summaryrefslogtreecommitdiffstats
path: root/src/usr/xscom/xscom.C
blob: a900c8c8ff024de0c8ad093a95fbd416887f1eaf (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
/* IBM_PROLOG_BEGIN_TAG                                                   */
/* This is an automatically generated prolog.                             */
/*                                                                        */
/* $Source: src/usr/xscom/xscom.C $                                       */
/*                                                                        */
/* IBM CONFIDENTIAL                                                       */
/*                                                                        */
/* COPYRIGHT International Business Machines Corp. 2011,2013              */
/*                                                                        */
/* p1                                                                     */
/*                                                                        */
/* Object Code Only (OCO) source materials                                */
/* Licensed Internal Code Source Materials                                */
/* IBM HostBoot Licensed Internal Code                                    */
/*                                                                        */
/* The source code for this program is not published or otherwise         */
/* divested of its trade secrets, irrespective of what has been           */
/* deposited with the U.S. Copyright Office.                              */
/*                                                                        */
/* Origin: 30                                                             */
/*                                                                        */
/* IBM_PROLOG_END_TAG                                                     */
/**
 *  @file xscom.C
 *
 *  @brief Implementation of SCOM operations
 */

/*****************************************************************************/
// I n c l u d e s
/*****************************************************************************/
#include <sys/mmio.h>
#include <sys/task.h>
#include <sys/sync.h>
#include <sys/misc.h>
#include <string.h>
#include <devicefw/driverif.H>
#include <trace/interface.H>
#include <errl/errlentry.H>
#include <errl/errlmanager.H>
#include <targeting/common/targetservice.H>
#include <xscom/xscomreasoncodes.H>
#include "xscom.H"
#include <assert.h>
#include <errl/errludlogregister.H>
#include <xscom/piberror.H>

// Trace definition
trace_desc_t* g_trac_xscom = NULL;
TRAC_INIT(&g_trac_xscom, "XSCOM", 2*KILOBYTE, TRACE::BUFFER_SLOW);

namespace XSCOM
{

// Master processor virtual address
uint64_t* g_masterProcVirtAddr = NULL;

// Max chip per node in this system
extern uint8_t getMaxChipsPerNode();
static uint8_t g_xscomMaxChipsPerNode = getMaxChipsPerNode();

// Register XSCcom access functions to DD framework
DEVICE_REGISTER_ROUTE(DeviceFW::WILDCARD,
                      DeviceFW::XSCOM,
                      TARGETING::TYPE_PROC,
                      xscomPerformOp);

uint64_t* getCpuIdVirtualAddress();
/**
 * @brief Internal routine that reset XSCOM status bits
 *        of HMER register before an XSCOM operation
 *
 * @return  None
 */
void resetHMERStatus()
{

    // mtspr on the HMER is an AND write.
    // This is not set the bits value to 1s, it's clearing
    // the xscom status bits while leaving the rest of the bits
    // in the register alone.
    HMER hmer(-1);

    hmer.mXSComDone = 0;
    hmer.mXSComFail = 0;
    hmer.mXSComStatus = 0;
    mmio_hmer_write(hmer);
    return;
}

/**
 * @brief Internal routine that monitor XSCOM Fail and XSCOM Done
 *        status bits of HMER register
 *
 * @return  None
 */
HMER waitForHMERStatus()
{
    HMER hmer;

    do
    {
        hmer = mmio_hmer_read();
    }
    while(!hmer.mXSComFail && !hmer.mXSComDone);
    return hmer;
}


/**
 * @brief Internal routine that checks to see if retry is
 *        possible on an XSCOM error
 *
 * @return  true if retry is possible; false otherwise.
 */
bool XSComRetry(const HMER i_hmer)
{
    bool l_retry = false;
    switch (i_hmer.mXSComStatus)
    {
          case PIB::PIB_RESOURCE_OCCUPIED:
            l_retry = true;
            break;
          default:
            break;
    }
    return l_retry;
}

