ + if (allowed_clock_voltage_table->entries[i].clk >= clock) { + voltage->VddGfx = phm_get_voltage_index( + pptable_info->vddgfx_lookup_table, + allowed_clock_voltage_table->entries[i].vddgfx); + voltage->Vddc = phm_get_voltage_index( + pptable_info->vddc_lookup_table, + allowed_clock_voltage_table->entries[i].vddc); + + if (allowed_clock_voltage_table->entries[i].vddci) + voltage->Vddci = + phm_get_voltage_id(&data->vddci_voltage_table, allowed_clock_voltage_table->entries[i].vddci); + else + voltage->Vddci = + phm_get_voltage_id(&data->vddci_voltage_table, + allowed_clock_voltage_table->entries[i].vddc - VDDC_VDDCI_DELTA); + + + if (allowed_clock_voltage_table->entries[i].mvdd) + *mvdd = (uint32_t) allowed_clock_voltage_table->entries[i].mvdd; + + voltage->Phases = 1; + return 0; + } + } + + /* sclk is bigger than max sclk in the dependence table */ + voltage->VddGfx = phm_get_voltage_index(pptable_info->vddgfx_lookup_table, + allowed_clock_voltage_table->entries[i-1].vddgfx); + voltage->Vddc = phm_get_voltage_index(pptable_info->vddc_lookup_table, + allowed_clock_voltage_table->entries[i-1].vddc); + + if (allowed_clock_voltage_table->entries[i-1].vddci) + voltage->Vddci = phm_get_voltage_id(&data->vddci_voltage_table, + allowed_clock_voltage_table->entries[i-1].vddci); + + if (allowed_clock_voltage_table->entries[i-1].mvdd) + *mvdd = (uint32_t) allowed_clock_voltage_table->entries[i-1].mvdd; + + return 0; +} + + +/** + * Vddc table preparation for SMC. + * + * @param hwmgr the address of the hardware manager + * @param table the SMC DPM table structure to be populated + * @return always 0 + */ +static int tonga_populate_smc_vddc_table(struct pp_hwmgr *hwmgr, + SMU72_Discrete_DpmTable *table) +{ + unsigned int count; + struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend); + + if (SMU7_VOLTAGE_CONTROL_BY_SVID2 == data->voltage_control) { + table->VddcLevelCount = data->vddc_voltage_table.count; + for (count = 0; count < table->VddcLevelCount; count++) { + table->VddcTable[count] = + PP_HOST_TO_SMC_US(data->vddc_voltage_table.entries[count].value * VOLTAGE_SCALE); + } + CONVERT_FROM_HOST_TO_SMC_UL(table->VddcLevelCount); + } + return 0; +} + +/** + * VddGfx table preparation for SMC. + * + * @param hwmgr the address of the hardware manager + * @param table the SMC DPM table structure to be populated + * @return always 0 + */ +static int tonga_populate_smc_vdd_gfx_table(struct pp_hwmgr *hwmgr, + SMU72_Discrete_DpmTable *table) +{ + unsigned int count; + struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend); + + if (SMU7_VOLTAGE_CONTROL_BY_SVID2 == data->vdd_gfx_control) { + table->VddGfxLevelCount = data->vddgfx_voltage_table.count; + for (count = 0; count < data->vddgfx_voltage_table.count; count++) { + table->VddGfxTable[count] = + PP_HOST_TO_SMC_US(data->vddgfx_voltage_table.entries[count].value * VOLTAGE_SCALE); + } + CONVERT_FROM_HOST_TO_SMC_UL(table->VddGfxLevelCount); + } + return 0; +} + +/** + * Vddci table preparation for SMC. + * + * @param *hwmgr The address of the hardware manager. + * @param *table The SMC DPM table structure to be populated. + * @return 0 + */ +static int tonga_populate_smc_vdd_ci_table(struct pp_hwmgr *hwmgr, + SMU72_Discrete_DpmTable *table) +{ + struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend); + uint32_t count; + + table->VddciLevelCount = data->vddci_voltage_table.count; + for (count = 0; count < table->VddciLevelCount; count++) { + if (SMU7_VOLTAGE_CONTROL_BY_SVID2 == data->vddci_control) { + table->VddciTable[count] = + PP_HOST_TO_SMC_US(data->vddci_voltage_table.entries[count].value * VOLTAGE_SCALE); + } else if (SMU7_VOLTAGE_CONTROL_BY_GPIO == data->vddci_control) { + table->SmioTable1.Pattern[count].Voltage = + PP_HOST_TO_SMC_US(data->vddci_voltage_table.entries[count].value * VOLTAGE_SCALE); + /* Index into DpmTable.Smio. Drive bits from Smio entry to get this voltage level. */ + table->SmioTable1.Pattern[count].Smio = + (uint8_t) count; + table->Smio[count] |= + data->vddci_voltage_table.entries[count].smio_low; + table->VddciTable[count] = + PP_HOST_TO_SMC_US(data->vddci_voltage_table.entries[count].value * VOLTAGE_SCALE); + } + } + + table->SmioMask1 = data->vddci_voltage_table.mask_low; + CONVERT_FROM_HOST_TO_SMC_UL(table->VddciLevelCount); + + return 0; +} + +/** + * Mvdd table preparation for SMC. + * + * @param *hwmgr The address of the hardware manager. + * @param *table The SMC DPM table structure to be populated. + * @return 0 + */ +static int tonga_populate_smc_mvdd_table(struct pp_hwmgr *hwmgr, + SMU72_Discrete_DpmTable *table) +{ + struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend); + uint32_t count; + + if (SMU7_VOLTAGE_CONTROL_BY_GPIO == data->mvdd_control) { + table->MvddLevelCount = data->mvdd_voltage_table.count; + for (count = 0; count < table->MvddLevelCount; count++) { + table->SmioTable2.Pattern[count].Voltage = + PP_HOST_TO_SMC_US(data->mvdd_voltage_table.entries[count].value * VOLTAGE_SCALE); + /* Index into DpmTable.Smio. Drive bits from Smio entry to get this voltage level.*/ + table->SmioTable2.Pattern[count].Smio = + (uint8_t) count; + table->Smio[count] |= + data->mvdd_voltage_table.entries[count].smio_low; + } + table->SmioMask2 = data->mvdd_voltage_table.mask_low; + + CONVERT_FROM_HOST_TO_SMC_UL(table->MvddLevelCount); + } + + return 0; +} + +/** + * Preparation of vddc and vddgfx CAC tables for SMC. + * + * @param hwmgr the address of the hardware manager + * @param table the SMC DPM table structure to be populated + * @return always 0 + */ +static int tonga_populate_cac_tables(struct pp_hwmgr *hwmgr, + SMU72_Discrete_DpmTable *table) +{ + uint32_t count; + uint8_t index = 0; + struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend); + struct phm_ppt_v1_information *pptable_info = + (struct phm_ppt_v1_information *)(hwmgr->pptable); + struct phm_ppt_v1_voltage_lookup_table *vddgfx_lookup_table = + pptable_info->vddgfx_lookup_table; + struct phm_ppt_v1_voltage_lookup_table *vddc_lookup_table = + pptable_info->vddc_lookup_table; + + /* table is already swapped, so in order to use the value from it + * we need to swap it back. + */ + uint32_t vddc_level_count = PP_SMC_TO_HOST_UL(table->VddcLevelCount); + uint32_t vddgfx_level_count = PP_SMC_TO_HOST_UL(table->VddGfxLevelCount); + + for (count = 0; count < vddc_level_count; count++) { + /* We are populating vddc CAC data to BapmVddc table in split and merged mode */ + index = phm_get_voltage_index(vddc_lookup_table, + data->vddc_voltage_table.entries[count].value); + table->BapmVddcVidLoSidd[count] = + convert_to_vid(vddc_lookup_table->entries[index].us_cac_low); + table->BapmVddcVidHiSidd[count] = + convert_to_vid(vddc_lookup_table->entries[index].us_cac_mid); + table->BapmVddcVidHiSidd2[count] = + convert_to_vid(vddc_lookup_table->entries[index].us_cac_high); + } + + if ((data->vdd_gfx_control == SMU7_VOLTAGE_CONTROL_BY_SVID2)) { + /* We are populating vddgfx CAC data to BapmVddgfx table in split mode */ + for (count = 0; count < vddgfx_level_count; count++) { + index = phm_get_voltage_index(vddgfx_lookup_table, + convert_to_vid(vddgfx_lookup_table->entries[index].us_cac_mid)); + table->BapmVddGfxVidHiSidd2[count] = + convert_to_vid(vddgfx_lookup_table->entries[index].us_cac_high); + } + } else { + for (count = 0; count < vddc_level_count; count++) { + index = phm_get_voltage_index(vddc_lookup_table, + data->vddc_voltage_table.entries[count].value); + table->BapmVddGfxVidLoSidd[count] = + convert_to_vid(vddc_lookup_table->entries[index].us_cac_low); + table->BapmVddGfxVidHiSidd[count] = + convert_to_vid(vddc_lookup_table->entries[index].us_cac_mid); + table->BapmVddGfxVidHiSidd2[count] = + convert_to_vid(vddc_lookup_table->entries[index].us_cac_high); + } + } + + return 0; +} + +/** + * Preparation of voltage tables for SMC. + * + * @param hwmgr the address of the hardware manager + * @param table the SMC DPM table structure to be populated + * @return always 0 + */ + +static int tonga_populate_smc_voltage_tables(struct pp_hwmgr *hwmgr, + SMU72_Discrete_DpmTable *table) +{ + int result; + + result = tonga_populate_smc_vddc_table(hwmgr, table); + PP_ASSERT_WITH_CODE(0 == result, + "can not populate VDDC voltage table to SMC", + return -EINVAL); + + result = tonga_populate_smc_vdd_ci_table(hwmgr, table); + PP_ASSERT_WITH_CODE(0 == result, + "can not populate VDDCI voltage table to SMC", + return -EINVAL); + + result = tonga_populate_smc_vdd_gfx_table(hwmgr, table); + PP_ASSERT_WITH_CODE(0 == result, + "can not populate VDDGFX voltage table to SMC", + return -EINVAL); + + result = tonga_populate_smc_mvdd_table(hwmgr, table); + PP_ASSERT_WITH_CODE(0 == result, + "can not populate MVDD voltage table to SMC", + return -EINVAL); + + result = tonga_populate_cac_tables(hwmgr, table); + PP_ASSERT_WITH_CODE(0 == result, + "can not populate CAC voltage tables to SMC", + return -EINVAL); + + return 0; +} + +static int tonga_populate_ulv_level(struct pp_hwmgr *hwmgr, + struct SMU72_Discrete_Ulv *state) +{ + struct phm_ppt_v1_information *table_info = + (struct phm_ppt_v1_information *)(hwmgr->pptable); + + state->CcPwrDynRm = 0; + state->CcPwrDynRm1 = 0; + + state->VddcOffset = (uint16_t) table_info->us_ulv_voltage_offset; + state->VddcOffsetVid = (uint8_t)(table_info->us_ulv_voltage_offset * + VOLTAGE_VID_OFFSET_SCALE2 / VOLTAGE_VID_OFFSET_SCALE1); + + state->VddcPhase = 1; + + CONVERT_FROM_HOST_TO_SMC_UL(state->CcPwrDynRm); + CONVERT_FROM_HOST_TO_SMC_UL(state->CcPwrDynRm1); + CONVERT_FROM_HOST_TO_SMC_US(state->VddcOffset); + + return 0; +} + +static int tonga_populate_ulv_state(struct pp_hwmgr *hwmgr, + struct SMU72_Discrete_DpmTable *table) +{ + return tonga_populate_ulv_level(hwmgr, &table->Ulv); +} + +static int tonga_populate_smc_link_level(struct pp_hwmgr *hwmgr, SMU72_Discrete_DpmTable *table) +{ + struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend); + struct smu7_dpm_table *dpm_table = &data->dpm_table; + struct tonga_smumgr *smu_data = (struct tonga_smumgr *)(hwmgr->smumgr->backend); + uint32_t i; + + /* Index (dpm_table->pcie_speed_table.count) is reserved for PCIE boot level. */ + for (i = 0; i <= dpm_table->pcie_speed_table.count; i++) { + table->LinkLevel[i].PcieGenSpeed = + (uint8_t)dpm_table->pcie_speed_table.dpm_levels[i].value; + table->LinkLevel[i].PcieLaneCount = + (uint8_t)encode_pcie_lane_width(dpm_table->pcie_speed_table.dpm_levels[i].param1); + table->LinkLevel[i].EnabledForActivity = + 1; + table->LinkLevel[i].SPC = + (uint8_t)(data->pcie_spc_cap & 0xff); + table->LinkLevel[i].DownThreshold = + PP_HOST_TO_SMC_UL(5); + table->LinkLevel[i].UpThreshold = + PP_HOST_TO_SMC_UL(30); + } + + smu_data->smc_state_table.LinkLevelCount = + (uint8_t)dpm_table->pcie_speed_table.count; + data->dpm_level_enable_mask.pcie_dpm_enable_mask = + phm_get_dpm_level_enable_mask_value(&dpm_table->pcie_speed_table); + + return 0; +} + +/** + * Calculates the SCLK dividers using the provided engine clock + * + * @param hwmgr the address of the hardware manager + * @param engine_clock the engine clock to use to populate the structure + * @param sclk the SMC SCLK structure to be populated + */ +static int tonga_calculate_sclk_params(struct pp_hwmgr *hwmgr, + uint32_t engine_clock, SMU72_Discrete_GraphicsLevel *sclk) +{ + const struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend); + pp_atomctrl_clock_dividers_vi dividers; + uint32_t spll_func_cntl = data->clock_registers.vCG_SPLL_FUNC_CNTL; + uint32_t spll_func_cntl_3 = data->clock_registers.vCG_SPLL_FUNC_CNTL_3; + uint32_t spll_func_cntl_4 = data->clock_registers.vCG_SPLL_FUNC_CNTL_4; + uint32_t cg_spll_spread_spectrum = data->clock_registers.vCG_SPLL_SPREAD_SPECTRUM; + uint32_t cg_spll_spread_spectrum_2 = data->clock_registers.vCG_SPLL_SPREAD_SPECTRUM_2; + uint32_t reference_clock; + uint32_t reference_divider; + uint32_t fbdiv; + int result; + + /* get the engine clock dividers for this clock value*/ + result = atomctrl_get_engine_pll_dividers_vi(hwmgr, engine_clock, ÷rs); + + PP_ASSERT_WITH_CODE(result == 0, + "Error retrieving Engine Clock dividers from VBIOS.", return result); + + /* To get FBDIV we need to multiply this by 16384 and divide it by Fref.*/ + reference_clock = atomctrl_get_reference_clock(hwmgr); + + reference_divider = 1 + dividers.uc_pll_ref_div; + + /* low 14 bits is fraction and high 12 bits is divider*/ + fbdiv = dividers.ul_fb_div.ul_fb_divider & 0x3FFFFFF; + + /* SPLL_FUNC_CNTL setup*/ + spll_func_cntl = PHM_SET_FIELD(spll_func_cntl, + CG_SPLL_FUNC_CNTL, SPLL_REF_DIV, dividers.uc_pll_ref_div); + spll_func_cntl = PHM_SET_FIELD(spll_func_cntl, + CG_SPLL_FUNC_CNTL, SPLL_PDIV_A, dividers.uc_pll_post_div); + + /* SPLL_FUNC_CNTL_3 setup*/ + spll_func_cntl_3 = PHM_SET_FIELD(spll_func_cntl_3, + CG_SPLL_FUNC_CNTL_3, SPLL_FB_DIV, fbdiv); + + /* set to use fractional accumulation*/ + spll_func_cntl_3 = PHM_SET_FIELD(spll_func_cntl_3, + CG_SPLL_FUNC_CNTL_3, SPLL_DITHEN, 1); + + if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps, + PHM_PlatformCaps_EngineSpreadSpectrumSupport)) { + pp_atomctrl_internal_ss_info ss_info; + + uint32_t vcoFreq = engine_clock * dividers.uc_pll_post_div; + if (0 == atomctrl_get_engine_clock_spread_spectrum(hwmgr, vcoFreq, &ss_info)) { + /* + * ss_info.speed_spectrum_percentage -- in unit of 0.01% + * ss_info.speed_spectrum_rate -- in unit of khz + */ + /* clks = reference_clock * 10 / (REFDIV + 1) / speed_spectrum_rate / 2 */ + uint32_t clkS = reference_clock * 5 / (reference_divider * ss_info.speed_spectrum_rate); + + /* clkv = 2 * D * fbdiv / NS */ + uint32_t clkV = 4 * ss_info.speed_spectrum_percentage * fbdiv / (clkS * 10000); + + cg_spll_spread_spectrum = + PHM_SET_FIELD(cg_spll_spread_spectrum, CG_SPLL_SPREAD_SPECTRUM, CLKS, clkS); + cg_spll_spread_spectrum = + PHM_SET_FIELD(cg_spll_spread_spectrum, CG_SPLL_SPREAD_SPECTRUM, SSEN, 1); + cg_spll_spread_spectrum_2 = + PHM_SET_FIELD(cg_spll_spread_spectrum_2, CG_SPLL_SPREAD_SPECTRUM_2, CLKV, clkV); + } + } + + sclk->SclkFrequency = engine_clock; + sclk->CgSpllFuncCntl3 = spll_func_cntl_3; + sclk->CgSpllFuncCntl4 = spll_func_cntl_4; + sclk->SpllSpreadSpectrum = cg_spll_spread_spectrum; + sclk->SpllSpreadSpectrum2 = cg_spll_spread_spectrum_2; + sclk->SclkDid = (uint8_t)dividers.pll_post_divider; + + return 0; +} + +/** + * Populates single SMC SCLK structure using the provided engine clock + * + * @param hwmgr the address of the hardware manager + * @param engine_clock the engine clock to use to populate the structure + * @param sclk the SMC SCLK structure to be populated + */ +static int tonga_populate_single_graphic_level(struct pp_hwmgr *hwmgr, + uint32_t engine_clock, + uint16_t sclk_activity_level_threshold, + SMU72_Discrete_GraphicsLevel *graphic_level) +{ + int result; + uint32_t mvdd; + struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend); + struct phm_ppt_v1_information *pptable_info = + (struct phm_ppt_v1_information *)(hwmgr->pptable); + + result = tonga_calculate_sclk_params(hwmgr, engine_clock, graphic_level); + + /* populate graphics levels*/ + result = tonga_get_dependecy_volt_by_clk(hwmgr, + pptable_info->vdd_dep_on_sclk, engine_clock, + &graphic_level->MinVoltage, &mvdd); + PP_ASSERT_WITH_CODE((0 == result), + "can not find VDDC voltage value for VDDC " + "engine clock dependency table", return result); + + /* SCLK frequency in units of 10KHz*/ + graphic_level->SclkFrequency = engine_clock; + /* Indicates maximum activity level for this performance level. 