summaryrefslogtreecommitdiffstats
path: root/Documentation/driver-api
diff options
context:
space:
mode:
authorLinus Torvalds <torvalds@linux-foundation.org>2018-08-18 11:04:51 -0700
committerLinus Torvalds <torvalds@linux-foundation.org>2018-08-18 11:04:51 -0700
commitd5acba26bfa097a618be425522b1ec4269d3edaf (patch)
tree7abb08032d4b79b34eb1386aa007a811e1964839 /Documentation/driver-api
parent2475c515d4031c494ff452508a8bf8c281ec6e56 (diff)
parent128f38041035001276e964cda1cf951f218d965d (diff)
downloadtalos-obmc-linux-d5acba26bfa097a618be425522b1ec4269d3edaf.tar.gz
talos-obmc-linux-d5acba26bfa097a618be425522b1ec4269d3edaf.zip
Merge tag 'char-misc-4.19-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/gregkh/char-misc
Pull char/misc driver updates from Greg KH: "Here is the bit set of char/misc drivers for 4.19-rc1 There is a lot here, much more than normal, seems like everyone is writing new driver subsystems these days... Anyway, major things here are: - new FSI driver subsystem, yet-another-powerpc low-level hardware bus - gnss, finally an in-kernel GPS subsystem to try to tame all of the crazy out-of-tree drivers that have been floating around for years, combined with some really hacky userspace implementations. This is only for GNSS receivers, but you have to start somewhere, and this is great to see. Other than that, there are new slimbus drivers, new coresight drivers, new fpga drivers, and loads of DT bindings for all of these and existing drivers. All of these have been in linux-next for a while with no reported issues" * tag 'char-misc-4.19-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/gregkh/char-misc: (255 commits) android: binder: Rate-limit debug and userspace triggered err msgs fsi: sbefifo: Bump max command length fsi: scom: Fix NULL dereference misc: mic: SCIF Fix scif_get_new_port() error handling misc: cxl: changed asterisk position genwqe: card_base: Use true and false for boolean values misc: eeprom: assignment outside the if statement uio: potential double frees if __uio_register_device() fails eeprom: idt_89hpesx: clean up an error pointer vs NULL inconsistency misc: ti-st: Fix memory leak in the error path of probe() android: binder: Show extra_buffers_size in trace firmware: vpd: Fix section enabled flag on vpd_section_destroy platform: goldfish: Retire pdev_bus goldfish: Use dedicated macros instead of manual bit shifting goldfish: Add missing includes to goldfish.h mux: adgs1408: new driver for Analog Devices ADGS1408/1409 mux dt-bindings: mux: add adi,adgs1408 Drivers: hv: vmbus: Cleanup synic memory free path Drivers: hv: vmbus: Remove use of slow_virt_to_phys() Drivers: hv: vmbus: Reset the channel callback in vmbus_onoffer_rescind() ...
Diffstat (limited to 'Documentation/driver-api')
-rw-r--r--Documentation/driver-api/fpga/fpga-mgr.rst12
-rw-r--r--Documentation/driver-api/fpga/fpga-region.rst12
-rw-r--r--Documentation/driver-api/fpga/intro.rst14
-rw-r--r--Documentation/driver-api/slimbus.rst5
4 files changed, 24 insertions, 19 deletions
diff --git a/Documentation/driver-api/fpga/fpga-mgr.rst b/Documentation/driver-api/fpga/fpga-mgr.rst
index bcf2dd24e179..4b3825da48d9 100644
--- a/Documentation/driver-api/fpga/fpga-mgr.rst
+++ b/Documentation/driver-api/fpga/fpga-mgr.rst
@@ -83,7 +83,7 @@ The programming sequence is::
3. .write_complete
The .write_init function will prepare the FPGA to receive the image data. The
-buffer passed into .write_init will be atmost .initial_header_size bytes long,
+buffer passed into .write_init will be at most .initial_header_size bytes long;
if the whole bitstream is not immediately available then the core code will
buffer up at least this much before starting.
@@ -98,9 +98,9 @@ scatter list. This interface is suitable for drivers which use DMA.
The .write_complete function is called after all the image has been written
to put the FPGA into operating mode.
-The ops include a .state function which will read the hardware FPGA manager and
-return a code of type enum fpga_mgr_states. It doesn't result in a change in
-hardware state.
+The ops include a .state function which will determine the state the FPGA is in
+and return a code of type enum fpga_mgr_states. It doesn't result in a change
+in state.