/**
 * @brief Internal routine that verifies the validity of input parameters
 * for an XSCOM access.
 *
 * @param[in]   i_opType       Operation type, see DeviceFW::OperationType
 *                             in driverif.H
 * @param[in]   i_target       XSCom target
 * @param[in/out] i_buffer     Read: Pointer to output data storage
 *                             Write: Pointer to input data storage
 * @param[in/out] i_buflen     Input: size of io_buffer (in bytes)
 *                              Output:
 *                                  Read: Size of output data
 *                                  Write: Size of data written
 * @param[in]   i_args         This is an argument list for DD framework.
 *                             In this function, there's only one argument,
 *                             which is the MMIO XSCom address
 * @return  errlHndl_t
 */
errlHndl_t xscomOpSanityCheck(const DeviceFW::OperationType i_opType,
                              const TARGETING::Target* i_target,
                              const void* i_buffer,
                              const size_t& i_buflen,
                              const va_list i_args)
{
    errlHndl_t l_err = NULL;

    do
    {
        // Verify data buffer
        if ( (i_buflen < XSCOM_BUFFER_SIZE) ||
             (i_buffer == NULL) )
        {
            /*@
             * @errortype
             * @moduleid     XSCOM_SANITY_CHECK
             * @reasoncode   XSCOM_INVALID_DATA_BUFFER
             * @userdata1    Buffer size
             * @userdata2    XSCom address
             * @devdesc      XSCOM buffer size < 8 bytes or NULL data buffer
             */
            l_err = new ERRORLOG::ErrlEntry(ERRORLOG::ERRL_SEV_UNRECOVERABLE,
                                            XSCOM_SANITY_CHECK,
                                            XSCOM_INVALID_DATA_BUFFER,
                                            i_buflen,
                                            va_arg(i_args,uint64_t));
            break;
        }

        // Verify OP type
        if ( (i_opType != DeviceFW::READ) &&
             (i_opType != DeviceFW::WRITE) )
        {
            /*@
             * @errortype
             * @moduleid     XSCOM_SANITY_CHECK
             * @reasoncode   XSCOM_INVALID_OP_TYPE
             * @userdata1    Operation type
             * @userdata2    XSCom address
             * @devdesc      XSCOM invalid operation type
             */
            l_err = new ERRORLOG::ErrlEntry(ERRORLOG::ERRL_SEV_UNRECOVERABLE,
                                            XSCOM_SANITY_CHECK,
                                            XSCOM_INVALID_OP_TYPE,
                                            i_opType,
                                            va_arg(i_args,uint64_t));
            break;
        }


    } while(0);

    return l_err;
}

/**
 * @brief Returns maximum processors chip per node
 *        base on system type
 *
 * @return uint8_t
 */
uint8_t getMaxChipsPerNode()
{
    uint8_t l_numOfChips = 0;

    ProcessorCoreType l_coreType = cpu_core_type();
    switch (l_coreType)
    {
        case CORE_POWER8_MURANO:
        case CORE_POWER8_VENICE:
        case CORE_UNKNOWN:
        default:
            l_numOfChips = 8;
            break;
    }
    return l_numOfChips;
}

/**
 * @brief Get the virtual address of the input target
 *        for an XSCOM access.
 *
 * Logic:
 *
 * If sentinel:
 *      If never XSCOM to sentinel
 *          Calculate virtual addr for sentinel
 *          Save it to g_masterProcVirtAddr for future XSCOM to sentinel
 *      Else
 *          Use virtual addr stored in g_masterProcVirtAddr
 *      End if
 * Else (not sentinel)
 *      If never XSCOM to this chip:
 *          If this is a master processor object
 *              Use virtual addr stored for sentinel (g_masterProcVirtAddr)
 *          Else
 *              Call mmio_dev_map() to get virtual addr for this slave proc
 *          End if
 *          Save virtual addr used to this chip's attribute
 *      Else
 *          Use virtual address stored in this chip's attributes.
 *      End if
 * End if
 *
 * @param[in]   i_target        XSCom target
 * @param[out]  o_virtAddr      Target's virtual address
 *
 * @return errlHndl_t
 */
errlHndl_t getTargetVirtualAddress(TARGETING::Target* i_target,
                                   uint64_t*& o_virtAddr)
{
    errlHndl_t l_err = NULL;
    o_virtAddr = NULL;
    XSComBase_t l_XSComBaseAddr = 0;