50% for now*/ + graphic_level->ActivityLevel = sclk_activity_level_threshold; + + graphic_level->CcPwrDynRm = 0; + graphic_level->CcPwrDynRm1 = 0; + /* this level can be used if activity is high enough.*/ + graphic_level->EnabledForActivity = 0; + /* this level can be used for throttling.*/ + graphic_level->EnabledForThrottle = 1; + graphic_level->UpHyst = 0; + graphic_level->DownHyst = 0; + graphic_level->VoltageDownHyst = 0; + graphic_level->PowerThrottle = 0; + + data->display_timing.min_clock_in_sr = + hwmgr->display_config.min_core_set_clock_in_sr; + + if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps, + PHM_PlatformCaps_SclkDeepSleep)) + graphic_level->DeepSleepDivId = + smu7_get_sleep_divider_id_from_clock(engine_clock, + data->display_timing.min_clock_in_sr); + + /* Default to slow, highest DPM level will be set to PPSMC_DISPLAY_WATERMARK_LOW later.*/ + graphic_level->DisplayWatermark = PPSMC_DISPLAY_WATERMARK_LOW; + + if (0 == result) { + /* CONVERT_FROM_HOST_TO_SMC_UL(graphic_level->MinVoltage);*/ + /* CONVERT_FROM_HOST_TO_SMC_UL(graphic_level->MinVddcPhases);*/ + CONVERT_FROM_HOST_TO_SMC_UL(graphic_level->SclkFrequency); + CONVERT_FROM_HOST_TO_SMC_US(graphic_level->ActivityLevel); + CONVERT_FROM_HOST_TO_SMC_UL(graphic_level->CgSpllFuncCntl3); + CONVERT_FROM_HOST_TO_SMC_UL(graphic_level->CgSpllFuncCntl4); + CONVERT_FROM_HOST_TO_SMC_UL(graphic_level->SpllSpreadSpectrum); + CONVERT_FROM_HOST_TO_SMC_UL(graphic_level->SpllSpreadSpectrum2); + CONVERT_FROM_HOST_TO_SMC_UL(graphic_level->CcPwrDynRm); + CONVERT_FROM_HOST_TO_SMC_UL(graphic_level->CcPwrDynRm1); + } + + return result; +} + +/** + * Populates all SMC SCLK levels' structure based on the trimmed allowed dpm engine clock states + * + * @param hwmgr the address of the hardware manager + */ +int tonga_populate_all_graphic_levels(struct pp_hwmgr *hwmgr) +{ + struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend); + struct tonga_smumgr *smu_data = (struct tonga_smumgr *)(hwmgr->smumgr->backend); + struct phm_ppt_v1_information *pptable_info = (struct phm_ppt_v1_information *)(hwmgr->pptable); + struct smu7_dpm_table *dpm_table = &data->dpm_table; + struct phm_ppt_v1_pcie_table *pcie_table = pptable_info->pcie_table; + uint8_t pcie_entry_count = (uint8_t) data->dpm_table.pcie_speed_table.count; + uint32_t level_array_address = smu_data->dpm_table_start + + offsetof(SMU72_Discrete_DpmTable, GraphicsLevel); + + uint32_t level_array_size = sizeof(SMU72_Discrete_GraphicsLevel) * + SMU72_MAX_LEVELS_GRAPHICS; + + SMU72_Discrete_GraphicsLevel *levels = smu_data->smc_state_table.GraphicsLevel; + + uint32_t i, max_entry; + uint8_t highest_pcie_level_enabled = 0; + uint8_t lowest_pcie_level_enabled = 0, mid_pcie_level_enabled = 0; + uint8_t count = 0; + int result = 0; + + memset(levels, 0x00, level_array_size); + + for (i = 0; i < dpm_table->sclk_table.count; i++) { + result = tonga_populate_single_graphic_level(hwmgr, + dpm_table->sclk_table.dpm_levels[i].value, + (uint16_t)smu_data->activity_target[i], + &(smu_data->smc_state_table.GraphicsLevel[i])); + if (result != 0) + return result; + + /* Making sure only DPM level 0-1 have Deep Sleep Div ID populated. */ + if (i > 1) + smu_data->smc_state_table.GraphicsLevel[i].DeepSleepDivId = 0; + } + + /* Only enable level 0 for now. */ + smu_data->smc_state_table.GraphicsLevel[0].EnabledForActivity = 1; + + /* set highest level watermark to high */ + if (dpm_table->sclk_table.count > 1) + smu_data->smc_state_table.GraphicsLevel[dpm_table->sclk_table.count-1].DisplayWatermark = + PPSMC_DISPLAY_WATERMARK_HIGH; + + smu_data->smc_state_table.GraphicsDpmLevelCount = + (uint8_t)dpm_table->sclk_table.count; + data->dpm_level_enable_mask.sclk_dpm_enable_mask = + phm_get_dpm_level_enable_mask_value(&dpm_table->sclk_table); + + if (pcie_table != NULL) { + PP_ASSERT_WITH_CODE((pcie_entry_count >= 1), + "There must be 1 or more PCIE levels defined in PPTable.", + return -EINVAL); + max_entry = pcie_entry_count - 1; /* for indexing, we need to decrement by 1.*/ + for (i = 0; i < dpm_table->sclk_table.count; i++) { + smu_data->smc_state_table.GraphicsLevel[i].pcieDpmLevel = + (uint8_t) ((i < max_entry) ? i : max_entry); + } + } else { + if (0 == data->dpm_level_enable_mask.pcie_dpm_enable_mask) + printk(KERN_ERR "[ powerplay ] Pcie Dpm Enablemask is 0 !"); + + while (data->dpm_level_enable_mask.pcie_dpm_enable_mask && + ((data->dpm_level_enable_mask.pcie_dpm_enable_mask & + (1<<(highest_pcie_level_enabled+1))) != 0)) { + highest_pcie_level_enabled++; + } + + while (data->dpm_level_enable_mask.pcie_dpm_enable_mask && + ((data->dpm_level_enable_mask.pcie_dpm_enable_mask & + (1<<lowest_pcie_level_enabled)) == 0)) { + lowest_pcie_level_enabled++; + } + + while ((count < highest_pcie_level_enabled) && + ((data->dpm_level_enable_mask.pcie_dpm_enable_mask & + (1<<(lowest_pcie_level_enabled+1+count))) == 0)) { + count++; + } + mid_pcie_level_enabled = (lowest_pcie_level_enabled+1+count) < highest_pcie_level_enabled ? + (lowest_pcie_level_enabled+1+count) : highest_pcie_level_enabled; + + + /* set pcieDpmLevel to highest_pcie_level_enabled*/ + for (i = 2; i < dpm_table->sclk_table.count; i++) + smu_data->smc_state_table.GraphicsLevel[i].pcieDpmLevel = highest_pcie_level_enabled; + + /* set pcieDpmLevel to lowest_pcie_level_enabled*/ + smu_data->smc_state_table.GraphicsLevel[0].pcieDpmLevel = lowest_pcie_level_enabled; + + /* set pcieDpmLevel to mid_pcie_level_enabled*/ + smu_data->smc_state_table.GraphicsLevel[1].pcieDpmLevel = mid_pcie_level_enabled; + } + /* level count will send to smc once at init smc table and never change*/ + result = tonga_copy_bytes_to_smc(hwmgr->smumgr, level_array_address, + (uint8_t *)levels, (uint32_t)level_array_size, + SMC_RAM_END); + + return result; +} + +/** + * Populates the SMC MCLK structure using the provided memory clock + * + * @param hwmgr the address of the hardware manager + * @param memory_clock the memory clock to use to populate the structure + * @param sclk the SMC SCLK structure to be populated + */ +static int tonga_calculate_mclk_params( + struct pp_hwmgr *hwmgr, + uint32_t memory_clock, + SMU72_Discrete_MemoryLevel *mclk, + bool strobe_mode, + bool dllStateOn + ) +{ + struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend); + + uint32_t dll_cntl = data->clock_registers.vDLL_CNTL; + uint32_t mclk_pwrmgt_cntl = data->clock_registers.vMCLK_PWRMGT_CNTL; + uint32_t mpll_ad_func_cntl = data->clock_registers.vMPLL_AD_FUNC_CNTL; + uint32_t mpll_dq_func_cntl = data->clock_registers.vMPLL_DQ_FUNC_CNTL; + uint32_t mpll_func_cntl = data->clock_registers.vMPLL_FUNC_CNTL; + uint32_t mpll_func_cntl_1 = data->clock_registers.vMPLL_FUNC_CNTL_1; + uint32_t mpll_func_cntl_2 = data->clock_registers.vMPLL_FUNC_CNTL_2; + uint32_t mpll_ss1 = data->clock_registers.vMPLL_SS1; + uint32_t mpll_ss2 = data->clock_registers.vMPLL_SS2; + + pp_atomctrl_memory_clock_param mpll_param; + int result; + + result = atomctrl_get_memory_pll_dividers_si(hwmgr, + memory_clock, &mpll_param, strobe_mode); + PP_ASSERT_WITH_CODE( + 0 == result, + "Error retrieving Memory Clock Parameters from VBIOS.", + return result); + + /* MPLL_FUNC_CNTL setup*/ + mpll_func_cntl = PHM_SET_FIELD(mpll_func_cntl, MPLL_FUNC_CNTL, BWCTRL, + mpll_param.bw_ctrl); + + /* MPLL_FUNC_CNTL_1 setup*/ + mpll_func_cntl_1 = PHM_SET_FIELD(mpll_func_cntl_1, + MPLL_FUNC_CNTL_1, CLKF, + mpll_param.mpll_fb_divider.cl_kf); + mpll_func_cntl_1 = PHM_SET_FIELD(mpll_func_cntl_1, + MPLL_FUNC_CNTL_1, CLKFRAC, + mpll_param.mpll_fb_divider.clk_frac); + mpll_func_cntl_1 = PHM_SET_FIELD(mpll_func_cntl_1, + MPLL_FUNC_CNTL_1, VCO_MODE, + mpll_param.vco_mode); + + /* MPLL_AD_FUNC_CNTL setup*/ + mpll_ad_func_cntl = PHM_SET_FIELD(mpll_ad_func_cntl, + MPLL_AD_FUNC_CNTL, YCLK_POST_DIV, + mpll_param.mpll_post_divider); + + if (data->is_memory_gddr5) { + /* MPLL_DQ_FUNC_CNTL setup*/ + mpll_dq_func_cntl = PHM_SET_FIELD(mpll_dq_func_cntl, + MPLL_DQ_FUNC_CNTL, YCLK_SEL, + mpll_param.yclk_sel); + mpll_dq_func_cntl = PHM_SET_FIELD(mpll_dq_func_cntl, + MPLL_DQ_FUNC_CNTL, YCLK_POST_DIV, + mpll_param.mpll_post_divider); + } + + if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps, + PHM_PlatformCaps_MemorySpreadSpectrumSupport)) { + /* + ************************************ + Fref = Reference Frequency + NF = Feedback divider ratio + NR = Reference divider ratio + Fnom = Nominal VCO output frequency = Fref * NF / NR + Fs = Spreading Rate + D = Percentage down-spread / 2 + Fint = Reference input frequency to PFD = Fref / NR + NS = Spreading rate divider ratio = int(Fint / (2 * Fs)) + CLKS = NS - 1 = ISS_STEP_NUM[11:0] + NV = D * Fs / Fnom * 4 * ((Fnom/Fref * NR) ^ 2) + CLKV = 65536 * NV = ISS_STEP_SIZE[25:0] + ************************************* + */ + pp_atomctrl_internal_ss_info ss_info; + uint32_t freq_nom; + uint32_t tmp; + uint32_t reference_clock = atomctrl_get_mpll_reference_clock(hwmgr); + + /* for GDDR5 for all modes and DDR3 */ + if (1 == mpll_param.qdr) + freq_nom = memory_clock * 4 * (1 << mpll_param.mpll_post_divider); + else + freq_nom = memory_clock * 2 * (1 << mpll_param.mpll_post_divider); + + /* tmp = (freq_nom / reference_clock * reference_divider) ^ 2 Note: S.I. reference_divider = 1*/ + tmp = (freq_nom / reference_clock); + tmp = tmp * tmp; + + if (0 == atomctrl_get_memory_clock_spread_spectrum(hwmgr, freq_nom, &ss_info)) { + /* ss_info.speed_spectrum_percentage -- in unit of 0.01% */ + /* ss.Info.speed_spectrum_rate -- in unit of khz */ + /* CLKS = reference_clock / (2 * speed_spectrum_rate * reference_divider) * 10 */ + /* = reference_clock * 5 / speed_spectrum_rate */ + uint32_t clks = reference_clock * 5 / ss_info.speed_spectrum_rate; + + /* CLKV = 65536 * speed_spectrum_percentage / 2 * spreadSpecrumRate / freq_nom * 4 / 100000 * ((freq_nom / reference_clock) ^ 2) */ + /* = 131 * speed_spectrum_percentage * speed_spectrum_rate / 100 * ((freq_nom / reference_clock) ^ 2) / freq_nom */ + uint32_t clkv = + (uint32_t)((((131 * ss_info.speed_spectrum_percentage * + ss_info.speed_spectrum_rate) / 100) * tmp) / freq_nom); + + mpll_ss1 = PHM_SET_FIELD(mpll_ss1, MPLL_SS1, CLKV, clkv); + mpll_ss2 = PHM_SET_FIELD(mpll_ss2, MPLL_SS2, CLKS, clks); + } + } + + /* MCLK_PWRMGT_CNTL setup */ + mclk_pwrmgt_cntl = PHM_SET_FIELD(mclk_pwrmgt_cntl, + MCLK_PWRMGT_CNTL, DLL_SPEED, mpll_param.dll_speed); + mclk_pwrmgt_cntl = PHM_SET_FIELD(mclk_pwrmgt_cntl, + MCLK_PWRMGT_CNTL, MRDCK0_PDNB, dllStateOn); + mclk_pwrmgt_cntl = PHM_SET_FIELD(mclk_pwrmgt_cntl, + MCLK_PWRMGT_CNTL, MRDCK1_PDNB, dllStateOn); + + /* Save the result data to outpupt memory level structure */ + mclk->MclkFrequency = memory_clock; + mclk->MpllFuncCntl = mpll_func_cntl; + mclk->MpllFuncCntl_1 = mpll_func_cntl_1; + mclk->MpllFuncCntl_2 = mpll_func_cntl_2; + mclk->MpllAdFuncCntl = mpll_ad_func_cntl; + mclk->MpllDqFuncCntl = mpll_dq_func_cntl; + mclk->MclkPwrmgtCntl = mclk_pwrmgt_cntl; + mclk->DllCntl = dll_cntl; + mclk->MpllSs1 = mpll_ss1; + mclk->MpllSs2 = mpll_ss2; + + return 0; +} + +static uint8_t tonga_get_mclk_frequency_ratio(uint32_t memory_clock, + bool strobe_mode) +{ + uint8_t mc_para_index; + + if (strobe_mode) { + if (memory_clock < 12500) + mc_para_index = 0x00; + else if (memory_clock > 47500) + mc_para_index = 0x0f; + else + mc_para_index = (uint8_t)((memory_clock - 10000) / 2500); + } else { + if (memory_clock < 65000) + mc_para_index = 0x00; + else if (memory_clock > 135000) + mc_para_index = 0x0f; + else + mc_para_index = (uint8_t)((memory_clock - 60000) / 5000); + } + + return mc_para_index; +} + +static uint8_t tonga_get_ddr3_mclk_frequency_ratio(uint32_t memory_clock) +{ + uint8_t mc_para_index; + + if (memory_clock < 10000) + mc_para_index = 0; + else if (memory_clock >= 80000) + mc_para_index = 0x0f; + else + mc_para_index = (uint8_t)((memory_clock - 10000) / 5000 + 1); + + return mc_para_index; +} + + +static int tonga_populate_single_memory_level( + struct pp_hwmgr *hwmgr, + uint32_t memory_clock, + SMU72_Discrete_MemoryLevel *memory_level + ) +{ + uint32_t mvdd = 0; + struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend); + struct phm_ppt_v1_information *pptable_info = + (struct phm_ppt_v1_information *)(hwmgr->pptable); + int result = 0; + bool dll_state_on; + struct cgs_display_info info = {0}; + uint32_t mclk_edc_wr_enable_threshold = 40000; + uint32_t mclk_stutter_mode_threshold = 30000; + uint32_t mclk_edc_enable_threshold = 40000; + uint32_t mclk_strobe_mode_threshold = 40000; + + if (NULL != pptable_info->vdd_dep_on_mclk) { + result = tonga_get_dependecy_volt_by_clk(hwmgr, + pptable_info->vdd_dep_on_mclk, + memory_clock, + &memory_level->MinVoltage, &mvdd); + PP_ASSERT_WITH_CODE( + 0 == result, + "can not find MinVddc voltage value from memory VDDC " + "voltage dependency table", + return result); + } + + if (data->mvdd_control == SMU7_VOLTAGE_CONTROL_NONE) + memory_level->MinMvdd = data->vbios_boot_state.mvdd_bootup_value; + else + memory_level->MinMvdd = mvdd; + + memory_level->EnabledForThrottle = 1; + memory_level->EnabledForActivity = 0; + memory_level->UpHyst = 0; + memory_level->DownHyst = 100; + memory_level->VoltageDownHyst = 0; + + /* Indicates maximum activity level for this performance level.