1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
|
/* IBM_PROLOG_BEGIN_TAG */
/* This is an automatically generated prolog. */
/* */
/* $Source: src/usr/ipmi/ipmisensor.C $ */
/* */
/* OpenPOWER HostBoot Project */
/* */
/* Contributors Listed Below - COPYRIGHT 2014,2016 */
/* [+] Google Inc. */
/* [+] International Business Machines Corp. */
/* */
/* */
/* Licensed under the Apache License, Version 2.0 (the "License"); */
/* you may not use this file except in compliance with the License. */
/* You may obtain a copy of the License at */
/* */
/* http://www.apache.org/licenses/LICENSE-2.0 */
/* */
/* Unless required by applicable law or agreed to in writing, software */
/* distributed under the License is distributed on an "AS IS" BASIS, */
/* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or */
/* implied. See the License for the specific language governing */
/* permissions and limitations under the License. */
/* */
/* IBM_PROLOG_END_TAG */
/**
* @file ipmisensor.C
* @brief IPMI sensor manipulation
*/
#include <ipmi/ipmisensor.H>
#include <errl/errlentry.H>
#include <errl/errlmanager.H>
#include <targeting/common/target.H>
#include <attributetraits.H>
#include <targeting/common/utilFilter.H>
#include <ipmi/ipmi_reasoncodes.H>
#include <endian.h>
extern trace_desc_t * g_trac_ipmi;
namespace SENSOR
{
//
// Base class for sensor construction. It is expected that this object will
// be used as the base for any additional sensors defined.
//
SensorBase::SensorBase( TARGETING::SENSOR_NAME i_name,
const TARGETING::Target * i_target)
:iv_name(i_name) ,iv_target(i_target)
{
// allocate a new message structure to use with our sensors
// this will be the payload for the IPMI send/sendrecv sensor message.
iv_msg = new setSensorReadingRequest;
};
// base class destructor
SensorBase::~SensorBase()
{
// The memory allocated for the set sensor reading command is deleted
// by the IPMI transport layer. Since we are sending messages
// asynchronously, the IPMI resource provider deletes the message
// and there is nothing to delete here.
};
//
// Helper function to process completion codes returned from the BMC.
// If the completion code warrants a PEL the function will build and
// return an error log with the correct data captured.
//
errlHndl_t SensorBase::processCompletionCode( IPMI::completion_code i_rc )
{
errlHndl_t l_err = NULL;
IPMI::IPMIReasonCode l_reasonCode;
if( i_rc != IPMI::CC_OK )
{
// bad rc from the BMC
TRACFCOMP(g_trac_ipmi,"completion code 0x%x returned from the BMC"
" , creating error log", i_rc);
switch(i_rc)
{
case SENSOR::CC_SENSOR_READING_NOT_SETTABLE:
{
/*@
* @errortype ERRL_SEV_UNRECOVERABLE
* @moduleid IPMI::MOD_IPMISENSOR
* @reasoncode IPMI::RC_SENSOR_NOT_SETTABLE
* @userdata1 BMC IPMI Completion code.
* @userdata2 bytes [0-3]sensor number
* bytes [4-7]HUID of target.
* @devdesc Set sensor reading command failed.
*/
l_reasonCode = IPMI::RC_SENSOR_NOT_SETTABLE;
TRACFCOMP(g_trac_ipmi,"Attempt to change sensor reading or"
"set/clear status bits that are not settable"
" via this command");
break;
}
case SENSOR::CC_EVENT_DATA_BYTES_NOT_SETTABLE:
{
/*@
* @errortype ERRL_SEV_UNRECOVERABLE
* @moduleid IPMI::MOD_IPMISENSOR
* @reasoncode IPMI::RC_EVENT_DATA_NOT_SETTABLE
* @userdata1 BMC IPMI Completion code.
* @userdata2 bytes[0-3]sensor number
* bytes[4-7]HUID of target.
* @devdesc Set sensor reading command failed.
*/
l_reasonCode = IPMI::RC_EVENT_DATA_NOT_SETTABLE;
TRACFCOMP(g_trac_ipmi,"Attempted to set event data bytes "
"but setting event data bytes is not supported for"
" this sensor");
break;
}
case IPMI::CC_CMDSENSOR:
{
/*@
* @errortype ERRL_SEV_UNRECOVERABLE
* @moduleid IPMI::MOD_IPMISENSOR
* @reasoncode IPMI::RC_INVALID_SENSOR_CMD
* @userdata1 BMC IPMI Completion code.
* @userdata2 bytes [0-3]sensor number
* bytes [4-7]HUID of target.
* @devdesc Command not valid for this sensor.
*/
l_reasonCode = IPMI::RC_INVALID_SENSOR_CMD;
TRACFCOMP(g_trac_ipmi,"Command not valid for this sensor");
break;
}
case IPMI::CC_BADSENSOR:
{
/*@
* @errortype ERRL_SEV_UNRECOVERABLE
* @moduleid IPMI::MOD_IPMISENSOR
* @reasoncode IPMI::RC_SENSOR_NOT_PRESENT
* @userdata1 BMC IPMI Completion code.