    do
    {

        // Find out if the target pointer is the master processor chip
        bool l_isMasterProcChip = false;

        if (i_target == TARGETING::MASTER_PROCESSOR_CHIP_TARGET_SENTINEL)
        {
            // Sentinel pointer representing the master processor chip
            l_isMasterProcChip = true;
        }
        else
        {
            TARGETING::Target* l_pMasterProcChip = NULL;
            TARGETING::targetService().
                masterProcChipTargetHandle(l_pMasterProcChip);

            if (i_target == l_pMasterProcChip)
            {
                // Target Service reports that this is the master processor chip
                l_isMasterProcChip = true;
            }
        }


        // If the target is the master processor chip sentinel
        if (l_isMasterProcChip)
        {

            // This is the master processor chip. The virtual address is
            // g_masterProcVirtAddr. If this is NULL then initialize it

            // Use atomic update instructions here to avoid
            // race condition between different threads.
            // Keep in mind that the mutex used in XSCOM is hardware mutex,
            // not a mutex for the whole XSCOM logic.
            if (__sync_bool_compare_and_swap(&g_masterProcVirtAddr,
                                     NULL, NULL))
            {
                uint64_t* l_tempVirtAddr = getCpuIdVirtualAddress();
                if (!__sync_bool_compare_and_swap(&g_masterProcVirtAddr,
                                         NULL, l_tempVirtAddr))
                {
                    // If g_masterProcVirtAddr has already been updated by
                    // another thread, we need to unmap the dev_map we just
                    // called above.
                    int rc = 0;
                    rc =  mmio_dev_unmap(reinterpret_cast<void*>
                                        (l_tempVirtAddr));
                    if (rc != 0)
                    {
                        /*@
                         * @errortype
                         * @moduleid     XSCOM_GET_TARGET_VIRT_ADDR
                         * @reasoncode   XSCOM_MMIO_UNMAP_ERR
                         * @userdata1    Return Code
                         * @userdata2    Unmap address
                         * @devdesc      mmio_dev_unmap() returns error
                         */
                        l_err = new ERRORLOG::ErrlEntry(
                                ERRORLOG::ERRL_SEV_UNRECOVERABLE,
                                XSCOM_GET_TARGET_VIRT_ADDR,
                                XSCOM_MMIO_UNMAP_ERR,
                                rc,
                                reinterpret_cast<uint64_t>(l_tempVirtAddr));
                        break;
                    }
                }
            }

            // Set virtual address to sentinel's value
            o_virtAddr = g_masterProcVirtAddr;
        }
        else // This is not the master sentinel
        {

            // Get the virtual addr value of the chip from the virtual address
            // attribute
            o_virtAddr =
              reinterpret_cast<uint64_t*>(
                i_target->getAttr<TARGETING::ATTR_XSCOM_VIRTUAL_ADDR>());


            // If the virtual address equals NULL(default) then this is the
            // first XSCOM to this target so we need to calculate
            // the virtual address and save it in the xscom address attribute.
            if (o_virtAddr == NULL)
            {
                uint64_t  xscomNodeId = 0;
                uint64_t  xscomChipId = 0;

                // Get the target Node Id
                xscomNodeId =
                  i_target->getAttr<TARGETING::ATTR_FABRIC_NODE_ID>();

                // Get the target Chip Id
                xscomChipId =
                  i_target->getAttr<TARGETING::ATTR_FABRIC_CHIP_ID>();

                //@todo
                // Save the node id of the master chip in a global as well and
                // update it. For Rainer systems the node id of the master chip may
                // not be 0 if it is on a second node.