*/ + memory_level->ActivityLevel = (uint16_t)data->mclk_activity_target; + memory_level->StutterEnable = 0; + memory_level->StrobeEnable = 0; + memory_level->EdcReadEnable = 0; + memory_level->EdcWriteEnable = 0; + memory_level->RttEnable = 0; + + /* default set to low watermark. Highest level will be set to high later.*/ + memory_level->DisplayWatermark = PPSMC_DISPLAY_WATERMARK_LOW; + + cgs_get_active_displays_info(hwmgr->device, &info); + data->display_timing.num_existing_displays = info.display_count; + + if ((mclk_stutter_mode_threshold != 0) && + (memory_clock <= mclk_stutter_mode_threshold) && + (!data->is_uvd_enabled) + && (PHM_READ_FIELD(hwmgr->device, DPG_PIPE_STUTTER_CONTROL, STUTTER_ENABLE) & 0x1) + && (data->display_timing.num_existing_displays <= 2) + && (data->display_timing.num_existing_displays != 0)) + memory_level->StutterEnable = 1; + + /* decide strobe mode*/ + memory_level->StrobeEnable = (mclk_strobe_mode_threshold != 0) && + (memory_clock <= mclk_strobe_mode_threshold); + + /* decide EDC mode and memory clock ratio*/ + if (data->is_memory_gddr5) { + memory_level->StrobeRatio = tonga_get_mclk_frequency_ratio(memory_clock, + memory_level->StrobeEnable); + + if ((mclk_edc_enable_threshold != 0) && + (memory_clock > mclk_edc_enable_threshold)) { + memory_level->EdcReadEnable = 1; + } + + if ((mclk_edc_wr_enable_threshold != 0) && + (memory_clock > mclk_edc_wr_enable_threshold)) { + memory_level->EdcWriteEnable = 1; + } + + if (memory_level->StrobeEnable) { + if (tonga_get_mclk_frequency_ratio(memory_clock, 1) >= + ((cgs_read_register(hwmgr->device, mmMC_SEQ_MISC7) >> 16) & 0xf)) { + dll_state_on = ((cgs_read_register(hwmgr->device, mmMC_SEQ_MISC5) >> 1) & 0x1) ? 1 : 0; + } else { + dll_state_on = ((cgs_read_register(hwmgr->device, mmMC_SEQ_MISC6) >> 1) & 0x1) ? 1 : 0; + } + + } else { + dll_state_on = data->dll_default_on; + } + } else { + memory_level->StrobeRatio = + tonga_get_ddr3_mclk_frequency_ratio(memory_clock); + dll_state_on = ((cgs_read_register(hwmgr->device, mmMC_SEQ_MISC5) >> 1) & 0x1) ? 1 : 0; + } + + result = tonga_calculate_mclk_params(hwmgr, + memory_clock, memory_level, memory_level->StrobeEnable, dll_state_on); + + if (!result) { + CONVERT_FROM_HOST_TO_SMC_UL(memory_level->MinMvdd); + /* MCLK frequency in units of 10KHz*/ + CONVERT_FROM_HOST_TO_SMC_UL(memory_level->MclkFrequency); + /* Indicates maximum activity level for this performance level.*/ + CONVERT_FROM_HOST_TO_SMC_US(memory_level->ActivityLevel); + CONVERT_FROM_HOST_TO_SMC_UL(memory_level->MpllFuncCntl); + CONVERT_FROM_HOST_TO_SMC_UL(memory_level->MpllFuncCntl_1); + CONVERT_FROM_HOST_TO_SMC_UL(memory_level->MpllFuncCntl_2); + CONVERT_FROM_HOST_TO_SMC_UL(memory_level->MpllAdFuncCntl); + CONVERT_FROM_HOST_TO_SMC_UL(memory_level->MpllDqFuncCntl); + CONVERT_FROM_HOST_TO_SMC_UL(memory_level->MclkPwrmgtCntl); + CONVERT_FROM_HOST_TO_SMC_UL(memory_level->DllCntl); + CONVERT_FROM_HOST_TO_SMC_UL(memory_level->MpllSs1); + CONVERT_FROM_HOST_TO_SMC_UL(memory_level->MpllSs2); + } + + return result; +} + +int tonga_populate_all_memory_levels(struct pp_hwmgr *hwmgr) +{ + struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend); + struct tonga_smumgr *smu_data = + (struct tonga_smumgr *)(hwmgr->smumgr->backend); + struct smu7_dpm_table *dpm_table = &data->dpm_table; + int result; + + /* populate MCLK dpm table to SMU7 */ + uint32_t level_array_address = + smu_data->dpm_table_start + + offsetof(SMU72_Discrete_DpmTable, MemoryLevel); + uint32_t level_array_size = + sizeof(SMU72_Discrete_MemoryLevel) * + SMU72_MAX_LEVELS_MEMORY; + SMU72_Discrete_MemoryLevel *levels = + smu_data->smc_state_table.MemoryLevel; + uint32_t i; + + memset(levels, 0x00, level_array_size); + + for (i = 0; i < dpm_table->mclk_table.count; i++) { + PP_ASSERT_WITH_CODE((0 != dpm_table->mclk_table.dpm_levels[i].value), + "can not populate memory level as memory clock is zero", + return -EINVAL); + result = tonga_populate_single_memory_level( + hwmgr, + dpm_table->mclk_table.dpm_levels[i].value, + &(smu_data->smc_state_table.MemoryLevel[i])); + if (result) + return result; + } + + /* Only enable level 0 for now.*/ + smu_data->smc_state_table.MemoryLevel[0].EnabledForActivity = 1; + + /* + * in order to prevent MC activity from stutter mode to push DPM up. + * the UVD change complements this by putting the MCLK in a higher state + * by default such that we are not effected by up threshold or and MCLK DPM latency. + */ + smu_data->smc_state_table.MemoryLevel[0].ActivityLevel = 0x1F; + CONVERT_FROM_HOST_TO_SMC_US(smu_data->smc_state_table.MemoryLevel[0].ActivityLevel); + + smu_data->smc_state_table.MemoryDpmLevelCount = (uint8_t)dpm_table->mclk_table.count; + data->dpm_level_enable_mask.mclk_dpm_enable_mask = phm_get_dpm_level_enable_mask_value(&dpm_table->mclk_table); + /* set highest level watermark to high*/ + smu_data->smc_state_table.MemoryLevel[dpm_table->mclk_table.count-1].DisplayWatermark = PPSMC_DISPLAY_WATERMARK_HIGH; + + /* level count will send to smc once at init smc table and never change*/ + result = tonga_copy_bytes_to_smc(hwmgr->smumgr, + level_array_address, (uint8_t *)levels, (uint32_t)level_array_size, + SMC_RAM_END); + + + return result; +} + +static int tonga_populate_mvdd_value(struct pp_hwmgr *hwmgr, + uint32_t mclk, SMIO_Pattern *smio_pattern) +{ + const struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend); + struct phm_ppt_v1_information *table_info = + (struct phm_ppt_v1_information *)(hwmgr->pptable); + uint32_t i = 0; + + if (SMU7_VOLTAGE_CONTROL_NONE != data->mvdd_control) { + /* find mvdd value which clock is more than request */ + for (i = 0; i < table_info->vdd_dep_on_mclk->count; i++) { + if (mclk <= table_info->vdd_dep_on_mclk->entries[i].clk) { + /* Always round to higher voltage. */ + smio_pattern->Voltage = + data->mvdd_voltage_table.entries[i].value; + break; + } + } + + PP_ASSERT_WITH_CODE(i < table_info->vdd_dep_on_mclk->count, + "MVDD Voltage is outside the supported range.", + return -EINVAL); + } else { + return -EINVAL; + } + + return 0; +} + + +static int tonga_populate_smc_acpi_level(struct pp_hwmgr *hwmgr, + SMU72_Discrete_DpmTable *table) +{ + int result = 0; + struct tonga_smumgr *smu_data = + (struct tonga_smumgr *)(hwmgr->smumgr->backend); + const struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend); + struct pp_atomctrl_clock_dividers_vi dividers; + + SMIO_Pattern voltage_level; + uint32_t spll_func_cntl = data->clock_registers.vCG_SPLL_FUNC_CNTL; + uint32_t spll_func_cntl_2 = data->clock_registers.vCG_SPLL_FUNC_CNTL_2; + uint32_t dll_cntl = data->clock_registers.vDLL_CNTL; + uint32_t mclk_pwrmgt_cntl = data->clock_registers.vMCLK_PWRMGT_CNTL; + + /* The ACPI state should not do DPM on DC (or ever).*/ + table->ACPILevel.Flags &= ~PPSMC_SWSTATE_FLAG_DC; + + table->ACPILevel.MinVoltage = + smu_data->smc_state_table.GraphicsLevel[0].MinVoltage; + + /* assign zero for now*/ + table->ACPILevel.SclkFrequency = atomctrl_get_reference_clock(hwmgr); + + /* get the engine clock dividers for this clock value*/ + result = atomctrl_get_engine_pll_dividers_vi(hwmgr, + table->ACPILevel.SclkFrequency, ÷rs); + + PP_ASSERT_WITH_CODE(result == 0, + "Error retrieving Engine Clock dividers from VBIOS.", + return result); + + /* divider ID for required SCLK*/ + table->ACPILevel.SclkDid = (uint8_t)dividers.pll_post_divider; + table->ACPILevel.DisplayWatermark = PPSMC_DISPLAY_WATERMARK_LOW; + table->ACPILevel.DeepSleepDivId = 0; + + spll_func_cntl = PHM_SET_FIELD(spll_func_cntl, CG_SPLL_FUNC_CNTL, + SPLL_PWRON, 0); + spll_func_cntl = PHM_SET_FIELD(spll_func_cntl, CG_SPLL_FUNC_CNTL, + SPLL_RESET, 1); + spll_func_cntl_2 = PHM_SET_FIELD(spll_func_cntl_2, CG_SPLL_FUNC_CNTL_2, + SCLK_MUX_SEL, 4); + + table->ACPILevel.CgSpllFuncCntl = spll_func_cntl; + table->ACPILevel.CgSpllFuncCntl2 = spll_func_cntl_2; + table->ACPILevel.CgSpllFuncCntl3 = data->clock_registers.vCG_SPLL_FUNC_CNTL_3; + table->ACPILevel.CgSpllFuncCntl4 = data->clock_registers.vCG_SPLL_FUNC_CNTL_4; + table->ACPILevel.SpllSpreadSpectrum = data->clock_registers.vCG_SPLL_SPREAD_SPECTRUM; + table->ACPILevel.SpllSpreadSpectrum2 = data->clock_registers.vCG_SPLL_SPREAD_SPECTRUM_2; + table->ACPILevel.CcPwrDynRm = 0; + table->ACPILevel.CcPwrDynRm1 = 0; + + + /* For various features to be enabled/disabled while this level is active.*/ + CONVERT_FROM_HOST_TO_SMC_UL(table->ACPILevel.Flags); + /* SCLK frequency in units of 10KHz*/ + CONVERT_FROM_HOST_TO_SMC_UL(table->ACPILevel.SclkFrequency); + CONVERT_FROM_HOST_TO_SMC_UL(table->ACPILevel.CgSpllFuncCntl); + CONVERT_FROM_HOST_TO_SMC_UL(table->ACPILevel.CgSpllFuncCntl2); + CONVERT_FROM_HOST_TO_SMC_UL(table->ACPILevel.CgSpllFuncCntl3); + CONVERT_FROM_HOST_TO_SMC_UL(table->ACPILevel.CgSpllFuncCntl4); + CONVERT_FROM_HOST_TO_SMC_UL(table->ACPILevel.SpllSpreadSpectrum); + CONVERT_FROM_HOST_TO_SMC_UL(table->ACPILevel.SpllSpreadSpectrum2); + CONVERT_FROM_HOST_TO_SMC_UL(table->ACPILevel.CcPwrDynRm); + CONVERT_FROM_HOST_TO_SMC_UL(table->ACPILevel.CcPwrDynRm1); + + /* table->MemoryACPILevel.MinVddcPhases = table->ACPILevel.MinVddcPhases;*/ + table->MemoryACPILevel.MinVoltage = + smu_data->smc_state_table.MemoryLevel[0].MinVoltage; + + /* CONVERT_FROM_HOST_TO_SMC_UL(table->MemoryACPILevel.MinVoltage);*/ + + if (0 == tonga_populate_mvdd_value(hwmgr, 0, &voltage_level)) + table->MemoryACPILevel.MinMvdd = + PP_HOST_TO_SMC_UL(voltage_level.Voltage * VOLTAGE_SCALE); + else + table->MemoryACPILevel.MinMvdd = 0; + + /* Force reset on DLL*/ + mclk_pwrmgt_cntl = PHM_SET_FIELD(mclk_pwrmgt_cntl, + MCLK_PWRMGT_CNTL, MRDCK0_RESET, 0x1); + mclk_pwrmgt_cntl = PHM_SET_FIELD(mclk_pwrmgt_cntl, + MCLK_PWRMGT_CNTL, MRDCK1_RESET, 0x1); + + /* Disable DLL in ACPIState*/ + mclk_pwrmgt_cntl = PHM_SET_FIELD(mclk_pwrmgt_cntl, + MCLK_PWRMGT_CNTL, MRDCK0_PDNB, 0); + mclk_pwrmgt_cntl = PHM_SET_FIELD(mclk_pwrmgt_cntl, + MCLK_PWRMGT_CNTL, MRDCK1_PDNB, 0); + + /* Enable DLL bypass signal*/ + dll_cntl = PHM_SET_FIELD(dll_cntl, + DLL_CNTL, MRDCK0_BYPASS, 0); + dll_cntl = PHM_SET_FIELD(dll_cntl, + DLL_CNTL, MRDCK1_BYPASS, 0); + + table->MemoryACPILevel.DllCntl = + PP_HOST_TO_SMC_UL(dll_cntl); + table->MemoryACPILevel.MclkPwrmgtCntl = + PP_HOST_TO_SMC_UL(mclk_pwrmgt_cntl); + table->MemoryACPILevel.MpllAdFuncCntl = + PP_HOST_TO_SMC_UL(data->clock_registers.vMPLL_AD_FUNC_CNTL); + table->MemoryACPILevel.MpllDqFuncCntl = + PP_HOST_TO_SMC_UL(data->clock_registers.vMPLL_DQ_FUNC_CNTL); + table->MemoryACPILevel.MpllFuncCntl = + PP_HOST_TO_SMC_UL(data->clock_registers.vMPLL_FUNC_CNTL); + table->MemoryACPILevel.MpllFuncCntl_1 = + PP_HOST_TO_SMC_UL(data->clock_registers.vMPLL_FUNC_CNTL_1); + table->MemoryACPILevel.MpllFuncCntl_2 = + PP_HOST_TO_SMC_UL(data->clock_registers.vMPLL_FUNC_CNTL_2); + table->MemoryACPILevel.MpllSs1 = + PP_HOST_TO_SMC_UL(data->clock_registers.vMPLL_SS1); + table->MemoryACPILevel.MpllSs2 = + PP_HOST_TO_SMC_UL(data->clock_registers.vMPLL_SS2); + + table->MemoryACPILevel.EnabledForThrottle = 0; + table->MemoryACPILevel.EnabledForActivity = 0; + table->MemoryACPILevel.UpHyst = 0; + table->MemoryACPILevel.DownHyst = 100; + table->MemoryACPILevel.VoltageDownHyst = 0; + /* Indicates maximum activity level for this performance level.