* @userdata2 bytes [0-3]sensor number
* bytes [4-7]HUID of target.
* @devdesc Requested sensor is not present.
*/
l_reasonCode = IPMI::RC_SENSOR_NOT_PRESENT;
TRACFCOMP(g_trac_ipmi,"Requested sensor not present");
break;
}
default:
{
// lump everything else into a general failure for
// now.
/*@
* @errortype ERRL_SEV_UNRECOVERABLE
* @moduleid IPMI::MOD_IPMISENSOR
* @reasoncode IPMI::RC_SET_SENSOR_FAILURE
* @userdata1 BMC IPMI Completion code.
* @userdata2 bytes [0-3]sensor number
* bytes [4-7]HUID of target.
* @devdesc Set sensor reading command failed.
*/
TRACFCOMP(g_trac_ipmi,"Set sensor reading command failed");
l_reasonCode = IPMI::RC_SET_SENSOR_FAILURE;
break;
}
}
// shift the sensor number into to bytes 0-3 and then
// or in the HUID to bytes 4-7
uint32_t sensor_number = getSensorNumber();
uint32_t huid = TARGETING::get_huid( iv_target );
TRACFCOMP(g_trac_ipmi,"Sensor Number: 0x%X, HUID: 0x%X", sensor_number, huid );
l_err = new ERRORLOG::ErrlEntry(
ERRORLOG::ERRL_SEV_UNRECOVERABLE,
IPMI::MOD_IPMISENSOR,
l_reasonCode,
i_rc,
TWO_UINT32_TO_UINT64( sensor_number, huid ),
true);
l_err->collectTrace(IPMI_COMP_NAME);
}
return l_err;
}
//
// Helper function to send the data to the BMC using the correct interface
// protocol
//
errlHndl_t SensorBase::writeSensorData()
{
errlHndl_t l_err = NULL;
iv_msg->iv_sensor_number = static_cast<uint8_t>(getSensorNumber());
if( iv_msg->iv_sensor_number != TARGETING::UTIL::INVALID_IPMI_SENSOR )
{
// iv_msg is deleted by the IPMI resource provider.
l_err = sendSetSensorReading( iv_msg);
if( l_err )
{
TRACFCOMP(g_trac_ipmi,"error returned from "
"sendSetSensorReading() for sensor number 0x%x",
getSensorNumber());
}
}
else
{
TRACFCOMP(g_trac_ipmi,"We were not able to find a sensor number in"
" the IPMI_SENSORS attribute for sensor_name=0x%x"
"for target with huid=0x%x, skipping call to "
"sendSetSensorReading()",
iv_name, TARGETING::get_huid( iv_target ));
/*@
* @errortype ERRL_SEV_UNRECOVERABLE
* @moduleid IPMI::MOD_IPMISENSOR
* @reasoncode IPMI::RC_SENSOR_NOT_FOUND
* @userdata1 Returned sensor number.
* @userdata2 bytes [0-3]sensor name
* bytes [4-7]HUID of target.
* @devdesc Requested sensor attribute not found.
*/
l_err = new ERRORLOG::ErrlEntry(
ERRORLOG::ERRL_SEV_UNRECOVERABLE,
IPMI::MOD_IPMISENSOR,
IPMI::RC_SENSOR_NOT_FOUND,
iv_msg->iv_sensor_number,
TWO_UINT32_TO_UINT64( iv_name,
TARGETING::get_huid( iv_target ) ),
true);
delete iv_msg;
}
return l_err;
};
//
// Helper function to set the bit in the assertion/deassertion mask
// associated with the desired sensor specific offset
//
uint16_t SensorBase::setMask( const uint8_t offset, bool swap )
{
const uint16_t mask = (0x0001 << offset);
if(swap)
{
// need to byte swap the mask (see set sensor reading in spec)
return le16toh(mask);
}
else
{
return mask;
}
};
//
// Helper function to translate the assertion/deassertion mask into
// the correct event offset.