                // Get system XSCOM base address
                // Note: can't call TARGETING code prior to PNOR being
                // brought up.
                TARGETING::TargetService& l_targetService =
                                        TARGETING::targetService();
                TARGETING::Target* l_pTopLevel = NULL;
                (void) l_targetService.getTopLevelTarget(l_pTopLevel);
                assert(l_pTopLevel != NULL);
                XSComBase_t l_systemBaseAddr =
                    l_pTopLevel->getAttr<TARGETING::ATTR_XSCOM_BASE_ADDRESS>();

                // Target's XSCOM Base address
                l_XSComBaseAddr = l_systemBaseAddr +
                    ( ( (g_xscomMaxChipsPerNode * xscomNodeId) +
                            xscomChipId ) * THIRTYTWO_GB);

                TRACFCOMP(g_trac_xscom,
                          "Target %.8X :: Node:%d Chip:%d :: XscomBase:0x%llX",
                          TARGETING::get_huid(i_target),
                          xscomNodeId,
                          xscomChipId,
                          l_XSComBaseAddr);

                // Target's virtual address
                o_virtAddr = static_cast<uint64_t*>
                    (mmio_dev_map(reinterpret_cast<void*>(l_XSComBaseAddr),
                      THIRTYTWO_GB));

                TRACDCOMP(g_trac_xscom, "xscomPerformOp: o_Virtual Address   =  0x%llX\n",o_virtAddr);

                // Implemented the virtual address attribute..

                // Leaving the comments as a discussion point...
                // Technically there is a race condition here. The mutex is
                // a per-hardware thread mutex, not a mutex for the whole XSCOM
                // logic. So there is possibility that this same thread is running
                // on another thread at the exact same time. We can use atomic
                // update instructions here.
                // Comment for Nick: This is a good candidate for having a way
                // to return a reference to the attribute instead of requiring
                // to call setAttr. We currently have no way to SMP-safely update
                // this attribute, where as if we had a reference to it we could use
                // the atomic update functions (_sync_bool_compare_and_swap in
                // this case.

                // Save the virtual address attribute.
                i_target->setAttr<TARGETING::ATTR_XSCOM_VIRTUAL_ADDR>(
                                        reinterpret_cast<uint64_t>(o_virtAddr));

            }
        }

    } while (0);

    return l_err;
}




/**
 * @brief Do the scom operation
 *
 * @param[in]   i_opType        Operation type, see DeviceFW::OperationType
 *                              in driverif.H
 * @param[in]   i_virtAddr      XSCOM area Virtual Address space
 * @param[in]   i_xscomAddr    Xscom Address
 * @param[in/out] io_buffer     Read: Pointer to output data storage
 *                              Write: Pointer to input data storage
 * @param[in/out] io_buflen     Input: size of io_buffer (in bytes)
 *                              Output:
 *                                  Read: Size of output data
 *                                  Write: Size of data written
 * @param[in/out]   io_hmer     Hmer Status - Need this returned to determine if
 *                              a retry can occur based on the failure type.

 * @return errlhndl_t
 */
errlHndl_t  xScomDoOp(DeviceFW::OperationType i_opType,
                      uint64_t* i_virtAddr,
                      uint64_t i_xscomAddr,
                      void* io_buffer,
                      size_t& io_buflen,
                      HMER &io_hmer)
{

    // Build the XSCom address (relative to node 0, chip 0)
    XSComP8Address l_mmioAddr(i_xscomAddr);

    // Get the offset
    uint64_t l_offset = l_mmioAddr.offset();

    // Keep MMIO access until XSCOM successfully done or error
    uint64_t l_data = 0;

    // retry counter.
    uint32_t l_retryCtr = 0;

    errlHndl_t l_err = NULL;

    do
    {
        // Reset status
        resetHMERStatus();

        // The dereferencing should handle Cache inhibited internally
        // Use local variable and memcpy to avoid unaligned memory access
        l_data = 0;

        if (i_opType == DeviceFW::READ)
        {
            l_data = *(i_virtAddr + l_offset);
            memcpy(io_buffer, &l_data, sizeof(l_data));
        }
        else
        {
            memcpy(&l_data, io_buffer, sizeof(l_data));
            *(i_virtAddr + l_offset) = l_data;
        }