*/ + table->MemoryACPILevel.ActivityLevel = + PP_HOST_TO_SMC_US((uint16_t)data->mclk_activity_target); + + table->MemoryACPILevel.StutterEnable = 0; + table->MemoryACPILevel.StrobeEnable = 0; + table->MemoryACPILevel.EdcReadEnable = 0; + table->MemoryACPILevel.EdcWriteEnable = 0; + table->MemoryACPILevel.RttEnable = 0; + + return result; +} + +static int tonga_populate_smc_uvd_level(struct pp_hwmgr *hwmgr, + SMU72_Discrete_DpmTable *table) +{ + int result = 0; + + uint8_t count; + pp_atomctrl_clock_dividers_vi dividers; + struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend); + struct phm_ppt_v1_information *pptable_info = + (struct phm_ppt_v1_information *)(hwmgr->pptable); + phm_ppt_v1_mm_clock_voltage_dependency_table *mm_table = + pptable_info->mm_dep_table; + + table->UvdLevelCount = (uint8_t) (mm_table->count); + table->UvdBootLevel = 0; + + for (count = 0; count < table->UvdLevelCount; count++) { + table->UvdLevel[count].VclkFrequency = mm_table->entries[count].vclk; + table->UvdLevel[count].DclkFrequency = mm_table->entries[count].dclk; + table->UvdLevel[count].MinVoltage.Vddc = + phm_get_voltage_index(pptable_info->vddc_lookup_table, + mm_table->entries[count].vddc); + table->UvdLevel[count].MinVoltage.VddGfx = + (data->vdd_gfx_control == SMU7_VOLTAGE_CONTROL_BY_SVID2) ? + phm_get_voltage_index(pptable_info->vddgfx_lookup_table, + mm_table->entries[count].vddgfx) : 0; + table->UvdLevel[count].MinVoltage.Vddci = + phm_get_voltage_id(&data->vddci_voltage_table, + mm_table->entries[count].vddc - VDDC_VDDCI_DELTA); + table->UvdLevel[count].MinVoltage.Phases = 1; + + /* retrieve divider value for VBIOS */ + result = atomctrl_get_dfs_pll_dividers_vi( + hwmgr, + table->UvdLevel[count].VclkFrequency, + ÷rs); + + PP_ASSERT_WITH_CODE((0 == result), + "can not find divide id for Vclk clock", + return result); + + table->UvdLevel[count].VclkDivider = (uint8_t)dividers.pll_post_divider; + + result = atomctrl_get_dfs_pll_dividers_vi(hwmgr, + table->UvdLevel[count].DclkFrequency, ÷rs); + PP_ASSERT_WITH_CODE((0 == result), + "can not find divide id for Dclk clock", + return result); + + table->UvdLevel[count].DclkDivider = + (uint8_t)dividers.pll_post_divider; + + CONVERT_FROM_HOST_TO_SMC_UL(table->UvdLevel[count].VclkFrequency); + CONVERT_FROM_HOST_TO_SMC_UL(table->UvdLevel[count].DclkFrequency); + } + + return result; + +} + +static int tonga_populate_smc_vce_level(struct pp_hwmgr *hwmgr, + SMU72_Discrete_DpmTable *table) +{ + int result = 0; + + uint8_t count; + pp_atomctrl_clock_dividers_vi dividers; + struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend); + struct phm_ppt_v1_information *pptable_info = + (struct phm_ppt_v1_information *)(hwmgr->pptable); + phm_ppt_v1_mm_clock_voltage_dependency_table *mm_table = + pptable_info->mm_dep_table; + + table->VceLevelCount = (uint8_t) (mm_table->count); + table->VceBootLevel = 0; + + for (count = 0; count < table->VceLevelCount; count++) { + table->VceLevel[count].Frequency = + mm_table->entries[count].eclk; + table->VceLevel[count].MinVoltage.Vddc = + phm_get_voltage_index(pptable_info->vddc_lookup_table, + mm_table->entries[count].vddc); + table->VceLevel[count].MinVoltage.VddGfx = + (data->vdd_gfx_control == SMU7_VOLTAGE_CONTROL_BY_SVID2) ? + phm_get_voltage_index(pptable_info->vddgfx_lookup_table, + mm_table->entries[count].vddgfx) : 0; + table->VceLevel[count].MinVoltage.Vddci = + phm_get_voltage_id(&data->vddci_voltage_table, + mm_table->entries[count].vddc - VDDC_VDDCI_DELTA); + table->VceLevel[count].MinVoltage.Phases = 1; + + /* retrieve divider value for VBIOS */ + result = atomctrl_get_dfs_pll_dividers_vi(hwmgr, + table->VceLevel[count].Frequency, ÷rs); + PP_ASSERT_WITH_CODE((0 == result), + "can not find divide id for VCE engine clock", + return result); + + table->VceLevel[count].Divider = (uint8_t)dividers.pll_post_divider; + + CONVERT_FROM_HOST_TO_SMC_UL(table->VceLevel[count].Frequency); + } + + return result; +} + +static int tonga_populate_smc_acp_level(struct pp_hwmgr *hwmgr, + SMU72_Discrete_DpmTable *table) +{ + int result = 0; + uint8_t count; + pp_atomctrl_clock_dividers_vi dividers; + struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend); + struct phm_ppt_v1_information *pptable_info = + (struct phm_ppt_v1_information *)(hwmgr->pptable); + phm_ppt_v1_mm_clock_voltage_dependency_table *mm_table = + pptable_info->mm_dep_table; + + table->AcpLevelCount = (uint8_t) (mm_table->count); + table->AcpBootLevel = 0; + + for (count = 0; count < table->AcpLevelCount; count++) { + table->AcpLevel[count].Frequency = + pptable_info->mm_dep_table->entries[count].aclk; + table->AcpLevel[count].MinVoltage.Vddc = + phm_get_voltage_index(pptable_info->vddc_lookup_table, + mm_table->entries[count].vddc); + table->AcpLevel[count].MinVoltage.VddGfx = + (data->vdd_gfx_control == SMU7_VOLTAGE_CONTROL_BY_SVID2) ? + phm_get_voltage_index(pptable_info->vddgfx_lookup_table, + mm_table->entries[count].vddgfx) : 0; + table->AcpLevel[count].MinVoltage.Vddci = + phm_get_voltage_id(&data->vddci_voltage_table, + mm_table->entries[count].vddc - VDDC_VDDCI_DELTA); + table->AcpLevel[count].MinVoltage.Phases = 1; + + /* retrieve divider value for VBIOS */ + result = atomctrl_get_dfs_pll_dividers_vi(hwmgr, + table->AcpLevel[count].Frequency, ÷rs); + PP_ASSERT_WITH_CODE((0 == result), + "can not find divide id for engine clock", return result); + + table->AcpLevel[count].Divider = (uint8_t)dividers.pll_post_divider; + + CONVERT_FROM_HOST_TO_SMC_UL(table->AcpLevel[count].Frequency); + } + + return result; +} + +static int tonga_populate_smc_samu_level(struct pp_hwmgr *hwmgr, + SMU72_Discrete_DpmTable *table) +{ + int result = 0; + uint8_t count; + pp_atomctrl_clock_dividers_vi dividers; + struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend); + struct phm_ppt_v1_information *pptable_info = + (struct phm_ppt_v1_information *)(hwmgr->pptable); + phm_ppt_v1_mm_clock_voltage_dependency_table *mm_table = + pptable_info->mm_dep_table; + + table->SamuBootLevel = 0; + table->SamuLevelCount = (uint8_t) (mm_table->count); + + for (count = 0; count < table->SamuLevelCount; count++) { + /* not sure whether we need evclk or not */ + table->SamuLevel[count].Frequency = + pptable_info->mm_dep_table->entries[count].samclock; + table->SamuLevel[count].MinVoltage.Vddc = + phm_get_voltage_index(pptable_info->vddc_lookup_table, + mm_table->entries[count].vddc); + table->SamuLevel[count].MinVoltage.VddGfx = + (data->vdd_gfx_control == SMU7_VOLTAGE_CONTROL_BY_SVID2) ? + phm_get_voltage_index(pptable_info->vddgfx_lookup_table, + mm_table->entries[count].vddgfx) : 0; + table->SamuLevel[count].MinVoltage.Vddci = + phm_get_voltage_id(&data->vddci_voltage_table, + mm_table->entries[count].vddc - VDDC_VDDCI_DELTA); + table->SamuLevel[count].MinVoltage.Phases = 1; + + /* retrieve divider value for VBIOS */ + result = atomctrl_get_dfs_pll_dividers_vi(hwmgr, + table->SamuLevel[count].Frequency, ÷rs); + PP_ASSERT_WITH_CODE((0 == result), + "can not find divide id for samu clock", return result); + + table->SamuLevel[count].Divider = (uint8_t)dividers.pll_post_divider; + + CONVERT_FROM_HOST_TO_SMC_UL(table->SamuLevel[count].Frequency); + } + + return result; +} + +static int tonga_populate_memory_timing_parameters( + struct pp_hwmgr *hwmgr, + uint32_t engine_clock, + uint32_t memory_clock, + struct SMU72_Discrete_MCArbDramTimingTableEntry *arb_regs + ) +{ + uint32_t dramTiming; + uint32_t dramTiming2; + uint32_t burstTime; + int result; + + result = atomctrl_set_engine_dram_timings_rv770(hwmgr, + engine_clock, memory_clock); + + PP_ASSERT_WITH_CODE(result == 0, + "Error calling VBIOS to set DRAM_TIMING.", return result); + + dramTiming = cgs_read_register(hwmgr->device, mmMC_ARB_DRAM_TIMING); + dramTiming2 = cgs_read_register(hwmgr->device, mmMC_ARB_DRAM_TIMING2); + burstTime = PHM_READ_FIELD(hwmgr->device, MC_ARB_BURST_TIME, STATE0); + + arb_regs->McArbDramTiming = PP_HOST_TO_SMC_UL(dramTiming); + arb_regs->McArbDramTiming2 = PP_HOST_TO_SMC_UL(dramTiming2); + arb_regs->McArbBurstTime = (uint8_t)burstTime; + + return 0; +} + +/** + * Setup parameters for the MC ARB. + * + * @param hwmgr the address of the powerplay hardware manager. + * @return always 0 + * This function is to be called from the SetPowerState table. + */ +static int tonga_program_memory_timing_parameters(struct pp_hwmgr *hwmgr) +{ + struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend); + struct tonga_smumgr *smu_data = + (struct tonga_smumgr *)(hwmgr->smumgr->backend); + int result = 0; + SMU72_Discrete_MCArbDramTimingTable arb_regs; + uint32_t i, j; + + memset(&arb_regs, 0x00, sizeof(SMU72_Discrete_MCArbDramTimingTable)); + + for (i = 0; i < data->dpm_table.sclk_table.count; i++) { + for (j = 0; j < data->dpm_table.mclk_table.count; j++) { + result = tonga_populate_memory_timing_parameters + (hwmgr, data->dpm_table.sclk_table.dpm_levels[i].value, + data->dpm_table.mclk_table.dpm_levels[j].value, + &arb_regs.entries[i][j]); + + if (result) + break; + } + } + + if (0 == result) { + result = tonga_copy_bytes_to_smc( + hwmgr->smumgr, + smu_data->arb_table_start, + (uint8_t *)&arb_regs, + sizeof(SMU72_Discrete_MCArbDramTimingTable), + SMC_RAM_END + ); + } + + return result; +} + +static int tonga_populate_smc_boot_level(struct pp_hwmgr *hwmgr, + SMU72_Discrete_DpmTable *table) +{ + int result = 0; + struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend); + struct tonga_smumgr *smu_data = + (struct tonga_smumgr *)(hwmgr->smumgr->backend); + table->GraphicsBootLevel = 0; + table->MemoryBootLevel = 0; + + /* find boot level from dpm table*/ + result = phm_find_boot_level(&(data->dpm_table.sclk_table), + data->vbios_boot_state.sclk_bootup_value, + (uint32_t *)&(smu_data->smc_state_table.GraphicsBootLevel)); + + if (0 != result) { + smu_data->smc_state_table.GraphicsBootLevel = 0; + printk(KERN_ERR "[powerplay] VBIOS did not find boot engine " + "clock value in dependency table. " + "Using Graphics DPM level 0 !"); + result = 0; + } + + result = phm_find_boot_level(&(data->dpm_table.mclk_table), + data->vbios_boot_state.mclk_bootup_value, + (uint32_t *)&(smu_data->smc_state_table.MemoryBootLevel)); + + if (0 != result) { + smu_data->smc_state_table.MemoryBootLevel = 0; + printk(KERN_ERR "[powerplay] VBIOS did not find boot " + "engine clock value in dependency table." + "Using Memory DPM level 0 !"); + result = 0; + } + + table->BootVoltage.Vddc = + phm_get_voltage_id(&(data->vddc_voltage_table), + data->vbios_boot_state.vddc_bootup_value); + table->BootVoltage.VddGfx = + phm_get_voltage_id(&(data->vddgfx_voltage_table), + data->vbios_boot_state.vddgfx_bootup_value); + table->BootVoltage.Vddci = + phm_get_voltage_id(&(data->vddci_voltage_table), + data->vbios_boot_state.vddci_bootup_value); + table->BootMVdd = data->vbios_boot_state.mvdd_bootup_value; + + CONVERT_FROM_HOST_TO_SMC_US(table->BootMVdd); + + return result; +} + + +static int tonga_populate_clock_stretcher_data_table(struct pp_hwmgr *hwmgr) +{ + uint32_t ro, efuse, efuse2, clock_freq, volt_without_cks, + volt_with_cks, value; + uint16_t clock_freq_u16; + struct tonga_smumgr *smu_data = + (struct tonga_smumgr *)(hwmgr->smumgr->backend); + uint8_t type, i, j, cks_setting, stretch_amount, stretch_amount2, + volt_offset = 0; + struct phm_ppt_v1_information *table_info = + (struct phm_ppt_v1_information *)(hwmgr->pptable); + struct phm_ppt_v1_clock_voltage_dependency_table *sclk_table = + table_info->vdd_dep_on_sclk; + uint32_t hw_revision, dev_id; + struct cgs_system_info sys_info = {0}; + + stretch_amount = (uint8_t)table_info->cac_dtp_table->usClockStretchAmount; + + sys_info.size = sizeof(struct cgs_system_info); + + sys_info.info_id = CGS_SYSTEM_INFO_PCIE_REV; + cgs_query_system_info(hwmgr->device, &sys_info); + hw_revision = (uint32_t)sys_info.value; + + sys_info.info_id = CGS_SYSTEM_INFO_PCIE_DEV; + cgs_query_system_info(hwmgr->device, &sys_info); + dev_id = (uint32_t)sys_info.value; + + /* Read SMU_Eefuse to read and calculate RO and determine + * if the part is SS or FF. if RO >= 1660MHz, part is FF. + */ + efuse = cgs_read_ind_register(hwmgr->device, CGS_IND_REG__SMC, + ixSMU_EFUSE_0 + (146 * 4)); + efuse2 = cgs_read_ind_register(hwmgr->device, CGS_IND_REG__SMC, + ixSMU_EFUSE_0 + (148 * 4)); + efuse &= 0xFF000000; + efuse = efuse >> 24; + efuse2 &= 0xF; + + if (efuse2 == 1) + ro = (2300 - 1350) * efuse / 255 + 1350; + else + ro = (2500 - 1000) * efuse / 255 + 1000; + + if (ro >= 1660) + type = 0; + else + type = 1; + + /* Populate Stretch amount */ + smu_data->smc_state_table.ClockStretcherAmount = stretch_amount; + + /* Populate Sclk_CKS_masterEn0_7 and Sclk_voltageOffset */ + for (i = 0; i < sclk_table->count; i++) { + smu_data->smc_state_table.Sclk_CKS_masterEn0_7 |= + sclk_table->entries[i].cks_enable << i; + if (ASICID_IS_TONGA_P(dev_id, hw_revision)) { + volt_without_cks = (uint32_t)((7732 + 60 - ro - 20838 * + (sclk_table->entries[i].clk/100) / 10000) * 1000 / + (8730 - (5301 * (sclk_table->entries[i].clk/100) / 1000))); + volt_with_cks = (uint32_t)((5250 + 51 - ro - 2404 * + (sclk_table->entries[i].clk/100) / 100000) * 1000 / + (6146 - (3193 * (sclk_table->entries[i].clk/100) / 1000))); + } else { + volt_without_cks = (uint32_t)((14041 * + (sclk_table->entries[i].clk/100) / 10000 + 3571 + 75 - ro) * 1000 / + (4026 - (13924 * (sclk_table->entries[i].clk/100) / 10000))); + volt_with_cks = (uint32_t)((13946 * + (sclk_table->entries[i].clk/100) / 10000 + 3320 + 45 - ro) * 1000 / + (3664 - (11454 * (sclk_table->entries[i].clk/100) / 10000))); + } + if (volt_without_cks >= volt_with_cks) + volt_offset = (uint8_t)(((volt_without_cks - volt_with_cks + + sclk_table->entries[i].cks_voffset) * 100 / 625) + 1); + smu_data->smc_state_table.Sclk_voltageOffset[i] = volt_offset; + } + + PHM_WRITE_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC, PWR_CKS_ENABLE, + STRETCH_ENABLE, 0x0); + PHM_WRITE_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC, PWR_CKS_ENABLE, + masterReset, 0x1); + PHM_WRITE_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC, PWR_CKS_ENABLE, + staticEnable, 0x1); + PHM_WRITE_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC, PWR_CKS_ENABLE, + masterReset, 0x0); + + /* Populate CKS Lookup Table */ + if (stretch_amount == 1 || stretch_amount == 2 || stretch_amount == 5) + stretch_amount2 = 0; + else if (stretch_amount == 3 || stretch_amount == 4) + stretch_amount2 = 1; + else { + phm_cap_unset(hwmgr->platform_descriptor.platformCaps, + PHM_PlatformCaps_ClockStretcher); + PP_ASSERT_WITH_CODE(false, + "Stretch Amount in PPTable not supported\n", + return -EINVAL); + } + + value = cgs_read_ind_register(hwmgr->device, CGS_IND_REG__SMC, + ixPWR_CKS_CNTL); + value &= 0xFFC2FF87; + smu_data->smc_state_table.CKS_LOOKUPTable.CKS_LOOKUPTableEntry[0].minFreq = + tonga_clock_stretcher_lookup_table[stretch_amount2][0]; + smu_data->smc_state_table.CKS_LOOKUPTable.CKS_LOOKUPTableEntry[0].maxFreq = + tonga_clock_stretcher_lookup_table[stretch_amount2][1]; + clock_freq_u16 = (uint16_t)(PP_SMC_TO_HOST_UL(smu_data->smc_state_table. + GraphicsLevel[smu_data->smc_state_table.GraphicsDpmLevelCount - 1]. + SclkFrequency) / 100); + if (tonga_clock_stretcher_lookup_table[stretch_amount2][0] < + clock_freq_u16 && + tonga_clock_stretcher_lookup_table[stretch_amount2][1] > + clock_freq_u16) { + /* Program PWR_CKS_CNTL. CKS_USE_FOR_LOW_FREQ */ + value |= (tonga_clock_stretcher_lookup_table[stretch_amount2][3]) << 16; + /* Program PWR_CKS_CNTL. CKS_LDO_REFSEL */ + value |= (tonga_clock_stretcher_lookup_table[stretch_amount2][2]) << 18; + /* Program PWR_CKS_CNTL. CKS_STRETCH_AMOUNT */ + value |= (tonga_clock_stretch_amount_conversion + [tonga_clock_stretcher_lookup_table[stretch_amount2][3]] + [stretch_amount]) << 