diff options
author | Paul E. McKenney <paulmck@linux.vnet.ibm.com> | 2013-12-11 13:59:07 -0800 |
---|---|---|
committer | Ingo Molnar <mingo@kernel.org> | 2013-12-16 11:36:12 +0100 |
commit | 692118dac47e65f5131686b1103ebfebf0cbfa8e (patch) | |
tree | 1bba0afd9809bec501d5ec65d43ad3bcbb2e0574 /Documentation/memory-barriers.txt | |
parent | 18c03c61444a211237f3d4782353cb38dba795df (diff) | |
download | talos-obmc-linux-692118dac47e65f5131686b1103ebfebf0cbfa8e.tar.gz talos-obmc-linux-692118dac47e65f5131686b1103ebfebf0cbfa8e.zip |
Documentation/memory-barriers.txt: Document ACCESS_ONCE()
The situations in which ACCESS_ONCE() is required are not well
documented, so this commit adds some verbiage to
memory-barriers.txt.
Reported-by: Peter Zijlstra <peterz@infradead.org>
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Reviewed-by: Josh Triplett <josh@joshtriplett.org>
Reviewed-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Cc: <linux-arch@vger.kernel.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Andrew Morton <akpm@linux-foundation.org>
Link: http://lkml.kernel.org/r/1386799151-2219-4-git-send-email-paulmck@linux.vnet.ibm.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Diffstat (limited to 'Documentation/memory-barriers.txt')
-rw-r--r-- | Documentation/memory-barriers.txt | 306 |
1 files changed, 271 insertions, 35 deletions
diff --git a/Documentation/memory-barriers.txt b/Documentation/memory-barriers.txt index deafa36aeea1..919fd604969d 100644 --- a/Documentation/memory-barriers.txt +++ b/Documentation/memory-barriers.txt @@ -231,37 +231,8 @@ And there are a number of things that _must_ or _must_not_ be assumed: (*) It _must_not_ be assumed that the compiler will do what you want with memory references that are not protected by ACCESS_ONCE(). Without ACCESS_ONCE(), the compiler is within its rights to do all sorts - of "creative" transformations: - - (-) Repeat the load, possibly getting a different value on the second - and subsequent loads. This is especially prone to happen when - register pressure is high. - - (-) Merge adjacent loads and stores to the same location. The most - familiar example is the transformation from: - - while (a) - do_something(); - - to something like: - - if (a) - for (;;) - do_something(); - - Using ACCESS_ONCE() as follows prevents this sort of optimization: - - while (ACCESS_ONCE(a)) - do_something(); - - (-) "Store tearing", where a single store in the source code is split - into smaller stores in the object code. Note that gcc really - will do this on some architectures when storing certain constants. - It can be cheaper to do a series of immediate stores than to - form the constant in a register and then to store that register. - - (-) "Load tearing", which splits loads in a manner analogous to - store tearing. + of "creative" transformations, which are covered in the Compiler + Barrier section. (*) It _must_not_ be assumed that independent loads and stores will be issued in the order given. This means that for: @@ -749,7 +720,8 @@ In summary: (*) Control dependencies require that the compiler avoid reordering the dependency into nonexistence. Careful use of ACCESS_ONCE() or - barrier() can help to preserve your control dependency. + barrier() can help to preserve your control dependency. Please + see the Compiler Barrier section for more information. (*) Control dependencies do -not- provide transitivity. If you need transitivity, use smp_mb(). @@ -1248,12 +1220,276 @@ compiler from moving the memory accesses either side of it to the other side: barrier(); This is a general barrier -- there are no read-read or write-write variants -of barrier(). Howevever, ACCESS_ONCE() can be thought of as a weak form +of barrier(). However, ACCESS_ONCE() can be thought of as a weak form for barrier() that affects only the specific accesses flagged by the ACCESS_ONCE(). -The compiler barrier has no direct effect on the CPU, which may then reorder -things however it wishes. +The barrier() function has the following effects: + + (*) Prevents the compiler from reordering accesses following the + barrier() to precede any accesses preceding the barrier(). + One example use for this property is to ease communication between + interrupt-handler code and the code that was interrupted. + + (*) Within a loop, forces the compiler to load the variables used + in that loop's conditional on each pass through that loop. + +The ACCESS_ONCE() function can prevent any number of optimizations that, +while perfectly safe