        // Check for error or done
        io_hmer = waitForHMERStatus();

        l_retryCtr++;

        // If the retry counter is a multiple of 128
        if (l_retryCtr % 128 == 0)
        {
            // print a trace message.. for debug purposes
            // incase we are stuck in a retry loop.
            TRACFCOMP(g_trac_xscom,"xscomPerformOp - RESOUCE OCCUPIED LOOP Cntr = %d: OpType 0x%.16llX, Address 0x%llX, MMIO Address 0x%llX", l_retryCtr, static_cast<uint64_t>(i_opType),i_xscomAddr,static_cast<uint64_t>(l_mmioAddr));

        }
    } while (io_hmer.mXSComStatus == PIB::PIB_RESOURCE_OCCUPIED);


    TRACDCOMP(g_trac_xscom,"xscomPerformOp: OpType 0x%.16llX, Address 0x%llX, MMIO Address 0x%llX" static_cast<uint64_t>(i_opType),i_xscomAddr,static_cast<uint64_t>(l_mmioAddr));

    TRACDCOMP(g_trac_xscom, "xscomPerformOp: l_offset 0x%.16llX; VirtAddr %p; i_virtAddr+l_offset %p",l_offset,i_virtAddr,i_virtAddr + l_offset);

    if (i_opType == DeviceFW::READ)
    {
        TRACDCOMP(g_trac_xscom, "xscomPerformOp: Read data: %.16llx", l_data);
    }
    else
    {
        TRACDCOMP(g_trac_xscom, "xscomPerformOp: Write data: %.16llx", l_data);
    }

    do
    {
        // Handle error
        if (io_hmer.mXSComStatus != PIB::PIB_NO_ERROR)
        {
            uint64_t l_hmerVal = io_hmer;

            TRACFCOMP(g_trac_xscom,ERR_MRK "XSCOM status error HMER: %.16llx ,XSComStatus = %llx, Addr=%llx",l_hmerVal,io_hmer.mXSComStatus, i_xscomAddr );
            /*@
             * @errortype
             * @moduleid     XSCOM_DO_OP
             * @reasoncode   XSCOM_STATUS_ERR
             * @userdata1    HMER value
             * @userdata2    XSCom address
             * @devdesc      XSCom access error
             */
            l_err = new ERRORLOG::ErrlEntry(ERRORLOG::ERRL_SEV_INFORMATIONAL,
                                            XSCOM_DO_OP,
                                            XSCOM_STATUS_ERR,
                                            io_hmer,
                                            l_mmioAddr);
            //Note: Callouts are added by the caller if needed
        }
    }
    while (0);

    return l_err;

}

/**
 * @brief Get the Virtual Address of the XSCOM space for the processor
 *  associated with this thread (the source chip)
 *
 * @return uint64_t* virtualAddress
 */
uint64_t* getCpuIdVirtualAddress()
{
    uint64_t* o_virtAddr = 0;

    // Get the CPU core this thread is running on
    uint32_t cpuid = task_getcpuid();

    //NNNCCCPPPPTTT format fot the cpuid..
    //  N = node, C = chip, P = proc, T = thread
    uint32_t chipId = (cpuid & 0x0380)>>7;
    uint32_t nodeId = (cpuid & 0x1C00)>>10;

    // Can change the above hardcoded values to either a macro or use
    // the info below to do the masking and shifting.
    // uint64_t max_threads = cpu_thread_count();
    // for the number of Chips  - use  g_xscomMaxChipsPerNode instead..
    // For the number of Procs.. MAX_PROCS_RSV = P8_MAX_PROCS*2
    // P8_MAX_PROCS = 8 -- space left for 2* that.