3; + } + CONVERT_FROM_HOST_TO_SMC_US(smu_data->smc_state_table.CKS_LOOKUPTable. + CKS_LOOKUPTableEntry[0].minFreq); + CONVERT_FROM_HOST_TO_SMC_US(smu_data->smc_state_table.CKS_LOOKUPTable. + CKS_LOOKUPTableEntry[0].maxFreq); + smu_data->smc_state_table.CKS_LOOKUPTable.CKS_LOOKUPTableEntry[0].setting = + tonga_clock_stretcher_lookup_table[stretch_amount2][2] & 0x7F; + smu_data->smc_state_table.CKS_LOOKUPTable.CKS_LOOKUPTableEntry[0].setting |= + (tonga_clock_stretcher_lookup_table[stretch_amount2][3]) << 7; + + cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC, + ixPWR_CKS_CNTL, value); + + /* Populate DDT Lookup Table */ + for (i = 0; i < 4; i++) { + /* Assign the minimum and maximum VID stored + * in the last row of Clock Stretcher Voltage Table. + */ + smu_data->smc_state_table.ClockStretcherDataTable. + ClockStretcherDataTableEntry[i].minVID = + (uint8_t) tonga_clock_stretcher_ddt_table[type][i][2]; + smu_data->smc_state_table.ClockStretcherDataTable. + ClockStretcherDataTableEntry[i].maxVID = + (uint8_t) tonga_clock_stretcher_ddt_table[type][i][3]; + /* Loop through each SCLK and check the frequency + * to see if it lies within the frequency for clock stretcher. + */ + for (j = 0; j < smu_data->smc_state_table.GraphicsDpmLevelCount; j++) { + cks_setting = 0; + clock_freq = PP_SMC_TO_HOST_UL( + smu_data->smc_state_table.GraphicsLevel[j].SclkFrequency); + /* Check the allowed frequency against the sclk level[j]. + * Sclk's endianness has already been converted, + * and it's in 10Khz unit, + * as opposed to Data table, which is in Mhz unit. + */ + if (clock_freq >= tonga_clock_stretcher_ddt_table[type][i][0] * 100) { + cks_setting |= 0x2; + if (clock_freq < tonga_clock_stretcher_ddt_table[type][i][1] * 100) + cks_setting |= 0x1; + } + smu_data->smc_state_table.ClockStretcherDataTable. + ClockStretcherDataTableEntry[i].setting |= cks_setting << (j * 2); + } + CONVERT_FROM_HOST_TO_SMC_US(smu_data->smc_state_table. + ClockStretcherDataTable. + ClockStretcherDataTableEntry[i].setting); + } + + value = cgs_read_ind_register(hwmgr->device, CGS_IND_REG__SMC, + ixPWR_CKS_CNTL); + value &= 0xFFFFFFFE; + cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC, + ixPWR_CKS_CNTL, value); + + return 0; +} + +/** + * Populates the SMC VRConfig field in DPM table. + * + * @param hwmgr the address of the hardware manager + * @param table the SMC DPM table structure to be populated + * @return always 0 + */ +static int tonga_populate_vr_config(struct pp_hwmgr *hwmgr, + SMU72_Discrete_DpmTable *table) +{ + struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend); + uint16_t config; + + if (SMU7_VOLTAGE_CONTROL_BY_SVID2 == data->vdd_gfx_control) { + /* Splitted mode */ + config = VR_SVI2_PLANE_1; + table->VRConfig |= (config<<VRCONF_VDDGFX_SHIFT); + + if (SMU7_VOLTAGE_CONTROL_BY_SVID2 == data->voltage_control) { + config = VR_SVI2_PLANE_2; + table->VRConfig |= config; + } else { + printk(KERN_ERR "[ powerplay ] VDDC and VDDGFX should " + "be both on SVI2 control in splitted mode !\n"); + } + } else { + /* Merged mode */ + config = VR_MERGED_WITH_VDDC; + table->VRConfig |= (config<<VRCONF_VDDGFX_SHIFT); + + /* Set Vddc Voltage Controller */ + if (SMU7_VOLTAGE_CONTROL_BY_SVID2 == data->voltage_control) { + config = VR_SVI2_PLANE_1; + table->VRConfig |= config; + } else { + printk(KERN_ERR "[ powerplay ] VDDC should be on " + "SVI2 control in merged mode !\n"); + } + } + + /* Set Vddci Voltage Controller */ + if (SMU7_VOLTAGE_CONTROL_BY_SVID2 == data->vddci_control) { + config = VR_SVI2_PLANE_2; /* only in merged mode */ + table->VRConfig |= (config<<VRCONF_VDDCI_SHIFT); + } else if (SMU7_VOLTAGE_CONTROL_BY_GPIO == data->vddci_control) { + config = VR_SMIO_PATTERN_1; + table->VRConfig |= (config<<VRCONF_VDDCI_SHIFT); + } + + /* Set Mvdd Voltage Controller */ + if (SMU7_VOLTAGE_CONTROL_BY_GPIO == data->mvdd_control) { + config = VR_SMIO_PATTERN_2; + table->VRConfig |= (config<<VRCONF_MVDD_SHIFT); + } + + return 0; +} + + +/** + * Initialize the ARB DRAM timing table's index field. + * + * @param hwmgr the address of the powerplay hardware manager. + * @return always 0 + */ +static int tonga_init_arb_table_index(struct pp_smumgr *smumgr) +{ + struct tonga_smumgr *smu_data = (struct tonga_smumgr *)(smumgr->backend); + uint32_t tmp; + int result; + + /* + * This is a read-modify-write on the first byte of the ARB table. + * The first byte in the SMU72_Discrete_MCArbDramTimingTable structure + * is the field 'current'. + * This solution is ugly, but we never write the whole table only + * individual fields in it. + * In reality this field should not be in that structure + * but in a soft register. + */ + result = tonga_read_smc_sram_dword(smumgr, + smu_data->arb_table_start, &tmp, SMC_RAM_END); + + if (0 != result) + return result; + + tmp &= 0x00FFFFFF; + tmp |= ((uint32_t)MC_CG_ARB_FREQ_F1) << 24; + + return tonga_write_smc_sram_dword(smumgr, + smu_data->arb_table_start, tmp, SMC_RAM_END); +} + + +static int tonga_populate_bapm_parameters_in_dpm_table(struct pp_hwmgr *hwmgr) +{ + struct tonga_smumgr *smu_data = + (struct tonga_smumgr *)(hwmgr->smumgr->backend); + struct tonga_pt_defaults *defaults = smu_data->power_tune_defaults; + SMU72_Discrete_DpmTable *dpm_table = &(smu_data->smc_state_table); + struct phm_ppt_v1_information *table_info = + (struct phm_ppt_v1_information *)(hwmgr->pptable); + struct phm_cac_tdp_table *cac_dtp_table = table_info->cac_dtp_table; + int i, j, k; + uint16_t *pdef1; + uint16_t *pdef2; + + dpm_table->DefaultTdp = PP_HOST_TO_SMC_US( + (uint16_t)(cac_dtp_table->usTDP * 256)); + dpm_table->TargetTdp = PP_HOST_TO_SMC_US( + (uint16_t)(cac_dtp_table->usConfigurableTDP * 256)); + + PP_ASSERT_WITH_CODE(cac_dtp_table->usTargetOperatingTemp <= 255, + "Target Operating Temp is out of Range !", + ); + + dpm_table->GpuTjMax = (uint8_t)(cac_dtp_table->usTargetOperatingTemp); + dpm_table->GpuTjHyst = 8; + + dpm_table->DTEAmbientTempBase = defaults->dte_ambient_temp_base; + + dpm_table->BAPM_TEMP_GRADIENT = + PP_HOST_TO_SMC_UL(defaults->bamp_temp_gradient); + pdef1 = defaults->bapmti_r; + pdef2 = defaults->bapmti_rc; + + for (i = 0; i < SMU72_DTE_ITERATIONS; i++) { + for (j = 0; j < SMU72_DTE_SOURCES; j++) { + for (k = 0; k < SMU72_DTE_SINKS; k++) { + dpm_table->BAPMTI_R[i][j][k] = + PP_HOST_TO_SMC_US(*pdef1); + dpm_table->BAPMTI_RC[i][j][k] = + PP_HOST_TO_SMC_US(*pdef2); + pdef1++; + pdef2++; + } + } + } + + return 0; +} + +static int tonga_populate_svi_load_line(struct pp_hwmgr *hwmgr) +{ + struct tonga_smumgr *smu_data = + (struct tonga_smumgr *)(hwmgr->smumgr->backend); + struct tonga_pt_defaults *defaults = smu_data->power_tune_defaults; + + smu_data->power_tune_table.SviLoadLineEn = defaults->svi_load_line_en; + smu_data->power_tune_table.SviLoadLineVddC = defaults->svi_load_line_vddC; + smu_data->power_tune_table.SviLoadLineTrimVddC = 3; + smu_data->power_tune_table.SviLoadLineOffsetVddC = 0; + + return 0; +} + +static int tonga_populate_tdc_limit(struct pp_hwmgr *hwmgr) +{ + uint16_t tdc_limit; + struct tonga_smumgr *smu_data = + (struct tonga_smumgr *)(hwmgr->smumgr->backend); + struct tonga_pt_defaults *defaults = smu_data->power_tune_defaults; + struct phm_ppt_v1_information *table_info = + (struct phm_ppt_v1_information *)(hwmgr->pptable); + + /* TDC number of fraction bits are changed from 8 to 7 + * for Fiji as requested by SMC team + */ + tdc_limit = (uint16_t)(table_info->cac_dtp_table->usTDC * 256); + smu_data->power_tune_table.TDC_VDDC_PkgLimit = + CONVERT_FROM_HOST_TO_SMC_US(tdc_limit); + smu_data->power_tune_table.TDC_VDDC_ThrottleReleaseLimitPerc = + defaults->tdc_vddc_throttle_release_limit_perc; + smu_data->power_tune_table.TDC_MAWt = defaults->tdc_mawt; + + return 0; +} + +static int tonga_populate_dw8(struct pp_hwmgr *hwmgr, uint32_t fuse_table_offset) +{ + struct tonga_smumgr *smu_data = + (struct tonga_smumgr *)(hwmgr->smumgr->backend); + struct tonga_pt_defaults *defaults = smu_data->power_tune_defaults; + uint32_t temp; + + if (tonga_read_smc_sram_dword(hwmgr->smumgr, + fuse_table_offset + + offsetof(SMU72_Discrete_PmFuses, TdcWaterfallCtl), + (uint32_t *)&temp, SMC_RAM_END)) + PP_ASSERT_WITH_CODE(false, + "Attempt to read PmFuses.DW6 " + "(SviLoadLineEn) from SMC Failed !", + return -EINVAL); + else + smu_data->power_tune_table.TdcWaterfallCtl = defaults->tdc_waterfall_ctl; + + return 0; +} + +static int tonga_populate_temperature_scaler(struct pp_hwmgr *hwmgr) +{ + int i; + struct tonga_smumgr *smu_data = + (struct tonga_smumgr *)(hwmgr->smumgr->backend); + + /* Currently not used. Set all to zero. */ + for (i = 0; i < 16; i++) + smu_data->power_tune_table.LPMLTemperatureScaler[i] = 0; + + return 0; +} + +static int tonga_populate_fuzzy_fan(struct pp_hwmgr *hwmgr) +{ + struct tonga_smumgr *smu_data = (struct tonga_smumgr *)(hwmgr->smumgr->backend); + + if ((hwmgr->thermal_controller.advanceFanControlParameters. + usFanOutputSensitivity & (1 << 15)) || + (hwmgr->thermal_controller.advanceFanControlParameters.usFanOutputSensitivity == 0)) + hwmgr->thermal_controller.advanceFanControlParameters. + usFanOutputSensitivity = hwmgr->thermal_controller. + advanceFanControlParameters.usDefaultFanOutputSensitivity; + + smu_data->power_tune_table.FuzzyFan_PwmSetDelta = + PP_HOST_TO_SMC_US(hwmgr->thermal_controller. + advanceFanControlParameters.usFanOutputSensitivity); + return 0; +} + +static int tonga_populate_gnb_lpml(struct pp_hwmgr *hwmgr) +{ + int i; + struct tonga_smumgr *smu_data = + (struct tonga_smumgr *)(hwmgr->smumgr->backend); + + /* Currently not used. Set all to zero. */ + for (i = 0; i < 16; i++) + smu_data->power_tune_table.GnbLPML[i] = 0; + + return 0; +} + +static int tonga_min_max_vgnb_lpml_id_from_bapm_vddc(struct pp_hwmgr *hwmgr) +{ + return 0; +} + +static int tonga_populate_bapm_vddc_base_leakage_sidd(struct pp_hwmgr *hwmgr) +{ + struct tonga_smumgr *smu_data = + (struct tonga_smumgr *)(hwmgr->smumgr->backend); + struct phm_ppt_v1_information *table_info = + (struct phm_ppt_v1_information *)(hwmgr->pptable); + uint16_t hi_sidd = smu_data->power_tune_table.BapmVddCBaseLeakageHiSidd; + uint16_t lo_sidd = smu_data->power_tune_table.BapmVddCBaseLeakageLoSidd; + struct phm_cac_tdp_table *cac_table = table_info->cac_dtp_table; + + hi_sidd = (uint16_t)(cac_table->usHighCACLeakage / 100 * 256); + lo_sidd = (uint16_t)(cac_table->usLowCACLeakage / 100 * 256); + + smu_data->power_tune_table.BapmVddCBaseLeakageHiSidd = + CONVERT_FROM_HOST_TO_SMC_US(hi_sidd); + smu_data->power_tune_table.BapmVddCBaseLeakageLoSidd = + CONVERT_FROM_HOST_TO_SMC_US(lo_sidd); + + return 0; +} + +static int tonga_populate_pm_fuses(struct pp_hwmgr *hwmgr) +{ + struct tonga_smumgr *smu_data = + (struct tonga_smumgr *)(hwmgr->smumgr->backend); + uint32_t pm_fuse_table_offset; + + if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps, + PHM_PlatformCaps_PowerContainment)) { + if (tonga_read_smc_sram_dword(hwmgr->smumgr, + SMU72_FIRMWARE_HEADER_LOCATION + + offsetof(SMU72_Firmware_Header, PmFuseTable), + &pm_fuse_table_offset, SMC_RAM_END)) + PP_ASSERT_WITH_CODE(false, + "Attempt to get pm_fuse_table_offset Failed !", + return -EINVAL); + + /* DW6 */ + if (tonga_populate_svi_load_line(hwmgr)) + PP_ASSERT_WITH_CODE(false, + "Attempt to populate SviLoadLine Failed !", + return -EINVAL); + /* DW7 */ + if (tonga_populate_tdc_limit(hwmgr)) + PP_ASSERT_WITH_CODE(false, + "Attempt to populate TDCLimit Failed !", + return -EINVAL); + /* DW8 */ + if (tonga_populate_dw8(hwmgr, pm_fuse_table_offset)) + PP_ASSERT_WITH_CODE(false, + "Attempt to populate TdcWaterfallCtl Failed !", + return -EINVAL); + + /* DW9-DW12 */ + if (tonga_populate_temperature_scaler(hwmgr) != 0) + PP_ASSERT_WITH_CODE(false, + "Attempt to populate LPMLTemperatureScaler Failed !", + return -EINVAL); + + /* DW13-DW14 */ + if (tonga_populate_fuzzy_fan(hwmgr)) + PP_ASSERT_WITH_CODE(false, + "Attempt to populate Fuzzy Fan " + "Control parameters Failed !", + return -EINVAL); + + /* DW15-DW18 */ + if (tonga_populate_gnb_lpml(hwmgr)) + PP_ASSERT_WITH_CODE(false, + "Attempt to populate GnbLPML Failed !", + return -EINVAL); + + /* DW19 */ + if (tonga_min_max_vgnb_lpml_id_from_bapm_vddc(hwmgr)) + PP_ASSERT_WITH_CODE(false, + "Attempt to populate GnbLPML " + "Min and Max Vid Failed !", + return -EINVAL); + + /* DW20 */ + if (tonga_populate_bapm_vddc_base_leakage_sidd(hwmgr)) + PP_ASSERT_WITH_CODE( + false, + "Attempt to populate BapmVddCBaseLeakage " + "Hi and Lo Sidd Failed !", + return -EINVAL); + + if (tonga_copy_bytes_to_smc(hwmgr->smumgr, pm_fuse_table_offset, + (uint8_t *)&smu_data->power_tune_table, + sizeof(struct SMU72_Discrete_PmFuses), SMC_RAM_END)) + PP_ASSERT_WITH_CODE(false, + "Attempt to download PmFuseTable Failed !", + return -EINVAL); + } + return 0; +} + +static int tonga_populate_mc_reg_address(struct pp_smumgr *smumgr, + SMU72_Discrete_MCRegisters *mc_reg_table) +{ + const struct tonga_smumgr *smu_data = (struct tonga_smumgr *)smumgr->backend; + + uint32_t i, j; + + for (i = 0, j = 0; j < smu_data->mc_reg_table.last; j++) { + if (smu_data->mc_reg_table.validflag & 1<<j) { + PP_ASSERT_WITH_CODE( + i < SMU72_DISCRETE_MC_REGISTER_ARRAY_SIZE, + "Index of mc_reg_table->address[] array " + "out of boundary", + return -EINVAL); + mc_reg_table->address[i].s0 = + PP_HOST_TO_SMC_US(smu_data->mc_reg_table.mc_reg_address[j].s0); + mc_reg_table->address[i].s1 = + PP_HOST_TO_SMC_US(smu_data->mc_reg_table.mc_reg_address[j].s1); + i++; + } + } + + mc_reg_table->last = (uint8_t)i; + + return 0; +} + +/*convert register values from driver to SMC format */ +static void tonga_convert_mc_registers( + const struct tonga_mc_reg_entry *entry, + SMU72_Discrete_MCRegisterSet *data, + uint32_t num_entries, uint32_t valid_flag) +{ + uint32_t i, j; + + for (i = 0, j = 0; j < num_entries; j++) { + if (valid_flag & 1<<j) { + data->value[i] = PP_HOST_TO_SMC_UL(entry->mc_data[j]); + i++; + } + } +} + +static int tonga_convert_mc_reg_table_entry_to_smc( + struct pp_smumgr *smumgr, + const uint32_t