How to write an image buffer to a supported FPGA
------------------------------------------------
@@ -181,8 +181,8 @@ API for implementing a new FPGA Manager driver
.. kernel-doc:: drivers/fpga/fpga-mgr.c
:functions: fpga_mgr_unregister
-API for programming a FPGA
---------------------------
+API for programming an FPGA
+---------------------------
.. kernel-doc:: include/linux/fpga/fpga-mgr.h
:functions: fpga_image_info
diff --git a/Documentation/driver-api/fpga/fpga-region.rst b/Documentation/driver-api/fpga/fpga-region.rst
index f89e4a311722..f30333ce828e 100644
--- a/Documentation/driver-api/fpga/fpga-region.rst
+++ b/Documentation/driver-api/fpga/fpga-region.rst
@@ -4,7 +4,7 @@ FPGA Region
Overview
--------
-This document is meant to be an brief overview of the FPGA region API usage. A
+This document is meant to be a brief overview of the FPGA region API usage. A
more conceptual look at regions can be found in the Device Tree binding
document [#f1]_.
@@ -31,11 +31,11 @@ fpga_image_info including:
* pointers to the image as either a scatter-gather buffer, a contiguous
buffer, or the name of firmware file
- * flags indicating specifics such as whether the image if for partial
+ * flags indicating specifics such as whether the image is for partial
reconfiguration.
-How to program a FPGA using a region
-------------------------------------
+How to program an FPGA using a region
+-------------------------------------
First, allocate the info struct::
@@ -77,8 +77,8 @@ An example of usage can be seen in the probe function of [#f2]_.
.. [#f1] ../devicetree/bindings/fpga/fpga-region.txt
.. [#f2] ../../drivers/fpga/of-fpga-region.c
-API to program a FGPA
----------------------
+API to program an FPGA
+----------------------
.. kernel-doc:: drivers/fpga/fpga-region.c
:functions: fpga_region_program_fpga
diff --git a/Documentation/driver-api/fpga/intro.rst b/Documentation/driver-api/fpga/intro.rst
index 51cd81dbb4dc..50d1cab84950 100644
--- a/Documentation/driver-api/fpga/intro.rst
+++ b/Documentation/driver-api/fpga/intro.rst
@@ -12,18 +12,18 @@ Linux. Some of the core intentions of the FPGA subsystems are:
* Code should not be shared between upper and lower layers. This
should go without saying. If that seems necessary, there's probably
- framework functionality that that can be added that will benefit
+ framework functionality that can be added that will benefit
other users. Write the linux-fpga mailing list and maintainers and
seek out a solution that expands the framework for broad reuse.
-* Generally, when adding code, think of the future. Plan for re-use.
+* Generally, when adding code, think of the future. Plan for reuse.
The framework in the kernel is divided into:
FPGA Manager
------------
-If you are adding a new FPGA or a new method of programming a FPGA,
+If you are adding a new FPGA or a new method of programming an FPGA,
this is the subsystem for you. Low level FPGA manager drivers contain
the knowledge of how to program a specific device. This subsystem
includes the framework in fpga-mgr.c and the low level drivers that
@@ -32,10 +32,10 @@ are registered with it.
FPGA Bridge
-----------
-FPGA Bridges prevent spurious signals from going out of a FPGA or a
-region of a FPGA during programming. They are disabled before
+FPGA Bridges prevent spurious signals from going out of an FPGA or a
+region of an FPGA during programming. They are disabled before
programming begins and re-enabled afterwards. An FPGA bridge may be
-actual hard hardware that gates a bus to a cpu or a soft ("freeze")
+actual hard hardware that gates a bus to a CPU or a soft ("freeze")
bridge in FPGA fabric that surrounds a partial reconfiguration region
of an FPGA. This subsystem includes fpga-bridge.c and the low level
drivers that are registered with it.
@@ -44,7 +44,7 @@ FPGA Region
-----------
If you are adding a new interface to the FPGA framework, add it on top
-of a FPGA region to allow the most reuse of your interface.
+of an FPGA region to allow the most reuse of your interface.
The FPGA Region framework (fpga-region.c) associates managers and
bridges as reconfigurable regions. A region may refer to the whole
diff --git a/Documentation/driver-api/slimbus.rst b/Documentation/driver-api/slimbus.rst
index a97449cf603a..410eec79b2a1 100644
--- a/Documentation/driver-api/slimbus.rst
+++ b/Documentation/driver-api/slimbus.rst
@@ -125,3 +125,8 @@ Messaging APIs:
~~~~~~~~~~~~~~~
.. kernel-doc:: drivers/slimbus/messaging.c
:export:
+
+Streaming APIs:
+~~~~~~~~~~~~~~~
+.. kernel-doc:: drivers/slimbus/stream.c
+ :export:
OpenPOWER on IntegriCloud