//
uint8_t SensorBase::getOffset( uint16_t mask )
{
// $TODO RTC:117872
return 0;
};
// read data from the sensor.
errlHndl_t SensorBase::readSensorData( getSensorReadingData& o_data)
{
// get sensor reading command only requires one byte of extra data,
// which will be the sensor number, the command will return between
// 3 and 5 bytes of data.
size_t len = 1;
// need to allocate some memory to hold the sensor number this will be
// deleted by the IPMI transport layer
uint8_t * l_data = new uint8_t[len];
l_data[0] = static_cast<uint8_t>(getSensorNumber());
IPMI::completion_code cc = IPMI::CC_UNKBAD;
// o_data will hold the response when this returns
errlHndl_t l_err = sendrecv(IPMI::get_sensor_reading(), cc, len,
l_data);
// if we didn't get an error back from the BT interface, but see a
// bad completion code from the BMC, process the CC to see if we
// need to create a PEL - if an error occurs sendrcv will clean up
// l_data for us
if( l_err == NULL )
{
l_err = processCompletionCode( cc );
if( l_err == NULL )
{
// populate the output structure with the sensor data
o_data.completion_code = cc;
o_data.sensor_status = l_data[0];
o_data.sensor_reading = l_data[1];
// bytes 3-5 of the reading are optional and will be dependent
// on the value of the sensor status byte.
if( !( o_data.sensor_status &
( SENSOR::SENSOR_DISABLED |
SENSOR::SENSOR_SCANNING_DISABLED )) ||
( o_data.sensor_status & SENSOR::READING_UNAVAILABLE ))
{
// sensor reading is available
o_data.event_status =
(( (uint16_t) l_data[3]) << 8 | l_data[2] );
// spec indicates that the high order bit should be
// ignored on a read, so lets mask it off now.
o_data.event_status &= 0x7FFF;
}
else
{
uint32_t l_sensorNumber = getSensorNumber();
TRACFCOMP(g_trac_ipmi,"Sensor reading not available: status = 0x%x",o_data.sensor_status);
TRACFCOMP(g_trac_ipmi,"sensor number 0x%x, huid 0x%x",l_sensorNumber ,get_huid(iv_target));
// something happened log an error to indicate the request
// failed
/*@
* @errortype ERRL_SEV_UNRECOVERABLE
* @moduleid IPMI::MOD_IPMISENSOR
* @reasoncode IPMI::RC_SENSOR_READING_NOT_AVAIL
* @userdata1 sensor status indicating reason for
* reading not available
* @userdata2[0:31] sensor number
* @userdata2[32:64] HUID of target
*
* @devdesc Set sensor reading command failed.
* @custdesc Request to get sensor reading
* IPMI completion code can be seen
* in userdata1 field of the log.
*/
l_err = new ERRORLOG::ErrlEntry(
ERRORLOG::ERRL_SEV_UNRECOVERABLE,
IPMI::MOD_IPMISENSOR,
IPMI::RC_SENSOR_READING_NOT_AVAIL,
o_data.sensor_status,
TWO_UINT32_TO_UINT64( l_sensorNumber,
TARGETING::get_huid(iv_target)), true);
l_err->collectTrace(IPMI_COMP_NAME);
}
}
delete[] l_data;
}
return l_err;
};
//
// Asynchronously send a set sensor reading command to the BMC.
//
errlHndl_t SensorBase::sendSetSensorReading(
setSensorReadingRequest * i_data)
{
size_t l_len = sizeof( setSensorReadingRequest );
// i_data will hold the response when this returns
errlHndl_t l_err = send(IPMI::set_sensor_reading(),
l_len, (uint8_t *)i_data);
return l_err;
}
// return the sensor type and event reading data
errlHndl_t SensorBase::getSensorType(uint32_t i_sensorNumber,
uint8_t &o_sensorType,
uint8_t &o_eventReadingType )
{
size_t len = 1;
o_sensorType = INVALID_TYPE;
o_eventReadingType = INVALID_TYPE;
// need to allocate some memory to hold the sensor number this will be
// deleted by the IPMI transport layer
uint8_t *l_data = new uint8_t[len];
l_data[0] = i_sensorNumber;
IPMI::completion_code cc = IPMI::CC_UNKBAD;
// l_data will hold the response when this returns
errlHndl_t l_err = sendrecv(IPMI::get_sensor_type(), cc, len,
l_data);
// if we didn't get an error back from the BT interface,
// process the CC to see if we need to create a PEL
if( l_err == NULL )
{
// check the completion code
if( cc!= IPMI::CC_OK )
{
TRACFCOMP(g_trac_ipmi,"bad completion code from BMC=0x%x",cc);
/*@
* @errortype ERRL_SEV_INFORMATIONAL
* @moduleid IPMI::MOD_IPMISENSOR
* @reasoncode IPMI::RC_GET_SENSOR_TYPE_CMD_FAILED
* @userdata1 BMC IPMI Completion code.
* @devdesc Request to get sensor type form the bmc
* failed.