    XSComBase_t l_systemBaseAddr = MASTER_PROC_XSCOM_BASE_ADDR;

    // Target's XSCOM Base address
    XSComBase_t l_XSComBaseAddr = l_systemBaseAddr +
      ( ( (g_xscomMaxChipsPerNode * nodeId) +
          chipId ) * THIRTYTWO_GB);

    // Target's virtual address
    o_virtAddr = static_cast<uint64_t*>
      (mmio_dev_map(reinterpret_cast<void*>(l_XSComBaseAddr),
                    THIRTYTWO_GB));

    TRACDCOMP(g_trac_xscom, "getCpuIdVirtualAddress: o_Virtual Address   =  0x%llX\n",o_virtAddr);

    return o_virtAddr;

}

/**
 * @brief Reset the Scom engine regs
 *
 * @param[in]  i_target        Target of the CPU that the xscom is for
 * @param[in]  i_virtAddr      virtual address of the CPU that the xscom is
 *                             targeted for
 *
 * @return none
 */
void resetScomEngine(TARGETING::Target* i_target,
                           uint64_t* i_virtAddr)
{
    errlHndl_t l_err = NULL;
    HMER l_hmer;
    uint64_t io_buffer = 0;
    size_t io_buflen = XSCOM_BUFFER_SIZE;
    uint64_t* l_virtAddr = 0;

    // xscom registers that need to be set.
    XscomAddrType_t XscomAddr[] = { {0x0202000F, CurThreadCpu},
                                    {0x02020007, TargetCpu},
                                    {0x02020009, TargetCpu},};

    TRACFCOMP(g_trac_xscom,"resetScomEngine: XSCOM RESET INTIATED");

    // Loop through the registers you want to write to 0
    for (int i = 0; i<3; i++)
    {
        // First address we need to read is for the Cpu that this thread is
        // running on.  Need to find the virtAddr for that CPU.
        if (XscomAddr[i].target_type == CurThreadCpu)
        {
            l_virtAddr =  getCpuIdVirtualAddress();
        }
        // The rest are xscoms are to the target cpu.
        else
        {
            l_virtAddr = i_virtAddr;
        }

        //*********************************************************
        // Write SCOM ADDR To reset the XSCOM ENGINE
        //*********************************************************
        l_err = xScomDoOp(DeviceFW::WRITE,
                          l_virtAddr,
                          XscomAddr[i].addr,
                          &io_buffer,
                          io_buflen,
                          l_hmer);


        // If not successful
        if (l_err)
        {
            // Delete thie errorlog as this is in the errorpath already.
            delete l_err;

            TRACFCOMP(g_trac_xscom,ERR_MRK "XSCOM RESET FAILED: XscomAddr = %.16llx, VAddr=%llx",XscomAddr[i], l_virtAddr );
        }

        // unmap the device now that we are done with the scom to that area.
        if (XscomAddr[i].target_type == CurThreadCpu)
        {
            mmio_dev_unmap(reinterpret_cast<void*>(l_virtAddr));
        }
    }

    return;
}

/**
 * @brief Collect XSCOM FFDC data and add to the originating xscom failing
 *    errorlog.
 *
 * @param[in]  i_target        XSCom target
 * @param[in]  i_virtAddr      Target's virtual address
 * @param[in/out] io_errl      Originating errorlog that we will add FFDC data
 *                             to
 * @return none
 */
void collectXscomFFDC(TARGETING::Target* i_target,
                            uint64_t* i_virtAddr,
                            errlHndl_t& io_errl)
{
    errlHndl_t l_err = NULL;
    HMER l_hmer;
    uint64_t io_buffer = 0;
    size_t io_buflen = XSCOM_BUFFER_SIZE;
    uint64_t* l_virtAddr = 0;

    // xscom registers that need to be set.
    XscomAddrType_t XscomAddr[4] = { {0x0202000F, CurThreadCpu},
                                     {0x02020004, TargetCpu},
                                     {0x02020007, TargetCpu},
                                     {0x02020009, TargetCpu},};


    TRACFCOMP(g_trac_xscom,"collectXscomFFDC: XSCOM COLLECT FFDC STARTED");

    // Loop through the addresses you want to collect.
    for (int i = 0; i<4; i++)
    {

        // If collecting first address, need to collect from Source Chip
        if (XscomAddr[i].target_type == CurThreadCpu)
        {
            l_virtAddr =  getCpuIdVirtualAddress();
        }
        else
        {
            l_virtAddr = i_virtAddr;
        }

        //*********************************************************
        // READ SCOM ADDR
        //*********************************************************
        l_err = xScomDoOp(DeviceFW::READ,
                          l_virtAddr,
                          XscomAddr[i].addr,
                          &io_buffer,
                          io_buflen,
                          l_hmer);

        // Always want to collect the Register FFDC.  Will append to the
        // errorlog passed in by the caller and if the call got an error will
        // append to that as well.

