1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
|
/* IBM_PROLOG_BEGIN_TAG */
/* This is an automatically generated prolog. */
/* */
/* $Source: src/usr/intr/intrrp.C $ */
/* */
/* OpenPOWER HostBoot Project */
/* */
/* Contributors Listed Below - COPYRIGHT 2011,2016 */
/* [+] International Business Machines Corp. */
/* */
/* */
/* Licensed under the Apache License, Version 2.0 (the "License"); */
/* you may not use this file except in compliance with the License. */
/* You may obtain a copy of the License at */
/* */
/* http://www.apache.org/licenses/LICENSE-2.0 */
/* */
/* Unless required by applicable law or agreed to in writing, software */
/* distributed under the License is distributed on an "AS IS" BASIS, */
/* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or */
/* implied. See the License for the specific language governing */
/* permissions and limitations under the License. */
/* */
/* IBM_PROLOG_END_TAG */
/**
* @file intrrp.C
* @brief Interrupt Resource Provider
*/
#include "intrrp.H"
#include <trace/interface.H>
#include <errno.h>
#include <initservice/taskargs.H>
#include <initservice/initserviceif.H>
#include <util/singleton.H>
#include <intr/intr_reasoncodes.H>
#include <sys/mmio.h>
#include <sys/mm.h>
#include <sys/misc.h>
#include <kernel/console.H>
#include <kernel/ipc.H>
#include <sys/task.h>
#include <vmmconst.h>
#include <targeting/common/targetservice.H>
#include <targeting/common/attributes.H>
#include <targeting/common/utilFilter.H>
#include <devicefw/userif.H>
#include <sys/time.h>
#include <sys/vfs.h>
#include <hwas/common/hwasCallout.H>
#include <fsi/fsiif.H>
#include <arch/ppc.H>
#include <arch/pirformat.H>
#include <config.h>
#include <p9_misc_scom_addresses.H>
#define INTR_TRACE_NAME INTR_COMP_NAME
using namespace INTR;
using namespace TARGETING;
trace_desc_t * g_trac_intr = NULL;
TRAC_INIT(&g_trac_intr, INTR_TRACE_NAME, 16*KILOBYTE, TRACE::BUFFER_SLOW);
/**
* setup _start and handle barrier
*/
TASK_ENTRY_MACRO( IntrRp::init );
void IntrRp::init( errlHndl_t &io_errlHndl_t )
{
errlHndl_t err = NULL;
err = Singleton<IntrRp>::instance()._init();
// pass task error back to parent
io_errlHndl_t = err ;
}
errlHndl_t IntrRp::_init()
{
errlHndl_t l_err = NULL;
// get the PIR
// Which ever cpu core this is running on is the MASTER cpu
// Make master thread 0
uint32_t cpuid = task_getcpuid();
iv_masterCpu = cpuid;
iv_masterCpu.threadId = 0;
TRACFCOMP(g_trac_intr,"IntrRp::_init() Master cpu group[%d], "
"chip[%d], core[%d], thread[%d]",
iv_masterCpu.groupId, iv_masterCpu.chipId, iv_masterCpu.coreId,
iv_masterCpu.threadId);
// Do the initialization steps on the master proc chip
// The other proc chips will be setup at a later point
TARGETING::Target* procTarget = NULL;
TARGETING::targetService().masterProcChipTargetHandle( procTarget );
intr_hdlr_t* l_procIntrHdlr = new intr_hdlr_t(procTarget);
iv_masterHdlr = l_procIntrHdlr;
iv_chipList.push_back(l_procIntrHdlr);
// Set up the IPC message Data area
TARGETING::Target * sys = NULL;
TARGETING::targetService().getTopLevelTarget( sys );
assert(sys != NULL);
uint64_t hrmor_base =
sys->getAttr<TARGETING::ATTR_HB_HRMOR_NODAL_BASE>();
KernelIpc::ipc_data_area.pir = iv_masterCpu.word;
KernelIpc::ipc_data_area.hrmor_base = hrmor_base;
KernelIpc::ipc_data_area.msg_queue_id = IPC_DATA_AREA_CLEAR;
do
{
// Set the Interrupt BAR Scom Registers specific to the master