*/
l_err = new ERRORLOG::ErrlEntry(
ERRORLOG::ERRL_SEV_INFORMATIONAL,
IPMI::MOD_IPMISENSOR,
IPMI::RC_GET_SENSOR_TYPE_CMD_FAILED,
static_cast<uint64_t>(cc),0, true);
l_err->collectTrace(IPMI_COMP_NAME);
}
else
{
// grab the type and reading code to pass back to the caller
o_sensorType = l_data[0];
// high order bit is reserved
o_eventReadingType = ( 0x7f & l_data[1]);
}
delete[] l_data;
}
return l_err;
};
/**
* @brief Returns major type of input sensor name
*
* @param[in] i_sensorName
* Name of the sensor
*
* @return Major type of input sensor name
*/
static inline uint16_t getMajorType(
const uint16_t i_sensorName)
{
return (i_sensorName & SENSOR_NAME_MAJOR_MASK);
}
/**
* @brief Returns minor type of input sensor name
*
* @param[in] i_sensorName
* Name of the sensor
*
* @return Minor type of input sensor name
*/
static inline uint16_t getMinorType(
const uint16_t i_sensorName)
{
return (i_sensorName & SENSOR_NAME_MINOR_MASK);
}
/**
* @brief Returns whether the supplied sensor record's major type is less
* than the major type of the supplied sensor name
*
* @param[in] i_sensorRecord
* Sensor record to compare
*
* @param[in] i_sensorName
* Name of the sensor to compare
*
* @retval true Major type of sensor record is less than major type of
* sensor name
* @retval false Major type of sensor record is not less than major type of
* sensor name
*/
static inline bool compare_major(
const uint16_t (&i_sensorRecord)[2],
const uint16_t i_sensorName)
{
return getMajorType(i_sensorRecord[0]) < getMajorType(i_sensorName);
}
/**
* @brief Returns whether the supplied sensor record's major type equals
* the major type of the supplied sensor name
*
* @param[in] i_sensorRecord
* Sensor record to compare
*
* @param[in] i_sensorName
* Name of the sensor to compare
*
* @retval true Major type of sensor record equals major type of
* sensor name
* @retval false Major type of sensor record does not equal major type of
* sensor name
*/
static inline bool equals_major(
const uint16_t (&i_sensorRecord)[2],
const uint16_t i_sensorName)
{
return getMajorType(i_sensorRecord[0]) == getMajorType(i_sensorName);
}
///
// FirmwareProgressSensor constructor - uses system target
//
FirmwareProgressSensor::FirmwareProgressSensor( )
:SensorBase(TARGETING::SENSOR_NAME_FW_BOOT_PROGRESS, NULL)
{
// message buffer created and initialized in base object.
// assert the system firmware progress offset.
iv_msg->iv_assertion_mask = setMask( SYSTEM_FIRMWARE_PROGRESS );
};
//
// FirmwareProgressSensor destructor
//
FirmwareProgressSensor::~FirmwareProgressSensor( )
{
};
//
// setBootProgressPhase - update the boot progress sensor of the BMC
//
errlHndl_t FirmwareProgressSensor::setBootProgressPhase(
INITSERVICE::firmwareProgressPhase phase )
{
// event data 2 holds the progress info
iv_msg->iv_event_data[1] = phase;
return writeSensorData();
};
//
// sendSetSensorReading
//
errlHndl_t FirmwareProgressSensor::sendSetSensorReading(
setSensorReadingRequest * i_data )
{
size_t l_len = sizeof( setSensorReadingRequest );
IPMI::completion_code cc = IPMI::CC_UNKBAD;
//i_data will hold the response when this returns
errlHndl_t l_err = sendrecv(IPMI::set_sensor_reading(),
cc,
l_len,
(uint8_t*&)i_data );
// If no error, check completion code
if( (l_err == NULL) && (cc != IPMI::CC_OK) )
{
TRACFCOMP(g_trac_ipmi, "bad completion code from BMC=0x%x",cc);
/*@
* @errortype ERRL_SEV_INFORMATIONAL
* @moduleid IPMI::MOD_IPMI_PROG_SENSOR
* @reasoncode IPMI::RC_SET_SENSOR_FAILURE
* @userdata1 BMC IPMI Completion code.
* @devdesc Request to set the firmware progress
* sensor failed.
*/
l_err = new ERRORLOG::ErrlEntry(
ERRORLOG::ERRL_SEV_INFORMATIONAL,
IPMI::MOD_IPMI_PROG_SENSOR,
IPMI::RC_SET_SENSOR_FAILURE,
static_cast<uint64_t>(cc),
0,
true );
l_err->collectTrace(IPMI_COMP_NAME);
}
return l_err;
}
//
// RebootCountSensor constructor - uses system target
//
RebootCountSensor::RebootCountSensor()
:SensorBase(TARGETING::SENSOR_NAME_REBOOT_COUNT, NULL)
{
// message buffer created and initialized in base object.
}
//
// RebootCountSensor destructor
//
RebootCountSensor::~RebootCountSensor(){};
//
// setRebootCount - send a new value for the reboot count to the BMC.