in single-threaded code, can be fatal in concurrent +code. Here are some examples of these sorts of optimizations: + + (*) The compiler is within its rights to merge successive loads from + the same variable. Such merging can cause the compiler to "optimize" + the following code: + + while (tmp = a) + do_something_with(tmp); + + into the following code, which, although in some sense legitimate + for single-threaded code, is almost certainly not what the developer + intended: + + if (tmp = a) + for (;;) + do_something_with(tmp); + + Use ACCESS_ONCE() to prevent the compiler from doing this to you: + + while (tmp = ACCESS_ONCE(a)) + do_something_with(tmp); + + (*) The compiler is within its rights to reload a variable, for example, + in cases where high register pressure prevents the compiler from + keeping all data of interest in registers. The compiler might + therefore optimize the variable 'tmp' out of our previous example: + + while (tmp = a) + do_something_with(tmp); + + This could result in the following code, which is perfectly safe in + single-threaded code, but can be fatal in concurrent code: + + while (a) + do_something_with(a); + + For example, the optimized version of this code could result in + passing a zero to do_something_with() in the case where the variable + a was modified by some other CPU between the "while" statement and + the call to do_something_with(). + + Again, use ACCESS_ONCE() to prevent the compiler from doing this: + + while (tmp = ACCESS_ONCE(a)) + do_something_with(tmp); + + Note that if the compiler runs short of registers, it might save + tmp onto the stack. The overhead of this saving and later restoring + is why compilers reload variables. Doing so is perfectly safe for + single-threaded code, so you need to tell the compiler about cases + where it is not safe. + + (*) The compiler is within its rights to omit a load entirely if it knows + what the value will be. For example, if the compiler can prove that + the value of variable 'a' is always zero, it can optimize this code: + + while (tmp = a) + do_something_with(tmp); + + Into this: + + do { } while (0); + + This transformation is a win for single-threaded code because it gets + rid of a load and a branch. The problem is that the compiler will + carry out its proof assuming that the current CPU is the only one + updating variable 'a'. If variable 'a' is shared, then the compiler's + proof will be erroneous. Use ACCESS_ONCE() to tell the compiler + that it doesn't know as much as it thinks it does: + + while (tmp = ACCESS_ONCE(a)) + do_something_with(tmp); + + But please note that the compiler is also closely watching what you + do with the value after the ACCESS_ONCE(). For example, suppose you + do the following and MAX is a preprocessor macro with the value 1: + + while ((tmp = ACCESS_ONCE(a)) % MAX) + do_something_with(tmp); + + Then the compiler knows that the result of the "%" operator applied + to MAX will always be zero, again allowing the compiler to optimize + the code into near-nonexistence. (It will still load from the + variable 'a'.) + + (*) Similarly, the compiler is within its rights to omit a store entirely + if it knows that the variable already has the value being stored. + Again, the compiler assumes that the current CPU is the only one + storing into the variable, which can cause the compiler to do the + wrong thing for shared variables. For example, suppose you have + the following: + + a = 0; + /* Code that does not store to variable a. */ + a = 0; + + The compiler sees that the value of variable 'a' is already zero, so + it might well omit the second store. This would come as a fatal + surprise if some other CPU might have stored to variable 'a' in the + meantime. + + Use ACCESS_ONCE() to prevent the compiler from making this sort of + wrong guess: + + ACCESS_ONCE(a) = 0; + /* Code that does not store to variable a. */ + ACCESS_ONCE(a) = 0; + + (*) The compiler is within its rights to reorder memory accesses unless + you tell it not to. For example, consider the following interaction + between process-level code and an interrupt handler: + + void process_level(void) + { + msg = get_message(); + flag = true; + } + + void interrupt_handler(void) + { + if (flag) + process_message(msg); + } + + There is nothing to prevent the the compiler from transforming + process_level() to the following, in fact, this might well be a + win for single-threaded code: + + void process_level(void) + { + flag = true; + msg = get_message(); + } + + If