l_err = setMasterInterruptBARs(procTarget);
if (l_err)
{
TRACFCOMP(g_trac_intr,
"IntrRp::_init() Error setting Master Proc Interrupt BARs.");
break;
}
// Set the common Interrupt BAR Scom Registers for the master
l_err = setCommonInterruptBARs(iv_masterHdlr);
if (l_err)
{
TRACFCOMP(g_trac_intr,
"IntrRp::_init() Error setting Common Proc Interrupt BARs.");
break;
}
//Disable Incoming PSI Interrupts
TRACDCOMP(g_trac_intr, "IntrRp::_init() Disabling PSI Interrupts");
uint64_t l_disablePsiIntr = PSI_BRIDGE_INTP_STATUS_CTL_DISABLE_PSI;
uint64_t size = sizeof(l_disablePsiIntr);
l_err = deviceWrite(procTarget,
&l_disablePsiIntr,
size,
DEVICE_SCOM_ADDRESS(PSI_BRIDGE_INTP_STATUS_CTL_CLR_SCOM_ADDR));
if (l_err)
{
TRACFCOMP(g_trac_intr,
"IntrRp::_init() Error disabling PSI Interrupts.");
break;
}
//TODO RTC 134431
#ifdef CONFIG_MPIPL_ENABLED
uint8_t is_mpipl = 0;
TARGETING::Target * sys = NULL;
TARGETING::targetService().getTopLevelTarget(sys);
if(sys &&
sys->tryGetAttr<TARGETING::ATTR_IS_MPIPL_HB>(is_mpipl) &&
is_mpipl)
{
TRACFCOMP(g_trac_intr,"Disable interupts for MPIPL");
l_err = hw_disableIntrMpIpl();
if(l_err)
{
errlCommit(l_err,INTR_COMP_ID);
l_err = NULL;
}
}
#endif
TRACFCOMP(g_trac_intr, "IntrRp::_init() Masking Interrupts");
//Mask off all interrupt sources - these will be enabled as SW entities
// register for specific interrupts via the appropriate message queue
l_err = maskAllInterruptSources();
if (l_err)
{
TRACFCOMP(g_trac_intr, "IntrRp::_init() Error masking all interrupt sources.");
break;
}
TRACFCOMP(g_trac_intr, "IntrRp::_init() Enabling PSIHB Interrupts");
//Enable PSIHB Interrupts
l_err = enableInterrupts(l_procIntrHdlr);
if (l_err)
{
TRACFCOMP(g_trac_intr, "IntrRp::_init() Error enabling Interrupts");
break;
}
// Create the kernel msg queue for external interrupts
iv_msgQ = msg_q_create();
msg_intr_q_register(iv_msgQ,
procTarget->getAttr<TARGETING::ATTR_XIVE_THREAD_MGMT1_BAR_ADDR>());
// Create a task to handle the messages
task_create(IntrRp::msg_handler, NULL);
// Register event to be called on shutdown
INITSERVICE::registerShutdownEvent(iv_msgQ,
MSG_INTR_SHUTDOWN,
INITSERVICE::INTR_PRIORITY);
//The INTRP itself will monitor/handle PSU Interrupts
// so unmask those interrupts
l_err = unmaskInterruptSource(LSI_PSU, l_procIntrHdlr);
//Set value for enabled threads
uint64_t l_en_threads = get_enabled_threads();
TRACFCOMP(g_trac_intr, "IntrRp::_init() Threads enabled:"
" %lx", l_en_threads);
} while(0);
return l_err;
}
void IntrRp::acknowledgeInterrupt()
{
//A uint16 store from the Acknowledge Hypervisor Interrupt
// offset in the Thread Management BAR space signals
// the interrupt is acknowledged
volatile uint16_t * l_ack_int_ptr = (uint16_t *)iv_xiveTmBar1Address;
l_ack_int_ptr += ACK_HYPERVISOR_INT_REG_OFFSET;
eieio();
uint16_t l_ackRead = *l_ack_int_ptr;
TRACFCOMP(g_trac_intr, "IntrRp::acknowledgeInterrupt(), read result: %16x", l_ackRead);
}
errlHndl_t IntrRp::resetIntUnit(intr_hdlr_t* i_proc)
{
errlHndl_t l_err = NULL;
uint64_t l_barValue = XIVE_RESET_POWERBUS_QUIESCE_ENABLE;
uint64_t size = sizeof(l_barValue);
uint32_t l_addr = XIVE_RESET_INT_CQ_RST_CTL_SCOM_ADDR;
TARGETING::Target* procTarget = i_proc->proc;
do {
//First quiesce the power bus
TRACDCOMP(g_trac_intr, "IntrRp::resetIntUnit() - "
"Quiesce the PowerBus Interface");
l_err = deviceWrite(procTarget,
&l_barValue,