//
errlHndl_t RebootCountSensor::setRebootCount( uint16_t i_count )
{
// adjust the operation to overwrite the sensor reading
// to the value we send.
iv_msg->iv_operation = SET_SENSOR_VALUE_OPERATION;
// the Reboot_count sensor is defined as a discrete sensor
// but the assertion bytes are being used to transfer the count
// to the bmc, will need to byte swap the data
iv_msg->iv_assertion_mask = le16toh(i_count);
return writeSensorData();
}
//
// getRebootCount - get the reboot count from the BMC
//
errlHndl_t RebootCountSensor::getRebootCount( uint16_t &o_rebootCount )
{
// the Reboot_count sensor is defined as a discrete sensor
// but the assertion bytes are being used to transfer the count
// from the BMC
getSensorReadingData l_data;
errlHndl_t l_err = readSensorData( l_data );
if( l_err == NULL )
{
// this value is already byteswapped
o_rebootCount = l_data.event_status;
}
return l_err;
}
//
// StatusSensor constructor - uses system DIMM/CORE/PROC target
//
StatusSensor::StatusSensor( TARGETING::ConstTargetHandle_t i_target )
:SensorBase(TARGETING::SENSOR_NAME_STATE, i_target)
{
iv_functionalOffset = PROC_DISABLED;
iv_presentOffset = PROC_PRESENCE_DETECTED;
switch ( i_target->getAttr<TARGETING::ATTR_TYPE>() )
{
case TARGETING::TYPE_DIMM:
{
iv_functionalOffset = MEMORY_DEVICE_DISABLED;
iv_presentOffset = MEM_DEVICE_PRESENCE_DETECTED;
iv_name = TARGETING::SENSOR_NAME_DIMM_STATE;
break;
}
case TARGETING::TYPE_MEMBUF:
{
iv_functionalOffset = MEMORY_DEVICE_DISABLED;
iv_presentOffset = MEM_DEVICE_PRESENCE_DETECTED;
iv_name = TARGETING::SENSOR_NAME_MEMBUF_STATE;
break;
}
case TARGETING::TYPE_PROC:
iv_name = TARGETING::SENSOR_NAME_PROC_STATE;
break;
case TARGETING::TYPE_CORE:
iv_name = TARGETING::SENSOR_NAME_CORE_STATE;
break;
default:
TRACFCOMP(g_trac_ipmi,"INF>>No status sensor associated with target type 0x%x",
i_target->getAttr<TARGETING::ATTR_TYPE>());
iv_functionalOffset = INVALID_OFFSET;
iv_presentOffset = INVALID_OFFSET;
break;
}
};
//
// StatusSensor destructor
//
//
StatusSensor::~StatusSensor()
{};
// Convert the input status to the correct sensor offset value, then
// send the message to the BMC to update the event status for this sensor.
errlHndl_t StatusSensor::setStatus( statusEnum i_state )
{
errlHndl_t l_err = NULL;
if( iv_functionalOffset != INVALID_OFFSET
&& iv_presentOffset != INVALID_OFFSET )
{
uint16_t func_mask = setMask( iv_functionalOffset );
uint16_t pres_mask = setMask( iv_presentOffset );
switch ( i_state )
{
case NOT_PRESENT:
// turn off the present bit
iv_msg->iv_deassertion_mask = pres_mask;
// turn off the disabled bit in case it was on
iv_msg->iv_deassertion_mask |= func_mask;
break;
case PRESENT:
// turn on the present bit
iv_msg->iv_assertion_mask = pres_mask;
break;
case FUNCTIONAL:
// turn off the disabled bit
iv_msg->iv_deassertion_mask = func_mask;
break;
case PRESENT_FUNCTIONAL:
// assert the present bit
iv_msg->iv_assertion_mask = pres_mask;
// turn off the disabled bit
iv_msg->iv_deassertion_mask = func_mask;
break;
case PRESENT_NONFUNCTIONAL:
// assert the present bit
iv_msg->iv_assertion_mask = pres_mask;
// assert the disabled bit
iv_msg->iv_assertion_mask |= func_mask;
break;
case NON_FUNCTIONAL:
// assert the disabled bit
iv_msg->iv_assertion_mask = func_mask;
break;
default:
// mark as not present
iv_msg->iv_deassertion_mask = pres_mask;
iv_msg->iv_assertion_mask = func_mask;
break;
}
l_err = writeSensorData();
}
return l_err;
};
//**************************************************************************
// FaultSensor constructor
//**************************************************************************
FaultSensor::FaultSensor(
TARGETING::ConstTargetHandle_t i_pTarget)
: SensorBase(TARGETING::SENSOR_NAME_FAULT, i_pTarget)
{
}
//**************************************************************************
// FaultSensor constructor for associated targets
//**************************************************************************
FaultSensor::FaultSensor(
TARGETING::ConstTargetHandle_t i_pTarget,
const TARGETING::ENTITY_ID i_associatedType)
: SensorBase(
static_cast<TARGETING::SENSOR_NAME>(
TARGETING::SENSOR_NAME_FAULT | i_associatedType),
i_pTarget)
{
}
//**************************************************************************
// FaultSensor destructor
//**************************************************************************
FaultSensor::~FaultSensor()
{
}
//**************************************************************************
// FaultSensor::setStatus
//**************************************************************************
errlHndl_t FaultSensor::setStatus(
const FAULT_STATE i_faultState)
{
errlHndl_t pError = NULL;
switch(i_faultState)
{
case FAULT_STATE_ASSERTED:
iv_msg->iv_assertion_mask = setMask(FAULT_ASSERTED_OFFSET);
break;
case FAULT_STATE_DEASSERTED:
iv_msg->iv_deassertion_mask = setMask(FAULT_ASSERTED_OFFSET);
break;
default:
assert(0,"Caller passed unsupported fault state of 0x%X",
i_faultState);
}
pError = writeSensorData();
if(pError)
{
TRACFCOMP(g_trac_ipmi, ERR_MRK " "
"Failed to write sensor data for sensor name 0x%X",
iv_name);
}
return pError;
}
//
// OCC Active Sensor - uses occ target
//
//
OCCActiveSensor::OCCActiveSensor( TARGETING::Target * i_pTarget )
:SensorBase(TARGETING::SENSOR_NAME_OCC_ACTIVE,
(TARGETING::ConstTargetHandle_t) i_pTarget )
{
};
//
// OCCActiveSensor destructor
//
//
OCCActiveSensor::~OCCActiveSensor(){};
// Convert the input status to the correct sensor offset value, then
// send the message to the BMC to update the event status for this sensor.