        // Collect the data from the read
        ERRORLOG::ErrlUserDetailsLogRegister l_logReg(i_target);

        l_logReg.addDataBuffer(&io_buffer, sizeof(io_buffer),
                               DEVICE_XSCOM_ADDRESS(XscomAddr[i].addr));


        // If not successful
        if (l_err)
        {
            delete l_err;

            TRACFCOMP(g_trac_xscom,ERR_MRK "XSCOM Collect FFDC FAILED: XscomAddr = %.16llx, VAddr=%llx",XscomAddr[i], l_virtAddr);
        }
        // only add the Register data to the originating errorlog if successfull
        else
        {
            // Add the register FFDC to the errorlog passed in. DO we do this
            // all the time?  And can we log to more than one errorlog?
            l_logReg.addToLog(io_errl);
        }

        // unmap the device now that we are done with the scom to that area.
        if (XscomAddr[i].target_type == CurThreadCpu)
        {
            mmio_dev_unmap(reinterpret_cast<void*>(l_virtAddr));
        }

    }

    return;
}


///////////////////////////////////////////////////////////////////////////////
///////////////////////////////////////////////////////////////////////////////
errlHndl_t xscomPerformOp(DeviceFW::OperationType i_opType,
                          TARGETING::Target* i_target,
                          void* io_buffer,
                          size_t& io_buflen,
                          int64_t i_accessType,
                          va_list i_args)
{
    errlHndl_t l_err = NULL;
    HMER l_hmer;
    mutex_t* l_XSComMutex = NULL;
    uint64_t l_addr = va_arg(i_args,uint64_t);

    do
    {
        // XSCOM operation sanity check
        l_err = xscomOpSanityCheck(i_opType, i_target, io_buffer,
                                   io_buflen, i_args);
        if (l_err)
        {
            break;
        }

        // Set to buffer len to 0 until successfully access
        io_buflen = 0;

        // Get the target chip's virtual address
        uint64_t* l_virtAddr = NULL;
        l_err = getTargetVirtualAddress(i_target, l_virtAddr);

        if (l_err)
        {
            break;
        }

        // Pin this thread to current CPU
        task_affinity_pin();

        // Lock other XSCom in this same thread from running
        l_XSComMutex = mmio_xscom_mutex();
        mutex_lock(l_XSComMutex);

        // this function will return an errorlog if bad status is detected on
        // the read or write.
        l_err = xScomDoOp(i_opType,
                          l_virtAddr,
                          l_addr,
                          io_buffer,
                          io_buflen,
                          l_hmer);

        // If we got a scom error.
        if (l_err)
        {

            // Add Callouts to the errorlog
            PIB::addFruCallouts(i_target,
                                l_hmer.mXSComStatus,
                                l_err);

            // Call XscomCollectFFDC..
            collectXscomFFDC(i_target,
                             l_virtAddr,
                             l_err);

            // reset the scomEngine.
            resetScomEngine(i_target,
                            l_virtAddr);

            // Add traces to errorlog..
            l_err->collectTrace("XSCOM",1024);

        }
        else
        {
            // No error, set output buffer size.
            // Always 8 bytes for XSCOM, but we want to make it consistent
            // with all other device drivers
            io_buflen = XSCOM_BUFFER_SIZE;
        }

        // Unlock
        mutex_unlock(l_XSComMutex);

        // Done, un-pin
        task_affinity_unpin();

    } while (0);

    return l_err;
}

} // end namespace
OpenPOWER on IntegriCloud