memory_clock, + SMU72_Discrete_MCRegisterSet *mc_reg_table_data + ) +{ + struct tonga_smumgr *smu_data = (struct tonga_smumgr *)(smumgr->backend); + uint32_t i = 0; + + for (i = 0; i < smu_data->mc_reg_table.num_entries; i++) { + if (memory_clock <= + smu_data->mc_reg_table.mc_reg_table_entry[i].mclk_max) { + break; + } + } + + if ((i == smu_data->mc_reg_table.num_entries) && (i > 0)) + --i; + + tonga_convert_mc_registers(&smu_data->mc_reg_table.mc_reg_table_entry[i], + mc_reg_table_data, smu_data->mc_reg_table.last, + smu_data->mc_reg_table.validflag); + + return 0; +} + +static int tonga_convert_mc_reg_table_to_smc(struct pp_hwmgr *hwmgr, + SMU72_Discrete_MCRegisters *mc_regs) +{ + int result = 0; + struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend); + int res; + uint32_t i; + + for (i = 0; i < data->dpm_table.mclk_table.count; i++) { + res = tonga_convert_mc_reg_table_entry_to_smc( + hwmgr->smumgr, + data->dpm_table.mclk_table.dpm_levels[i].value, + &mc_regs->data[i] + ); + + if (0 != res) + result = res; + } + + return result; +} + +static int tonga_update_and_upload_mc_reg_table(struct pp_hwmgr *hwmgr) +{ + struct pp_smumgr *smumgr = hwmgr->smumgr; + struct tonga_smumgr *smu_data = (struct tonga_smumgr *)(smumgr->backend); + struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend); + uint32_t address; + int32_t result; + + if (0 == (data->need_update_smu7_dpm_table & DPMTABLE_OD_UPDATE_MCLK)) + return 0; + + + memset(&smu_data->mc_regs, 0, sizeof(SMU72_Discrete_MCRegisters)); + + result = tonga_convert_mc_reg_table_to_smc(hwmgr, &(smu_data->mc_regs)); + + if (result != 0) + return result; + + + address = smu_data->mc_reg_table_start + + (uint32_t)offsetof(SMU72_Discrete_MCRegisters, data[0]); + + return tonga_copy_bytes_to_smc( + hwmgr->smumgr, address, + (uint8_t *)&smu_data->mc_regs.data[0], + sizeof(SMU72_Discrete_MCRegisterSet) * + data->dpm_table.mclk_table.count, + SMC_RAM_END); +} + +static int tonga_populate_initial_mc_reg_table(struct pp_hwmgr *hwmgr) +{ + int result; + struct pp_smumgr *smumgr = hwmgr->smumgr; + struct tonga_smumgr *smu_data = (struct tonga_smumgr *)(smumgr->backend); + + memset(&smu_data->mc_regs, 0x00, sizeof(SMU72_Discrete_MCRegisters)); + result = tonga_populate_mc_reg_address(smumgr, &(smu_data->mc_regs)); + PP_ASSERT_WITH_CODE(0 == result, + "Failed to initialize MCRegTable for the MC register addresses !", + return result;); + + result = tonga_convert_mc_reg_table_to_smc(hwmgr, &smu_data->mc_regs); + PP_ASSERT_WITH_CODE(0 == result, + "Failed to initialize MCRegTable for driver state !", + return result;); + + return tonga_copy_bytes_to_smc(smumgr, smu_data->mc_reg_table_start, + (uint8_t *)&smu_data->mc_regs, sizeof(SMU72_Discrete_MCRegisters), SMC_RAM_END); +} + +static void tonga_initialize_power_tune_defaults(struct pp_hwmgr *hwmgr) +{ + struct tonga_smumgr *smu_data = (struct tonga_smumgr *)(hwmgr->smumgr->backend); + struct phm_ppt_v1_information *table_info = + (struct phm_ppt_v1_information *)(hwmgr->pptable); + + if (table_info && + table_info->cac_dtp_table->usPowerTuneDataSetID <= POWERTUNE_DEFAULT_SET_MAX && + table_info->cac_dtp_table->usPowerTuneDataSetID) + smu_data->power_tune_defaults = + &tonga_power_tune_data_set_array + [table_info->cac_dtp_table->usPowerTuneDataSetID - 1]; + else + smu_data->power_tune_defaults = &tonga_power_tune_data_set_array[0]; +} + +/** + * Initializes the SMC table and uploads it + * + * @param hwmgr the address of the powerplay hardware manager. + * @param pInput the pointer to input data (PowerState) + * @return always 0 + */ +int tonga_init_smc_table(struct pp_hwmgr *hwmgr) +{ + int result; + struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend); + struct tonga_smumgr *smu_data = + (struct tonga_smumgr *)(hwmgr->smumgr->backend); + SMU72_Discrete_DpmTable *table = &(smu_data->smc_state_table); + struct phm_ppt_v1_information *table_info = + (struct phm_ppt_v1_information *)(hwmgr->pptable); + + uint8_t i; + pp_atomctrl_gpio_pin_assignment gpio_pin_assignment; + + + memset(&(smu_data->smc_state_table), 0x00, sizeof(smu_data->smc_state_table)); + + tonga_initialize_power_tune_defaults(hwmgr); + + if (SMU7_VOLTAGE_CONTROL_NONE != data->voltage_control) + tonga_populate_smc_voltage_tables(hwmgr, table); + + if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps, + PHM_PlatformCaps_AutomaticDCTransition)) + table->SystemFlags |= PPSMC_SYSTEMFLAG_GPIO_DC; + + + if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps, + PHM_PlatformCaps_StepVddc)) + table->SystemFlags |= PPSMC_SYSTEMFLAG_STEPVDDC; + + if (data->is_memory_gddr5) + table->SystemFlags |= PPSMC_SYSTEMFLAG_GDDR5; + + i = PHM_READ_FIELD(hwmgr->device, CC_MC_MAX_CHANNEL, NOOFCHAN); + + if (i == 1 || i == 0) + table->SystemFlags |= 0x40; + + if (data->ulv_supported && table_info->us_ulv_voltage_offset) { + result = tonga_populate_ulv_state(hwmgr, table); + PP_ASSERT_WITH_CODE(0 == result, + "Failed to initialize ULV state !", + return result;); + + cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC, + ixCG_ULV_PARAMETER, 0x40035); + } + + result = tonga_populate_smc_link_level(hwmgr, table); + PP_ASSERT_WITH_CODE(0 == result, + "Failed to initialize Link Level !", return result); + + result = tonga_populate_all_graphic_levels(hwmgr); + PP_ASSERT_WITH_CODE(0 == result, + "Failed to initialize Graphics Level !", return result); + + result = tonga_populate_all_memory_levels(hwmgr); + PP_ASSERT_WITH_CODE(0 == result, + "Failed to initialize Memory Level !", return result); + + result = tonga_populate_smc_acpi_level(hwmgr, table); + PP_ASSERT_WITH_CODE(0 == result, + "Failed to initialize ACPI Level !", return result); + + result = tonga_populate_smc_vce_level(hwmgr, table); + PP_ASSERT_WITH_CODE(0 == result, + "Failed to initialize VCE Level !", return result); + + result = tonga_populate_smc_acp_level(hwmgr, table); + PP_ASSERT_WITH_CODE(0 == result, + "Failed to initialize ACP Level !", return result); + + result = tonga_populate_smc_samu_level(hwmgr, table); + PP_ASSERT_WITH_CODE(0 == result, + "Failed to initialize SAMU Level !", return result); + + /* Since only the initial state is completely set up at this + * point (the other states are just copies of the boot state) we only + * need to populate the ARB settings for the initial state. + */ + result = tonga_program_memory_timing_parameters(hwmgr); + PP_ASSERT_WITH_CODE(0 == result, + "Failed to Write ARB settings for the initial state.", + return result;); + + result = tonga_populate_smc_uvd_level(hwmgr, table); + PP_ASSERT_WITH_CODE(0 == result, + "Failed to initialize UVD Level !", return result); + + result = tonga_populate_smc_boot_level(hwmgr, table); + PP_ASSERT_WITH_CODE(0 == result, + "Failed to initialize Boot Level !", return result); + + tonga_populate_bapm_parameters_in_dpm_table(hwmgr); + PP_ASSERT_WITH_CODE(0 == result, + "Failed to populate BAPM Parameters !", return result); + + if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps, + PHM_PlatformCaps_ClockStretcher)) { + result = tonga_populate_clock_stretcher_data_table(hwmgr); + PP_ASSERT_WITH_CODE(0 == result, + "Failed to populate Clock Stretcher Data Table !", + return result;); + } + table->GraphicsVoltageChangeEnable = 1; + table->GraphicsThermThrottleEnable = 1; + table->GraphicsInterval = 1; + table->VoltageInterval = 1; + table->ThermalInterval = 1; + table->TemperatureLimitHigh = + table_info->cac_dtp_table->usTargetOperatingTemp * + SMU7_Q88_FORMAT_CONVERSION_UNIT; + table->TemperatureLimitLow = + (table_info->cac_dtp_table->usTargetOperatingTemp - 1) * + SMU7_Q88_FORMAT_CONVERSION_UNIT; + table->MemoryVoltageChangeEnable = 1; + table->MemoryInterval = 1; + table->VoltageResponseTime = 0; + table->PhaseResponseTime = 0; + table->MemoryThermThrottleEnable = 1; + + /* + * Cail reads current link status and reports it as cap (we cannot + * change this due to some previous issues we had) + * SMC drops the link status to lowest level after enabling + * DPM by PowerPlay. After pnp or toggling CF, driver gets reloaded again + * but this time Cail reads current link status which was set to low by + * SMC and reports it as cap to powerplay + * To avoid it, we set PCIeBootLinkLevel to highest dpm level + */ + PP_ASSERT_WITH_CODE((1 <= data->dpm_table.pcie_speed_table.count), + "There must be 1 or more PCIE levels defined in PPTable.", + return -EINVAL); + + table->PCIeBootLinkLevel = (uint8_t) (data->dpm_table.pcie_speed_table.count); + + table->PCIeGenInterval = 1; + + result = tonga_populate_vr_config(hwmgr, table); + PP_ASSERT_WITH_CODE(0 == result, + "Failed to populate VRConfig setting !", return result); + + table->ThermGpio = 17; + table->SclkStepSize = 0x4000; + + if (atomctrl_get_pp_assign_pin(hwmgr, VDDC_VRHOT_GPIO_PINID, + &gpio_pin_assignment)) { + table->VRHotGpio = gpio_pin_assignment.uc_gpio_pin_bit_shift; + phm_cap_set(hwmgr->platform_descriptor.platformCaps, + PHM_PlatformCaps_RegulatorHot); + } else { + table->VRHotGpio = SMU7_UNUSED_GPIO_PIN; + phm_cap_unset(hwmgr->platform_descriptor.platformCaps, + PHM_PlatformCaps_RegulatorHot); + } + + if (atomctrl_get_pp_assign_pin(hwmgr, PP_AC_DC_SWITCH_GPIO_PINID, + &gpio_pin_assignment)) { + table->AcDcGpio = gpio_pin_assignment.uc_gpio_pin_bit_shift; + phm_cap_set(hwmgr->platform_descriptor.platformCaps, + PHM_PlatformCaps_AutomaticDCTransition); + } else { + table->AcDcGpio = SMU7_UNUSED_GPIO_PIN; + phm_cap_unset(hwmgr->platform_descriptor.platformCaps, + PHM_PlatformCaps_AutomaticDCTransition); + } + + phm_cap_unset(hwmgr->platform_descriptor.platformCaps, + PHM_PlatformCaps_Falcon_QuickTransition); + + if (0) { + phm_cap_unset(hwmgr->platform_descriptor.platformCaps, + PHM_PlatformCaps_AutomaticDCTransition); + phm_cap_set(hwmgr->platform_descriptor.platformCaps, + PHM_PlatformCaps_Falcon_QuickTransition); + } + + if (atomctrl_get_pp_assign_pin(hwmgr, + THERMAL_INT_OUTPUT_GPIO_PINID, &gpio_pin_assignment)) { + phm_cap_set(hwmgr->platform_descriptor.platformCaps, + PHM_PlatformCaps_ThermalOutGPIO); + + table->ThermOutGpio = gpio_pin_assignment.uc_gpio_pin_bit_shift; + + table->ThermOutPolarity = + (0 == (cgs_read_register(hwmgr->device, mmGPIOPAD_A) & + (1 << gpio_pin_assignment.uc_gpio_pin_bit_shift))) ? 1 : 0; + + table->ThermOutMode = SMU7_THERM_OUT_MODE_THERM_ONLY; + + /* if required, combine VRHot/PCC with thermal out GPIO*/ + if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps, + PHM_PlatformCaps_RegulatorHot) && + phm_cap_enabled(hwmgr->platform_descriptor.platformCaps, + PHM_PlatformCaps_CombinePCCWithThermalSignal)){ + table->ThermOutMode = SMU7_THERM_OUT_MODE_THERM_VRHOT; + } + } else { + phm_cap_unset(hwmgr->platform_descriptor.platformCaps, + PHM_PlatformCaps_ThermalOutGPIO); + + table->ThermOutGpio = 17; + table->ThermOutPolarity = 1; + table->ThermOutMode = SMU7_THERM_OUT_MODE_DISABLE; + } + + for (i = 0; i < SMU72_MAX_ENTRIES_SMIO; i++) + table->Smio[i] = PP_HOST_TO_SMC_UL(table->Smio[i]); + + CONVERT_FROM_HOST_TO_SMC_UL(table->SystemFlags); + CONVERT_FROM_HOST_TO_SMC_UL(table->VRConfig); + CONVERT_FROM_HOST_TO_SMC_UL(table->SmioMask1); + CONVERT_FROM_HOST_TO_SMC_UL(table->SmioMask2); + CONVERT_FROM_HOST_TO_SMC_UL(table->SclkStepSize); + CONVERT_FROM_HOST_TO_SMC_US(table->TemperatureLimitHigh); + CONVERT_FROM_HOST_TO_SMC_US(table->TemperatureLimitLow); + CONVERT_FROM_HOST_TO_SMC_US(table->VoltageResponseTime); + CONVERT_FROM_HOST_TO_SMC_US(table->PhaseResponseTime); + + /* Upload all dpm data to SMC memory.(dpm level, dpm level count etc) */ + result = tonga_copy_bytes_to_smc( + hwmgr->smumgr, + smu_data->dpm_table_start + offsetof(SMU72_Discrete_DpmTable, SystemFlags), + (uint8_t *)&(table->SystemFlags), + sizeof(SMU72_Discrete_DpmTable) - 3 * sizeof(SMU72_PIDController), + SMC_RAM_END); + + PP_ASSERT_WITH_CODE(0 == result, + "Failed to upload dpm data to SMC memory !", return result;); + + result = tonga_init_arb_table_index(hwmgr->smumgr); + PP_ASSERT_WITH_CODE(0 == result, + "Failed to upload arb data to SMC memory !", return result); + + tonga_populate_pm_fuses(hwmgr); + PP_ASSERT_WITH_CODE((0 == result), + "Failed to populate initialize pm fuses !", return result); + + result = tonga_populate_initial_mc_reg_table(hwmgr); + PP_ASSERT_WITH_CODE((0 == result), + "Failed to populate initialize MC Reg table !", return result); + + return 0; +} + +/** +* Set up the fan table to control the fan using the SMC. +* @param hwmgr the address of the powerplay hardware manager. +* @param pInput the pointer to input data +* @param pOutput the pointer to output data +* @param pStorage the pointer to temporary storage +* @param Result the last failure code +* @return result from set temperature range routine +*/ +int tonga_thermal_setup_fan_table(struct pp_hwmgr *hwmgr) +{ + struct tonga_smumgr *smu_data = + (struct tonga_smumgr *)(hwmgr->smumgr->backend); + SMU72_Discrete_FanTable fan_table = { FDO_MODE_HARDWARE }; + uint32_t duty100; + uint32_t t_diff1, t_diff2, pwm_diff1, pwm_diff2; + uint16_t fdo_min, slope1, slope2; + uint32_t reference_clock; + int res; + uint64_t tmp64; + + if (!phm_cap_enabled(hwmgr->platform_descriptor.platformCaps, + PHM_PlatformCaps_MicrocodeFanControl)) + return 0; + + if (0 == smu_data->fan_table_start) { + phm_cap_unset(hwmgr->platform_descriptor.platformCaps, + PHM_PlatformCaps_MicrocodeFanControl); + return 0; + } + + duty100 = PHM_READ_VFPF_INDIRECT_FIELD(hwmgr->device, + CGS_IND_REG__SMC, + CG_FDO_CTRL1, FMAX_DUTY100); + + if (0 == duty100) { + phm_cap_unset(hwmgr->platform_descriptor.platformCaps, + PHM_PlatformCaps_MicrocodeFanControl); + return 0; + } + + tmp64 = hwmgr->thermal_controller.advanceFanControlParameters.usPWMMin * duty100; + do_div(tmp64, 10000); + fdo_min = (uint16_t)tmp64; + + t_diff1 = hwmgr->thermal_controller.advanceFanControlParameters.usTMed - + hwmgr->thermal_controller.advanceFanControlParameters.usTMin; + t_diff2 = hwmgr->thermal_controller.advanceFanControlParameters.usTHigh - + hwmgr->thermal_controller.advanceFanControlParameters.usTMed; + + pwm_diff1 = hwmgr->thermal_controller.advanceFanControlParameters.usPWMMed - + hwmgr->thermal_controller.advanceFanControlParameters.usPWMMin; + pwm_diff2 = hwmgr->thermal_controller.advanceFanControlParameters.usPWMHigh - + hwmgr->thermal_controller.advanceFanControlParameters.usPWMMed; + + slope1 = (uint16_t)((50 + ((16 * duty100 * pwm_diff1) / t_diff1)) / 100); + slope2 = (uint16_t)((50 + ((16 * duty100 * pwm_diff2) / t_diff2)) / 100); + + fan_table.TempMin = cpu_to_be16((50 + hwmgr->thermal_controller.advanceFanControlParameters.usTMin) / 100); + fan_table.TempMed = cpu_to_be16((50 + hwmgr->thermal_controller.advanceFanControlParameters.usTMed) / 100); + fan_table.TempMax = cpu_to_be16((50 + hwmgr->thermal_controller.advanceFanControlParameters.usTMax) / 100); + + fan_table.Slope1 = cpu_to_be16(slope1); + fan_table.Slope2 = cpu_to_be16(slope2); + + fan_table.FdoMin = cpu_to_be16(fdo_min); + + fan_table.HystDown = cpu_to_be16(hwmgr->thermal_controller.advanceFanControlParameters.ucTHyst); + + fan_table.HystUp = cpu_to_be16(1); + + fan_table.HystSlope = cpu_to_be16(1); + + fan_table.TempRespLim = cpu_to_be16(5); + + reference_clock = smu7_get_xclk(hwmgr); + + fan_table.RefreshPeriod = cpu_to_be32((hwmgr->thermal_controller.advanceFanControlParameters.ulCycleDelay * reference_clock) / 1600); + + fan_table.FdoMax = cpu_to_be16((uint16_t)duty100); + + fan_table.TempSrc = (uint8_t)PHM_READ_VFPF_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC, CG_MULT_THERMAL_CTRL, TEMP_SEL); + + fan_table.FanControl_GL_Flag = 1; + + res = tonga_copy_bytes_to_smc(hwmgr->smumgr, smu_data->fan_table_start, (uint8_t *)&fan_table, (uint32_t)sizeof(fan_table), SMC_RAM_END); +/* TO DO FOR SOME DEVICE ID 0X692b, send this msg return invalid command. + if (res == 0 && hwmgr->thermal_controller.advanceFanControlParameters.ucMinimumPWMLimit != 0) + res = (0 == smum_send_msg_to_smc_with_parameter(hwmgr->smumgr, PPSMC_MSG_SetFanMinPwm, \ + hwmgr->thermal_controller.advanceFanControlParameters.ucMinimumPWMLimit) ? 0 : -1); + + if (res == 0 && hwmgr->thermal_controller.advanceFanControlParameters.ulMinFanSCLKAcousticLimit != 0) + res = (0 == smum_send_msg_to_smc_with_parameter(hwmgr->smumgr, PPSMC_MSG_SetFanSclkTarget, \ + hwmgr->thermal_controller.advanceFanControlParameters.ulMinFanSCLKAcousticLimit) ? 0 : -1); + + if (0 != res) + phm_cap_unset(hwmgr->platform_descriptor.platformCaps, PHM_PlatformCaps_MicrocodeFanControl); +*/ + return 0; +} + + +static int tonga_program_mem_timing_parameters(struct pp_hwmgr *hwmgr) +{ + struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend); + + if (data->need_update_smu7_dpm_table & + (DPMTABLE_OD_UPDATE_SCLK + DPMTABLE_OD_UPDATE_MCLK)) + return tonga_program_memory_timing_parameters(hwmgr); + + return 0; +} + +int tonga_update_sclk_threshold(struct pp_hwmgr *hwmgr) +{ + struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend); + struct tonga_smumgr *smu_data = + (struct tonga_smumgr *)(hwmgr->smumgr->backend); + + int result = 0; + uint32_t low_sclk_interrupt_threshold = 0; + + if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps, + PHM_PlatformCaps_SclkThrottleLowNotification) + && (hwmgr->gfx_arbiter.sclk_threshold != + data->low_sclk_interrupt_threshold)) { + data->low_sclk_interrupt_threshold = + hwmgr->gfx_arbiter.sclk_threshold; + low_sclk_interrupt_threshold = + data->low_sclk_interrupt_threshold; + + CONVERT_FROM_HOST_TO_SMC_UL(low_sclk_interrupt_threshold); + + result = tonga_copy_bytes_to_smc( + hwmgr->smumgr, + smu_data->dpm_table_start + + offsetof(SMU72_Discrete_DpmTable, + LowSclkInterruptThreshold), + (uint8_t *)&low_sclk_interrupt_threshold, + sizeof(uint32_t), + SMC_RAM_END); + } + + result = tonga_update_and_upload_mc_reg_table(hwmgr); + + PP_ASSERT_WITH_CODE((0 == result), + "Failed to upload MC reg table !", + return result); + + result = tonga_program_mem_timing_parameters(hwmgr); + PP_ASSERT_WITH_CODE((result == 0), + "Failed to program memory timing parameters !", + ); + + return result; +} + +uint32_t tonga_get_offsetof(uint32_t type, uint32_t member) +{ + switch (type) { + case SMU_SoftRegisters: + switch (member) { + case HandshakeDisables: + return offsetof(SMU72_SoftRegisters, HandshakeDisables); + case VoltageChangeTimeout: + return offsetof(SMU72_SoftRegisters, VoltageChangeTimeout); + case AverageGraphicsActivity: + return offsetof(SMU72_SoftRegisters, AverageGraphicsActivity); + case PreVBlankGap: + return offsetof(SMU72_SoftRegisters, PreVBlankGap); + case VBlankTimeout: + return offsetof(SMU72_SoftRegisters, VBlankTimeout); + } + case SMU_Discrete_DpmTable: + switch (member) { + case UvdBootLevel: + return offsetof(SMU72_Discrete_DpmTable, UvdBootLevel); + case VceBootLevel: + return offsetof(SMU72_Discrete_DpmTable, VceBootLevel); + case SamuBootLevel: + return offsetof(SMU72_Discrete_DpmTable, SamuBootLevel); + case LowSclkInterruptThreshold: + return offsetof(SMU72_Discrete_DpmTable, LowSclkInterruptThreshold); + } + } + printk("cant't get the offset of type %x member %x\n", type, member); + return 0; +} + +uint32_t tonga_get_mac_definition(uint32_t value) +{ + switch (value) { + case SMU_MAX_LEVELS_GRAPHICS: + return SMU72_MAX_LEVELS_GRAPHICS; + case SMU_MAX_LEVELS_MEMORY: + return SMU72_MAX_LEVELS_MEMORY; + case SMU_MAX_LEVELS_LINK: + return SMU72_MAX_LEVELS_LINK; + case SMU_MAX_ENTRIES_SMIO: + return SMU72_MAX_ENTRIES_SMIO; + case SMU_MAX_LEVELS_VDDC: + return SMU72_MAX_LEVELS_VDDC; + case SMU_MAX_LEVELS_VDDGFX: + return SMU72_MAX_LEVELS_VDDGFX; + case SMU_MAX_LEVELS_VDDCI: + return SMU72_MAX_LEVELS_VDDCI; + case SMU_MAX_LEVELS_MVDD: + return SMU72_MAX_LEVELS_MVDD; + } + printk("cant't get the mac value %x\n", value); + + return 0; +} + + +static int tonga_update_uvd_smc_table(struct pp_hwmgr *hwmgr) +{ + struct tonga_smumgr *smu_data = + (struct tonga_smumgr *)(hwmgr->smumgr->backend); + uint32_t mm_boot_level_offset, mm_boot_level_value; + struct phm_ppt_v1_information *table_info = + (struct phm_ppt_v1_information *)(hwmgr->pptable); + + smu_data->smc_state_table.UvdBootLevel = 0; + if (table_info->mm_dep_table->count > 0) + smu_data->smc_state_table.UvdBootLevel = + (uint8_t) (table_info->mm_dep_table->count - 1); + mm_boot_level_offset = smu_data->dpm_table_start + + offsetof(SMU72_Discrete_DpmTable, UvdBootLevel); + mm_boot_level_offset /= 4; + mm_boot_level_offset *= 4; + mm_boot_level_value = cgs_read_ind_register(hwmgr->device, + CGS_IND_REG__SMC, mm_boot_level_offset); + mm_boot_level_value &= 0x00FFFFFF; + mm_boot_level_value |= smu_data->smc_state_table.UvdBootLevel << 24; + cgs_write_ind_register(hwmgr->device, + CGS_IND_REG__SMC, + mm_boot_level_offset, mm_boot_level_value); + + if (!phm_cap_enabled(hwmgr->platform_descriptor.platformCaps, + PHM_PlatformCaps_UVDDPM) || + phm_cap_enabled(hwmgr->platform_descriptor.platformCaps, + PHM_PlatformCaps_StablePState)) + smum_send_msg_to_smc_with_parameter(hwmgr->smumgr, + PPSMC_MSG_UVDDPM_SetEnabledMask, + (uint32_t)(1 << smu_data->smc_state_table.UvdBootLevel)); + return 0; +} + +static int tonga_update_vce_smc_table(struct pp_hwmgr *hwmgr) +{ + struct tonga_smumgr *smu_data = + (struct tonga_smumgr *)(hwmgr->smumgr->backend); + uint32_t mm_boot_level_offset, mm_boot_level_value; + struct phm_ppt_v1_information *table_info = + (struct phm_ppt_v1_information *)(hwmgr->pptable); + + + smu_data->smc_state_table.VceBootLevel = + (uint8_t) (table_info->mm_dep_table->count - 1); + + mm_boot_level_offset = smu_data->dpm_table_start + + offsetof(SMU72_Discrete_DpmTable, VceBootLevel); + mm_boot_level_offset /= 4; + mm_boot_level_offset *= 4; + mm_boot_level_value = cgs_read_ind_register(hwmgr->device, + CGS_IND_REG__SMC, mm_boot_level_offset); + mm_boot_level_value &= 0xFF00FFFF; + mm_boot_level_value |= smu_data->smc_state_table.VceBootLevel << 16; + cgs_write_ind_register(hwmgr->device, + CGS_IND_REG__SMC, mm_boot_level_offset, mm_boot_level_value); + + if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps, + PHM_PlatformCaps_StablePState)) + smum_send_msg_to_smc_with_parameter(hwmgr->smumgr, + PPSMC_MSG_VCEDPM_SetEnabledMask, + (uint32_t)1 << smu_data->smc_state_table.VceBootLevel); + return 0; +} + +static int tonga_update_samu_smc_table(struct pp_hwmgr *hwmgr) +{ + struct tonga_smumgr *smu_data = (struct tonga_smumgr *)(hwmgr->smumgr->backend); + uint32_t mm_boot_level_offset, mm_boot_level_value; + + smu_data->smc_state_table.SamuBootLevel = 0; + mm_boot_level_offset = smu_data->dpm_table_start + + offsetof(SMU72_Discrete_DpmTable, SamuBootLevel); + + mm_boot_level_offset /= 4; + mm_boot_level_offset *= 4; + mm_boot_level_value = cgs_read_ind_register(hwmgr->device, + CGS_IND_REG__SMC, mm_boot_level_offset); + mm_boot_level_value &= 0xFFFFFF00; + mm_boot_level_value |= smu_data->smc_state_table.SamuBootLevel << 0; + cgs_write_ind_register(hwmgr->device, + CGS_IND_REG__SMC, mm_boot_level_offset, mm_boot_level_value); + + if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps, + PHM_PlatformCaps_StablePState)) + smum_send_msg_to_smc_with_parameter(hwmgr->smumgr, + PPSMC_MSG_SAMUDPM_SetEnabledMask, + (uint32_t)(1 << smu_data->smc_state_table.SamuBootLevel)); + return 0; +} + +int tonga_update_smc_table(struct pp_hwmgr *hwmgr, uint32_t type) +{ + switch (type) { + case SMU_UVD_TABLE: + tonga_update_uvd_smc_table(hwmgr); + break; + case SMU_VCE_TABLE: + tonga_update_vce_smc_table(hwmgr); + break; + case SMU_SAMU_TABLE: + tonga_update_samu_smc_table(hwmgr); + break; + default: + break; + } + return 0; +} + + +/** + * Get the location of various tables inside the FW image. + * + * @param hwmgr the address of the powerplay hardware manager. + * @return always 0 + */ +int tonga_process_firmware_header(struct pp_hwmgr *hwmgr) +{ + struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend); + struct tonga_smumgr *smu_data = (struct tonga_smumgr *)(hwmgr->smumgr->backend); + + uint32_t tmp; + int result; + bool error = false; + + result = tonga_read_smc_sram_dword(hwmgr->smumgr, + SMU72_FIRMWARE_HEADER_LOCATION + + offsetof(SMU72_Firmware_Header, DpmTable), + &tmp, SMC_RAM_END); + + if (0 == result) + smu_data->dpm_table_start = tmp; + + error |= (0 != result); + + result = tonga_read_smc_sram_dword(hwmgr->smumgr, + SMU72_FIRMWARE_HEADER_LOCATION + + offsetof(SMU72_Firmware_Header, SoftRegisters), + &tmp, SMC_RAM_END); + + if (0 == result) { + data->soft_regs_start = tmp; + smu_data->soft_regs_start = tmp; + } + + error |= (0 != result); + + + result = tonga_read_smc_sram_dword(hwmgr->smumgr, + SMU72_FIRMWARE_HEADER_LOCATION + + offsetof(SMU72_Firmware_Header, mcRegisterTable), + &tmp, SMC_RAM_END); + + if (0 == result) + smu_data->mc_reg_table_start = tmp; + + + result = tonga_read_smc_sram_dword(hwmgr->smumgr, + SMU72_FIRMWARE_HEADER_LOCATION + + offsetof(SMU72_Firmware_Header, FanTable), + &tmp, SMC_RAM_END); + + if (0 == result) + smu_data->fan_table_start = tmp; + + error |= (0 != result); + + result = tonga_read_smc_sram_dword(hwmgr->smumgr, + SMU72_FIRMWARE_HEADER_LOCATION + + offsetof(SMU72_Firmware_Header, mcArbDramTimingTable), + &tmp, SMC_RAM_END); + + if (0 == result) + smu_data->arb_table_start = tmp; + + error |= (0 != result); + + result = tonga_read_smc_sram_dword(hwmgr->smumgr, + SMU72_FIRMWARE_HEADER_LOCATION + + offsetof(SMU72_Firmware_Header, Version), + &tmp, SMC_RAM_END); + + if (0 == result) + hwmgr->microcode_version_info.SMC = tmp; + + error |= (0 != result); + + return error ? 1 : 0; +} + +/*---------------------------MC----------------------------*/ + +static uint8_t tonga_get_memory_modile_index(struct pp_hwmgr *hwmgr) +{ + return (uint8_t) (0xFF & (cgs_read_register(hwmgr->device, mmBIOS_SCRATCH_4) >> 16)); +} + +static bool tonga_check_s0_mc_reg_index(uint16_t in_reg, uint16_t *out_reg) +{ + bool result = true; + + switch (in_reg) { + case mmMC_SEQ_RAS_TIMING: + *out_reg = mmMC_SEQ_RAS_TIMING_LP; + break; + + case mmMC_SEQ_DLL_STBY: + *out_reg = mmMC_SEQ_DLL_STBY_LP; + break; + + case mmMC_SEQ_G5PDX_CMD0: + *out_reg = mmMC_SEQ_G5PDX_CMD0_LP; + break; + + case mmMC_SEQ_G5PDX_CMD1: + *out_reg = mmMC_SEQ_G5PDX_CMD1_LP; + break; + + case mmMC_SEQ_G5PDX_CTRL: + *out_reg = mmMC_SEQ_G5PDX_CTRL_LP; + break; + + case mmMC_SEQ_CAS_TIMING: + *out_reg = mmMC_SEQ_CAS_TIMING_LP; + break; + + case mmMC_SEQ_MISC_TIMING: + *out_reg = mmMC_SEQ_MISC_TIMING_LP; + break; + + case mmMC_SEQ_MISC_TIMING2: + *out_reg = mmMC_SEQ_MISC_TIMING2_LP; + break; + + case mmMC_SEQ_PMG_DVS_CMD: + *out_reg = mmMC_SEQ_PMG_DVS_CMD_LP; + break; + + case mmMC_SEQ_PMG_DVS_CTL: + *out_reg = mmMC_SEQ_PMG_DVS_CTL_LP; + break; + + case mmMC_SEQ_RD_CTL_D0: + *out_reg = mmMC_SEQ_RD_CTL_D0_LP; + break; + + case mmMC_SEQ_RD_CTL_D1: + *out_reg = mmMC_SEQ_RD_CTL_D1_LP; + break; + + case mmMC_SEQ_WR_CTL_D0: + *out_reg = mmMC_SEQ_WR_CTL_D0_LP; + break; + + case mmMC_SEQ_WR_CTL_D1: + *out_reg = mmMC_SEQ_WR_CTL_D1_LP; + break; + + case mmMC_PMG_CMD_EMRS: + *out_reg = mmMC_SEQ_PMG_CMD_EMRS_LP; + break; + + case mmMC_PMG_CMD_MRS: + *out_reg = mmMC_SEQ_PMG_CMD_MRS_LP; + break; + + case mmMC_PMG_CMD_MRS1: + *out_reg = mmMC_SEQ_PMG_CMD_MRS1_LP; + break; + + case mmMC_SEQ_PMG_TIMING: + *out_reg = mmMC_SEQ_PMG_TIMING_LP; + break; + + case mmMC_PMG_CMD_MRS2: + *out_reg = mmMC_SEQ_PMG_CMD_MRS2_LP; + break; + + case mmMC_SEQ_WR_CTL_2: + *out_reg = mmMC_SEQ_WR_CTL_2_LP; + break; + + default: + result = false; + break; + } + + return result; +} + +static int tonga_set_s0_mc_reg_index(struct tonga_mc_reg_table *table) +{ + uint32_t i; + uint16_t address; + + for (i = 0; i < table->last; i++) { + table->mc_reg_address[i].s0 = + tonga_check_s0_mc_reg_index(table->mc_reg_address[i].s1, + &address) ? + address : + table->mc_reg_address[i].s1; + } + return 0; +} + +static int tonga_copy_vbios_smc_reg_table(const pp_atomctrl_mc_reg_table *table, + struct tonga_mc_reg_table *ni_table) +{ + uint8_t