errlHndl_t OCCActiveSensor::setState( OccStateEnum i_state )
{
errlHndl_t l_err = NULL;
// assert the specified state
iv_msg->iv_assertion_mask = setMask(i_state);
// there are two offsets used with this sensor, when
// asserting one, we need to deassert the other as only
// one state is valid at any given time.
OccStateEnum other_state =
(i_state == OCC_ACTIVE) ? OCC_NOT_ACTIVE : OCC_ACTIVE;
iv_msg->iv_deassertion_mask = setMask( other_state );
l_err = writeSensorData();
return l_err;
};
// send the message to the BMC to read the event status for this sensor,
// will return true if the "disabled" state of the sensor is not
// asserted
bool OCCActiveSensor::isActive( )
{
getSensorReadingData l_data;
bool is_active = false;
// set the mask, but dont swap the bytes since we are using it locally
// not passing it in the set sensor cmd
uint16_t mask = setMask( OCC_ACTIVE, false );
errlHndl_t l_err = readSensorData( l_data );
if( l_err == NULL )
{
// check if "disabled" offset has been asserted -
// this would indicate that the OCC was not yet enabled
if( l_data.event_status & mask )
{
is_active = true;
}
}
else
{
// commit the error and return "not active" by default
errlCommit( l_err, IPMI_COMP_ID );
}
return is_active;
}
//
// HostStausSensor constructor - uses system target
//
//
HostStatusSensor::HostStatusSensor()
:SensorBase(TARGETING::SENSOR_NAME_HOST_STATUS, NULL)
{
};
//
// HostStatusSensor destructor
//
//
HostStatusSensor::~HostStatusSensor(){};
//
// updateHostStaus - update the BMC HostStatus sensor with the passed in
// value.
//
//
errlHndl_t HostStatusSensor::updateHostStatus( hostStatus status )
{
iv_msg->iv_operation = SET_SENSOR_VALUE_OPERATION;
iv_msg->iv_assertion_mask = setMask((uint8_t)status);
return writeSensorData();
};
//
// Used to update the sensor status for a specific set of target types
// currently supported types are TYPE_DIMM, TYPE_MEMBUF, TYPE_CORE,
// TYPE_PROC. These are virtual sensors where Hostboot updates the
// present and functional states and the BMC maintains the sensor.
//
void updateBMCSensorStatus(TARGETING::TYPE i_type)
{
TARGETING::TargetHandleList l_tList;
// get all targets of the passed in type, functional or not
switch( i_type )
{
case TARGETING::TYPE_DIMM:
getAllLogicalCards( l_tList, TARGETING::TYPE_DIMM, false );
break;
case TARGETING::TYPE_MEMBUF:
getAllChips( l_tList, TARGETING::TYPE_MEMBUF, false );
break;
case TARGETING::TYPE_PROC:
getAllChips( l_tList, TARGETING::TYPE_PROC, false );
break;
case TARGETING::TYPE_CORE:
getAllChiplets( l_tList, TARGETING::TYPE_CORE, false);
break;
default:
assert(0, "invalid target type for BMC update");
}
// have a list of targets now set the status sensor on the BMC for each
// one.