the interrupt occurs between these two statement, then + interrupt_handler() might be passed a garbled msg. Use ACCESS_ONCE() + to prevent this as follows: + + void process_level(void) + { + ACCESS_ONCE(msg) = get_message(); + ACCESS_ONCE(flag) = true; + } + + void interrupt_handler(void) + { + if (ACCESS_ONCE(flag)) + process_message(ACCESS_ONCE(msg)); + } + + Note that the ACCESS_ONCE() wrappers in interrupt_handler() + are needed if this interrupt handler can itself be interrupted + by something that also accesses 'flag' and 'msg', for example, + a nested interrupt or an NMI. Otherwise, ACCESS_ONCE() is not + needed in interrupt_handler() other than for documentation purposes. + (Note also that nested interrupts do not typically occur in modern + Linux kernels, in fact, if an interrupt handler returns with + interrupts enabled, you will get a WARN_ONCE() splat.) + + You should assume that the compiler can move ACCESS_ONCE() past + code not containing ACCESS_ONCE(), barrier(), or similar primitives. + + This effect could also be achieved using barrier(), but ACCESS_ONCE() + is more selective: With ACCESS_ONCE(), the compiler need only forget + the contents of the indicated memory locations, while with barrier() + the compiler must discard the value of all memory locations that + it has currented cached in any machine registers. Of course, + the compiler must also respect the order in which the ACCESS_ONCE()s + occur, though the CPU of course need not do so. + + (*) The compiler is within its rights to invent stores to a variable, + as in the following example: + + if (a) + b = a; + else + b = 42; + + The compiler might save a branch by optimizing this as follows: + + b = 42; + if (a) + b = a; + + In single-threaded code, this is not only safe, but also saves + a branch. Unfortunately, in concurrent code, this optimization + could cause some other CPU to see a spurious value of 42 -- even + if variable 'a' was never zero -- when loading variable 'b'. + Use ACCESS_ONCE() to prevent this as follows: + + if (a) + ACCESS_ONCE(b) = a; + else + ACCESS_ONCE(b) = 42; + + The compiler can also invent loads. These are usually less + damaging, but they can result in cache-line bouncing and thus in + poor performance and scalability. Use ACCESS_ONCE() to prevent + invented loads. + + (*) For aligned memory locations whose size allows them to be accessed + with a single memory-reference instruction, prevents "load tearing" + and "store tearing," in which a single large access is replaced by + multiple smaller accesses. For example, given an architecture having + 16-bit store instructions with 7-bit immediate fields, the compiler + might be tempted to use two 16-bit store-immediate instructions to + implement the following 32-bit store: + + p = 0x00010002; + + Please note that GCC really does use this sort of optimization, + which is not surprising given that it would likely take more + than two instructions to build the constant and then store it. + This optimization can therefore be a win in single-threaded code. + In fact, a recent bug (since fixed) caused GCC to incorrectly use + this optimization in a volatile store. In the absence of such bugs, + use of ACCESS_ONCE() prevents store tearing in the following example: + + ACCESS_ONCE(p) = 0x00010002; + + Use of packed structures can also result in load and store tearing, + as in this example: + + struct __attribute__((__packed__)) foo { + short a; + int b; + short c; + }; + struct foo foo1, foo2; + ... + + foo2.a = foo1.a; + foo2.b = foo1.b; + foo2.c = foo1.c; + + Because there are no ACCESS_ONCE() wrappers and no volatile markings, + the compiler would be well within its rights to implement these three + assignment statements as a pair of 32-bit loads followed by a pair + of 32-bit stores. This would result in load tearing on 'foo1.b' + and store tearing on 'foo2.b'. ACCESS_ONCE() again prevents tearing + in this example: + + foo2.a = foo1.a; + ACCESS_ONCE(foo2.b) = ACCESS_ONCE(foo1.b); + foo2.c = foo1.c; + +All that aside, it is never necessary to use ACCESS_ONCE() on a variable +that has been marked volatile. For example, because 'jiffies' is marked +volatile, it is never necessary to say ACCESS_ONCE(jiffies). The reason +for this is that ACCESS_ONCE() is implemented as a volatile cast, which +has no effect when its argument is already marked volatile. + +Please note that these compiler barriers have no direct effect on the CPU, +which may then reorder things however it wishes. CPU MEMORY BARRIERS |