i, j; + + PP_ASSERT_WITH_CODE((table->last <= SMU72_DISCRETE_MC_REGISTER_ARRAY_SIZE), + "Invalid VramInfo table.", return -EINVAL); + PP_ASSERT_WITH_CODE((table->num_entries <= MAX_AC_TIMING_ENTRIES), + "Invalid VramInfo table.", return -EINVAL); + + for (i = 0; i < table->last; i++) + ni_table->mc_reg_address[i].s1 = table->mc_reg_address[i].s1; + + ni_table->last = table->last; + + for (i = 0; i < table->num_entries; i++) { + ni_table->mc_reg_table_entry[i].mclk_max = + table->mc_reg_table_entry[i].mclk_max; + for (j = 0; j < table->last; j++) { + ni_table->mc_reg_table_entry[i].mc_data[j] = + table->mc_reg_table_entry[i].mc_data[j]; + } + } + + ni_table->num_entries = table->num_entries; + + return 0; +} + +/** + * VBIOS omits some information to reduce size, we need to recover them here. + * 1. when we see mmMC_SEQ_MISC1, bit[31:16] EMRS1, need to be write to + * mmMC_PMG_CMD_EMRS /_LP[15:0]. Bit[15:0] MRS, need to be update + * mmMC_PMG_CMD_MRS/_LP[15:0] + * 2. when we see mmMC_SEQ_RESERVE_M, bit[15:0] EMRS2, need to be write to + * mmMC_PMG_CMD_MRS1/_LP[15:0]. + * 3. need to set these data for each clock range + * @param hwmgr the address of the powerplay hardware manager. + * @param table the address of MCRegTable + * @return always 0 + */ +static int tonga_set_mc_special_registers(struct pp_hwmgr *hwmgr, + struct tonga_mc_reg_table *table) +{ + uint8_t i, j, k; + uint32_t temp_reg; + struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend); + + for (i = 0, j = table->last; i < table->last; i++) { + PP_ASSERT_WITH_CODE((j < SMU72_DISCRETE_MC_REGISTER_ARRAY_SIZE), + "Invalid VramInfo table.", return -EINVAL); + + switch (table->mc_reg_address[i].s1) { + + case mmMC_SEQ_MISC1: + temp_reg = cgs_read_register(hwmgr->device, + mmMC_PMG_CMD_EMRS); + table->mc_reg_address[j].s1 = mmMC_PMG_CMD_EMRS; + table->mc_reg_address[j].s0 = mmMC_SEQ_PMG_CMD_EMRS_LP; + for (k = 0; k < table->num_entries; k++) { + table->mc_reg_table_entry[k].mc_data[j] = + ((temp_reg & 0xffff0000)) | + ((table->mc_reg_table_entry[k].mc_data[i] & 0xffff0000) >> 16); + } + j++; + PP_ASSERT_WITH_CODE((j < SMU72_DISCRETE_MC_REGISTER_ARRAY_SIZE), + "Invalid VramInfo table.", return -EINVAL); + + temp_reg = cgs_read_register(hwmgr->device, mmMC_PMG_CMD_MRS); + table->mc_reg_address[j].s1 = mmMC_PMG_CMD_MRS; + table->mc_reg_address[j].s0 = mmMC_SEQ_PMG_CMD_MRS_LP; + for (k = 0; k < table->num_entries; k++) { + table->mc_reg_table_entry[k].mc_data[j] = + (temp_reg & 0xffff0000) | + (table->mc_reg_table_entry[k].mc_data[i] & 0x0000ffff); + + if (!data->is_memory_gddr5) + table->mc_reg_table_entry[k].mc_data[j] |= 0x100; + } + j++; + PP_ASSERT_WITH_CODE((j <= SMU72_DISCRETE_MC_REGISTER_ARRAY_SIZE), + "Invalid VramInfo table.", return -EINVAL); + + if (!data->is_memory_gddr5) { + table->mc_reg_address[j].s1 = mmMC_PMG_AUTO_CMD; + table->mc_reg_address[j].s0 = mmMC_PMG_AUTO_CMD; + for (k = 0; k < table->num_entries; k++) + table->mc_reg_table_entry[k].mc_data[j] = + (table->mc_reg_table_entry[k].mc_data[i] & 0xffff0000) >> 16; + j++; + PP_ASSERT_WITH_CODE((j <= SMU72_DISCRETE_MC_REGISTER_ARRAY_SIZE), + "Invalid VramInfo table.", return -EINVAL); + } + + break; + + case mmMC_SEQ_RESERVE_M: + temp_reg = cgs_read_register(hwmgr->device, mmMC_PMG_CMD_MRS1); + table->mc_reg_address[j].s1 = mmMC_PMG_CMD_MRS1; + table->mc_reg_address[j].s0 = mmMC_SEQ_PMG_CMD_MRS1_LP; + for (k = 0; k < table->num_entries; k++) { + table->mc_reg_table_entry[k].mc_data[j] = + (temp_reg & 0xffff0000) | + (table->mc_reg_table_entry[k].mc_data[i] & 0x0000ffff); + } + j++; + PP_ASSERT_WITH_CODE((j <= SMU72_DISCRETE_MC_REGISTER_ARRAY_SIZE), + "Invalid VramInfo table.", return -EINVAL); + break; + + default: + break; + } + + } + + table->last = j; + + return 0; +} + +static int tonga_set_valid_flag(struct tonga_mc_reg_table *table) +{ + uint8_t i, j; + + for (i = 0; i < table->last; i++) { + for (j = 1; j < table->num_entries; j++) { + if (table->mc_reg_table_entry[j-1].mc_data[i] != + table->mc_reg_table_entry[j].mc_data[i]) { + table->validflag |= (1<<i); + break; + } + } + } + + return 0; +} + +int tonga_initialize_mc_reg_table(struct pp_hwmgr *hwmgr) +{ + int result; + struct tonga_smumgr *smu_data = (struct tonga_smumgr *)(hwmgr->smumgr->backend); + pp_atomctrl_mc_reg_table *table; + struct tonga_mc_reg_table *ni_table = &smu_data->mc_reg_table; + uint8_t module_index = tonga_get_memory_modile_index(hwmgr); + + table = kzalloc(sizeof(pp_atomctrl_mc_reg_table), GFP_KERNEL); + + if (NULL == table) + return -ENOMEM; + + /* Program additional LP registers that are no longer programmed by VBIOS */ + cgs_write_register(hwmgr->device, mmMC_SEQ_RAS_TIMING_LP, + cgs_read_register(hwmgr->device, mmMC_SEQ_RAS_TIMING)); + cgs_write_register(hwmgr->device, mmMC_SEQ_CAS_TIMING_LP, + cgs_read_register(hwmgr->device, mmMC_SEQ_CAS_TIMING)); + cgs_write_register(hwmgr->device, mmMC_SEQ_DLL_STBY_LP, + cgs_read_register(hwmgr->device, mmMC_SEQ_DLL_STBY)); + cgs_write_register(hwmgr->device, mmMC_SEQ_G5PDX_CMD0_LP, + cgs_read_register(hwmgr->device, mmMC_SEQ_G5PDX_CMD0)); + cgs_write_register(hwmgr->device, mmMC_SEQ_G5PDX_CMD1_LP, + cgs_read_register(hwmgr->device, mmMC_SEQ_G5PDX_CMD1)); + cgs_write_register(hwmgr->device, mmMC_SEQ_G5PDX_CTRL_LP, + cgs_read_register(hwmgr->device, mmMC_SEQ_G5PDX_CTRL)); + cgs_write_register(hwmgr->device, mmMC_SEQ_PMG_DVS_CMD_LP, + cgs_read_register(hwmgr->device, mmMC_SEQ_PMG_DVS_CMD)); + cgs_write_register(hwmgr->device, mmMC_SEQ_PMG_DVS_CTL_LP, + cgs_read_register(hwmgr->device, mmMC_SEQ_PMG_DVS_CTL)); + cgs_write_register(hwmgr->device, mmMC_SEQ_MISC_TIMING_LP, + cgs_read_register(hwmgr->device, mmMC_SEQ_MISC_TIMING)); + cgs_write_register(hwmgr->device, mmMC_SEQ_MISC_TIMING2_LP, + cgs_read_register(hwmgr->device, mmMC_SEQ_MISC_TIMING2)); + cgs_write_register(hwmgr->device, mmMC_SEQ_PMG_CMD_EMRS_LP, + cgs_read_register(hwmgr->device, mmMC_PMG_CMD_EMRS)); + cgs_write_register(hwmgr->device, mmMC_SEQ_PMG_CMD_MRS_LP, + cgs_read_register(hwmgr->device, mmMC_PMG_CMD_MRS)); + cgs_write_register(hwmgr->device, mmMC_SEQ_PMG_CMD_MRS1_LP, + cgs_read_register(hwmgr->device, mmMC_PMG_CMD_MRS1)); + cgs_write_register(hwmgr->device, mmMC_SEQ_WR_CTL_D0_LP, + cgs_read_register(hwmgr->device, mmMC_SEQ_WR_CTL_D0)); + cgs_write_register(hwmgr->device, mmMC_SEQ_WR_CTL_D1_LP, + cgs_read_register(hwmgr->device, mmMC_SEQ_WR_CTL_D1)); + cgs_write_register(hwmgr->device, mmMC_SEQ_RD_CTL_D0_LP, + cgs_read_register(hwmgr->device, mmMC_SEQ_RD_CTL_D0)); + cgs_write_register(hwmgr->device, mmMC_SEQ_RD_CTL_D1_LP, + cgs_read_register(hwmgr->device, mmMC_SEQ_RD_CTL_D1)); + cgs_write_register(hwmgr->device, mmMC_SEQ_PMG_TIMING_LP, + cgs_read_register(hwmgr->device, mmMC_SEQ_PMG_TIMING)); + cgs_write_register(hwmgr->device, mmMC_SEQ_PMG_CMD_MRS2_LP, + cgs_read_register(hwmgr->device, mmMC_PMG_CMD_MRS2)); + cgs_write_register(hwmgr->device, mmMC_SEQ_WR_CTL_2_LP, + cgs_read_register(hwmgr->device, mmMC_SEQ_WR_CTL_2)); + + memset(table, 0x00, sizeof(pp_atomctrl_mc_reg_table)); + + result = atomctrl_initialize_mc_reg_table(hwmgr, module_index, table); + + if (0 == result) + result = tonga_copy_vbios_smc_reg_table(table, ni_table); + + if (0 == result) { + tonga_set_s0_mc_reg_index(ni_table); + result = tonga_set_mc_special_registers(hwmgr, ni_table); + } + + if (0 == result) + tonga_set_valid_flag(ni_table); + + kfree(table); + + return result; +} + +bool tonga_is_dpm_running(struct pp_hwmgr *hwmgr) +{ + return (1 == PHM_READ_INDIRECT_FIELD(hwmgr->device, + CGS_IND_REG__SMC, FEATURE_STATUS, VOLTAGE_CONTROLLER_ON)) + ? true : false; +} diff --git a/drivers/gpu/drm/amd/powerplay/smumgr/tonga_smc.h b/drivers/gpu/drm/amd/powerplay/smumgr/tonga_smc.h new file mode 100644 index 000000000000..8ae169ff541d --- /dev/null +++ b/drivers/gpu/drm/amd/powerplay/smumgr/tonga_smc.h @@ -0,0 +1,60 @@ +/* + * Copyright 2015 Advanced Micro Devices, Inc. + * + * Permission is hereby granted, free of charge, to any person obtaining a + * copy of this software and associated documentation files (the "Software"), + * to deal in the Software without restriction, including without limitation + * the rights to use, copy, modify, merge, publish, distribute, sublicense, + * and/or sell copies of the Software, and to permit persons to whom the + * Software is furnished to do so, subject to the following conditions: + * + * The above copyright notice and this permission notice shall be included in + * all copies or substantial portions of the Software. + * + * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR + * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, + * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL + * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR + * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, + * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR + * OTHER DEALINGS IN THE SOFTWARE. + * + */ +#ifndef _TONGA_SMC_H +#define _TONGA_SMC_H + +#include "smumgr.h" +#include "smu72.h" + + +#define ASICID_IS_TONGA_P(wDID, bRID) \ + (((wDID == 0x6930) && ((bRID == 0xF0) || (bRID == 0xF1) || (bRID == 0xFF))) \ + || ((wDID == 0x6920) && ((bRID == 0) || (bRID == 1)))) + + +struct tonga_pt_defaults { + uint8_t svi_load_line_en; + uint8_t svi_load_line_vddC; + uint8_t tdc_vddc_throttle_release_limit_perc; + uint8_t tdc_mawt; + uint8_t tdc_waterfall_ctl; + uint8_t dte_ambient_temp_base; + uint32_t display_cac; + uint32_t bamp_temp_gradient; + uint16_t bapmti_r[SMU72_DTE_ITERATIONS * SMU72_DTE_SOURCES * SMU72_DTE_SINKS]; + uint16_t bapmti_rc[SMU72_DTE_ITERATIONS * SMU72_DTE_SOURCES * SMU72_DTE_SINKS]; +}; + +int tonga_populate_all_graphic_levels(struct pp_hwmgr *hwmgr); +int tonga_populate_all_memory_levels(struct pp_hwmgr *hwmgr); +int tonga_init_smc_table(struct pp_hwmgr *hwmgr); +int tonga_thermal_setup_fan_table(struct pp_hwmgr *hwmgr); +int tonga_update_smc_table(struct pp_hwmgr *hwmgr, uint32_t type); +int tonga_update_sclk_threshold(struct pp_hwmgr *hwmgr); +uint32_t tonga_get_offsetof(uint32_t type, uint32_t member); +uint32_t tonga_get_mac_definition(uint32_t value); +int tonga_process_firmware_header(struct pp_hwmgr *hwmgr); +int tonga_initialize_mc_reg_table(struct pp_hwmgr *hwmgr); +bool tonga_is_dpm_running(struct pp_hwmgr *hwmgr); +#endif + diff --git a/drivers/gpu/drm/amd/powerplay/smumgr/tonga_smumgr.c b/drivers/gpu/drm/amd/powerplay/smumgr/tonga_smumgr.c index f42c536b3af1..b543d6c0f96a 100644 --- a/drivers/gpu/drm/amd/powerplay/smumgr/tonga_smumgr.c +++ b/drivers/gpu/drm/amd/powerplay/smumgr/tonga_smumgr.c @@ -33,6 +33,7 @@ #include "smu/smu_7_1_2_d.h" #include "smu/smu_7_1_2_sh_mask.h" #include "cgs_common.h" +#include "tonga_smc.h" #define TONGA_SMC_SIZE 0x20000 #define BUFFER_SIZE 80000 @@ -749,6 +750,8 @@ static int tonga_smu_init(struct pp_smumgr *smumgr) struct tonga_smumgr *tonga_smu; uint8_t *internal_buf; uint64_t mc_addr = 0; + int i; + /* Allocate memory for backend private data */ tonga_smu = (struct tonga_smumgr *)(smumgr->backend); tonga_smu->header_buffer.data_size = @@ -793,6 +796,9 @@ static int tonga_smu_init(struct pp_smumgr *smumgr) (cgs_handle_t)tonga_smu->smu_buffer.handle); return -1;); + for (i = 0; i < SMU72_MAX_LEVELS_GRAPHICS; i++) + tonga_smu->activity_target[i] = 30; + return 0; } @@ -807,6 +813,17 @@ static const struct pp_smumgr_func tonga_smu_funcs = { .send_msg_to_smc_with_parameter = &tonga_send_msg_to_smc_with_parameter, .download_pptable_settings = NULL, .upload_pptable_settings = NULL, + .update_smc_table = tonga_update_smc_table, + .get_offsetof = tonga_get_offsetof, + .process_firmware_header = tonga_process_firmware_header, + .init_smc_table = tonga_init_smc_table, + .update_sclk_threshold = tonga_update_sclk_threshold, + .thermal_setup_fan_table = tonga_thermal_setup_fan_table, + .populate_all_graphic_levels = tonga_populate_all_graphic_levels, + .populate_all_memory_levels = tonga_populate_all_memory_levels, + .get_mac_definition = tonga_get_mac_definition, + .initialize_mc_reg_table = tonga_initialize_mc_reg_table, + .is_dpm_running = tonga_is_dpm_running, }; int tonga_smum_init(struct pp_smumgr *smumgr) diff --git a/drivers/gpu/drm/amd/powerplay/smumgr/tonga_smumgr.h b/drivers/gpu/drm/amd/powerplay/smumgr/tonga_smumgr.h index 33c788d7f05c..b2ad232506c1 100644 --- a/drivers/gpu/drm/amd/powerplay/smumgr/tonga_smumgr.h +++ b/drivers/gpu/drm/amd/powerplay/smumgr/tonga_smumgr.h @@ -24,6 +24,10 @@ #ifndef _TONGA_SMUMGR_H_ #define _TONGA_SMUMGR_H_ +#include "smu72_discrete.h" + +#define SMC_RAM_END 0x40000 + struct tonga_buffer_entry { uint32_t data_size; uint32_t mc_addr_low; @@ -32,13 +36,44 @@ struct tonga_buffer_entry { unsigned long handle; }; + +struct tonga_mc_reg_entry { + uint32_t mclk_max; + uint32_t mc_data[SMU72_DISCRETE_MC_REGISTER_ARRAY_SIZE]; +}; + +struct tonga_mc_reg_table { + uint8_t last; /* number of registers*/ + uint8_t num_entries; /* number of entries in mc_reg_table_entry used*/ + uint16_t validflag; /* indicate the corresponding register is valid or not. 1: valid, 0: invalid. bit0->address[0], bit1->address[1], etc.*/ + struct tonga_mc_reg_entry mc_reg_table_entry[MAX_AC_TIMING_ENTRIES]; + SMU72_Discrete_MCRegisterAddress mc_reg_address[SMU72_DISCRETE_MC_REGISTER_ARRAY_SIZE]; +}; + + struct tonga_smumgr { uint8_t *pHeader; uint8_t *pMecImage; - uint32_t ulSoftRegsStart; + + + uint32_t soft_regs_start; + uint32_t dpm_table_start; + uint32_t mc_reg_table_start; + uint32_t fan_table_start; + uint32_t arb_table_start; struct tonga_buffer_entry header_buffer; struct tonga_buffer_entry smu_buffer; + + struct SMU72_Discrete_DpmTable smc_state_table; + struct SMU72_Discrete_Ulv ulv_setting; + struct SMU72_Discrete_PmFuses power_tune_table; + struct tonga_pt_defaults *power_tune_defaults; + SMU72_Discrete_MCRegisters mc_regs; + struct tonga_mc_reg_table mc_reg_table; + + uint32_t activity_target[SMU72_MAX_LEVELS_GRAPHICS]; + }; extern int tonga_smum_init(struct pp_smumgr *smumgr); |