for(TARGETING::TargetHandleList::const_iterator pTargetIt =
l_tList.begin();
pTargetIt != l_tList.end();
++pTargetIt )
{
StatusSensor::statusEnum l_status
= StatusSensor::PRESENT_FUNCTIONAL;
// create a status sensor for our needs
StatusSensor l_sensor((*pTargetIt));
TARGETING::HwasState l_state =
(*pTargetIt)->getAttr<TARGETING::ATTR_HWAS_STATE>();
if( l_state.present == true )
{
if( l_state.functional == false )
{
l_status = StatusSensor::PRESENT_NONFUNCTIONAL;
}
}
else
{
l_status = StatusSensor::NOT_PRESENT;
}
// send the status to the BMC
errlHndl_t l_err = l_sensor.setStatus( l_status );
// commit the error and move to the next target
if( l_err )
{
errlCommit( l_err, IPMI_COMP_ID );
}
}
}
void updateBMCFaultSensorStatus(void)
{
TARGETING::ATTR_IPMI_SENSORS_type noSensors = {{0}};
// No sensor attribute is all 0's; therefore if a sensor attribute is
// found and is not all zeros (using the predicate value inversion
// feature) then the sensor attribute has potential
// sensors to iterate through
TARGETING::PredicateAttrVal<TARGETING::ATTR_IPMI_SENSORS>
hasSensors(noSensors,true);
TARGETING::TargetRangeFilter targetsWithSensorsItr(
TARGETING::targetService().begin(),
TARGETING::targetService().end(),
&hasSensors);
for (; targetsWithSensorsItr; ++targetsWithSensorsItr)
{
// Cache the target for ease of reading/usage
TARGETING::TargetHandle_t pTarget = *targetsWithSensorsItr;
TARGETING::ATTR_IPMI_SENSORS_type sensors = {{0}};
assert(pTarget->tryGetAttr<TARGETING::ATTR_IPMI_SENSORS>(sensors));
// Derive number of sensor records by dividing attribute size by
// size of each sensor record
uint16_t sensorRows = (sizeof(sensors)/sizeof(sensors[0]));
// Ceate an iterator pointing to the first element of the array
uint16_t (*begin)[2] = &sensors[0];
// Using the number entries as the index into the array will set the
// end iterator to the correct position (one entry past the last
// element of the array)
uint16_t (*end)[2] = &sensors[sensorRows];
// Locate the first record that could possibly match the criteria
uint16_t (*ptr)[2] =
std::lower_bound(begin, end,
TARGETING::SENSOR_NAME_FAULT, &compare_major);
// Process any match, and all remaining matches after that, until
// there is no additional match. Here we are matching the major
// sensor type only
while( (ptr != end)
&& ( getMajorType((*ptr)[0])
== TARGETING::SENSOR_NAME_FAULT ))
{
TRACFCOMP(g_trac_ipmi, INFO_MRK " "
"Found fault sensor name 0x%X and ID 0x%X for HUID 0x%X",
(*ptr)[0], (*ptr)[1], TARGETING::get_huid(pTarget));
FaultSensor faultSensor(pTarget,
static_cast<TARGETING::ENTITY_ID>(
getMinorType((*ptr)[0])));
errlHndl_t pError = faultSensor.setStatus(
FaultSensor::FAULT_STATE_DEASSERTED);
if(pError)
{
TRACFCOMP(g_trac_ipmi, ERR_MRK " "
"Failed setting fault sensor name 0x%X and ID 0x%X for "
"HUID 0x%X",
(*ptr)[0], (*ptr)[1], TARGETING::get_huid(pTarget));
errlCommit(pError, IPMI_COMP_ID);
}
++ptr;
}
}
}
void updateBMCSensorStatus()
{
// send status of all MEMBUF targets
updateBMCSensorStatus(TARGETING::TYPE_MEMBUF);
// send status of all DIMM targets
updateBMCSensorStatus(TARGETING::TYPE_DIMM);
// send status for all PROC targets
updateBMCSensorStatus(TARGETING::TYPE_PROC);
updateBMCSensorStatus(TARGETING::TYPE_CORE);
// Send status for all simple fault sensors in the system
updateBMCFaultSensorStatus();
};
// returns a sensor number for the FRU based on input target type
// there are currently 4 frus defined system, backplane, DIMM, PROC
//
uint32_t getFaultSensorNumber( TARGETING::ConstTargetHandle_t i_pTarget )
{
TRACDCOMP(g_trac_ipmi,">>getFaultSensorNumber()");
TARGETING::TYPE l_type = i_pTarget->getAttr<TARGETING::ATTR_TYPE>();
uint32_t l_sensor_number = TARGETING::UTIL::INVALID_IPMI_SENSOR;
switch( l_type )
{
case TARGETING::TYPE_SYS:
{
TRACDCOMP(g_trac_ipmi, "returning the \"System Event\" sensor\n");
l_sensor_number = TARGETING::UTIL::getSensorNumber(
i_pTarget,
TARGETING::SENSOR_NAME_SYSTEM_EVENT );
TRACDCOMP(g_trac_ipmi,"Sensor Number = 0x%x", l_sensor_number);
break;
}
case TARGETING::TYPE_NODE:
{
TRACDCOMP(g_trac_ipmi, "returning the \"BACKPLANE_FAULT\" sensor\n");
l_sensor_number = TARGETING::UTIL::getSensorNumber(
i_pTarget,
TARGETING::SENSOR_NAME_BACKPLANE_FAULT );
TRACDCOMP(g_trac_ipmi,"Sensor Number = 0x%x", l_sensor_number);
break;
}
// these targets have specific status sensors
case TARGETING::TYPE_DIMM:
case TARGETING::TYPE_MEMBUF:
case TARGETING::TYPE_PROC:
{
l_sensor_number =
StatusSensor(i_pTarget).getSensorNumber();
TRACDCOMP(g_trac_ipmi,"Sensor Number = 0x%x", l_sensor_number);
break;
}
default:
{
TARGETING::EntityPath l_targetPath =
i_pTarget->getAttr<TARGETING::ATTR_PHYS_PATH>();
// chop off the last part and go again.
l_targetPath.removeLast();
TARGETING::TargetHandle_t l_target = NULL;
l_target =
TARGETING::targetService().toTarget(l_targetPath);
l_sensor_number = getFaultSensorNumber(
static_cast<TARGETING::ConstTargetHandle_t>(l_target));
break;
}
}
TRACDCOMP(g_trac_ipmi,"<<getFaultSensorNumber() returning sensor number %#x", l_sensor_number);
return l_sensor_number;
}
// interface to retrieve the APSS channel sensor numbers.
errlHndl_t getAPSSChannelSensorNumbers(
const uint32_t (* &o_sensor_numbers)[16])
{
TARGETING::TargetHandle_t l_sys;
// get the "system error" sensor number associated with the
// system target.
TARGETING::targetService().getTopLevelTarget(l_sys);
static TARGETING::ATTR_ADC_CHANNEL_SENSOR_NUMBERS_type
apss_sensors;
if( l_sys->tryGetAttr<TARGETING::
ATTR_ADC_CHANNEL_SENSOR_NUMBERS>(apss_sensors) )
{
o_sensor_numbers = &apss_sensors;
}
else
{
// need that attribute or things dont work
assert(0,"Missing ADC_CHANNEL_SENSOR_NUMBERS attribute");
}
return NULL;
}
uint16_t getSensorOffsets( TARGETING::SENSOR_NAME i_name,
sensorReadingType &o_readType )
{
uint16_t offsets = 0;
// most of our sensors use generic sensor specific reading types
// so use that as the default value
o_readType = SENSOR_SPECIFIC;
// sensor type is lower byte of sensor name, if we dont match
// based on name, then try the sensor type
uint16_t t = ( i_name >> 8 ) & 0x00FF;
switch( i_name )
{
case TARGETING::SENSOR_NAME_FW_BOOT_PROGRESS:
{
offsets = ( 1 << SYSTEM_FIRMWARE_PROGRESS );
break;
}
case TARGETING::SENSOR_NAME_OCC_ACTIVE:
{
offsets = ( 1 << DEVICE_DISABLED ) |
( 1 << DEVICE_ENABLED );
o_readType = DIGITAL_ENABLE_DISABLE;
break;
}
case TARGETING::SENSOR_NAME_HOST_STATUS:
{
offsets = ( 1 << S0_G0_WORKING ) |
( 1 << G5_SOFT_OFF ) |
( 1 << LEGACY_ON );
break;
}
case TARGETING::SENSOR_NAME_PCI_ACTIVE:
case TARGETING::SENSOR_NAME_OS_BOOT:
{
// default all offsets enabled
offsets = 0x7FFF;
break;
}
default:
{
// try sensor type
switch (t)
{
case TARGETING::SENSOR_TYPE_FAULT:
offsets = ( 1 << ASSERTED );
o_readType = DIGITAL_ASSERT_DEASSERT;
break;
case TARGETING::SENSOR_TYPE_PROCESSOR:
offsets = ( 1 << PROC_PRESENCE_DETECTED ) |
( 1 << PROC_DISABLED ) |
( 1 << IERR );
break;
case TARGETING::SENSOR_TYPE_MEMORY:
offsets = ( 1 << MEMORY_DEVICE_DISABLED ) |
( 1 << MEM_DEVICE_PRESENCE_DETECTED );
break;
default:
offsets = 0;
o_readType = THRESHOLD;
break;
}
}
}
return offsets;
}
uint8_t getBackPlaneFaultSensor()
{
TARGETING::TargetHandle_t sys = NULL;
TARGETING::TargetHandleList nodes;
TARGETING::targetService().getTopLevelTarget(sys);
assert(sys != NULL);
getChildAffinityTargets(nodes, sys, TARGETING::CLASS_ENC,
TARGETING::TYPE_NODE);
assert(!nodes.empty());
//Backplane sensor ID
return TARGETING::UTIL::getSensorNumber(nodes[0],
TARGETING::SENSOR_NAME_BACKPLANE_FAULT);
}
}; // end name space
|