size,
DEVICE_SCOM_ADDRESS(l_addr));
if (l_err)
{
TRACFCOMP(g_trac_intr, "IntrRp::resetIntUnit() - "
"Error Quiescing the PowerBus");
break;
}
//A short amount of time is needed to let the powerbus quiesce before
// the next step in the reset can occur, so do a short polling loop
// for the indicator the power bus has been quiesced
uint64_t l_quiesceTimeout = XIVE_RESET_POWERBUS_QUIESCE_TIMEOUT;
uint64_t l_timeWaited = 0;
uint64_t reg = 0x0;
do
{
if (l_timeWaited >= l_quiesceTimeout)
{
TRACFCOMP(g_trac_intr, "IntrRp::resetIntUnit() - Timeout "
"waiting for PowerBus to quiesce");
/*@ errorlog tag
* @errortype ERRL_SEV_UNRECOVERABLE
* @moduleid INTR::MOD_INTRRP_RESETINTUNIT
` * @reasoncode INTR::RC_XIVE_PBUS_QUIESCE_TIMEOUT
* @userdata1 XIVE Powerbus Scom Register Address
* @userdata2 XIVE Powerbus Scom Register Data
*
* @devdesc Timeout waiting for Powerbus to Quiesce
*/
l_err = new ERRORLOG::ErrlEntry
(
ERRORLOG::ERRL_SEV_UNRECOVERABLE, // severity
INTR::MOD_INTRRP_RESETINTUNIT, // moduleid
INTR::RC_XIVE_PBUS_QUIESCE_TIMEOUT, // reason code
l_addr,
reg
);
break;
}
uint64_t scom_len = sizeof(reg);
//Read the powerbus state
l_err = deviceRead( procTarget,
®,
scom_len,
DEVICE_SCOM_ADDRESS(l_addr));
if (l_err)
{
//Logging below this loop
break;
}
if (reg & POWERBUS_STATE_QUIESCE)
{
//Powerbus Quiesced
break;
}
else
{
nanosleep(0,XIVE_RESET_POWERBUS_QUIESCE_TIMEOUT / 10);
l_timeWaited += XIVE_RESET_POWERBUS_QUIESCE_TIMEOUT / 10;
}
} while(1);
if (l_err)
{
TRACFCOMP(g_trac_intr, "Error getting Powerbus state");
break;
}
TRACDCOMP(g_trac_intr, "Reset XIVE INT unit");
l_barValue = XIVE_RESET_UNIT_ENABLE;
l_err = deviceWrite(procTarget,
&l_barValue,
size,
DEVICE_SCOM_ADDRESS(l_addr));
if (l_err)
{
TRACFCOMP(g_trac_intr, "Error resetting XIVE INT unit");
break;
}
l_err = enableVPCPullErr(procTarget);
if (l_err)
{
TRACFCOMP(g_trac_intr, "Error re-enabling VPC Pull Err");
break;
}
} while (0);
if (l_err)
{
TRACFCOMP(g_trac_intr, "Error: Interrupt Engine not reset successfully");
}
return l_err;
}
errlHndl_t IntrRp::enableInterrupts(intr_hdlr_t *i_proc)
{
errlHndl_t err = NULL;
PSIHB_SW_INTERFACES_t * l_psihb_ptr = i_proc->psiHbBaseAddr;
do
{
//Set bit to route interrupts to CEC instead of FSP
l_psihb_ptr->psihbcr =
(l_psihb_ptr->psihbcr | PSI_BRIDGE_ENABLE_CEC_INTERRUPT);
//Set bit to enable PSIHB Interrupts
l_psihb_ptr->icr =
(l_psihb_ptr->icr | PSI_BRIDGE_INTP_STATUS_CTL_ENABLE);
// This XIVE register supports both Normal and Fused core, but Normal
// Core mode can be safely assumed and the proper bits will be set.
//
//Set Physical Thread Enable register in the PC space for the master
// core
PIR_t l_masterPir(task_getcpuid());
uint64_t l_masterCoreID = l_masterPir.coreId;
uint64_t l_masterThreadID = l_masterPir.threadId;
uint64_t * l_ic_ptr = i_proc->xiveIcBarAddr;
l_ic_ptr += XIVE_IC_BAR_INT_PC_MMIO_REG_OFFSET;
volatile XIVE_IC_THREAD_CONTEXT_t * l_xive_ic_ptr =
reinterpret_cast<XIVE_IC_THREAD_CONTEXT_t *>(l_ic_ptr);
TRACFCOMP(g_trac_intr, INFO_MRK"IntrRp::enableInterrupts() "
"Set Physical Thread Enable for master core: %lx, "
"master thread: %lx ",
l_masterCoreID,
l_masterThreadID);
//Normal Cores 0-15 are handled in thread enable0 reg
if (l_masterCoreID < 16)
{
uint64_t l_enable =
(XIVE_IC_THREAD0_ENABLE >> ((4*l_masterCoreID)+l_masterThreadID));
TRACFCOMP(g_trac_intr, INFO_MRK"IntrRp::enableInterrupts() "
" Set phys_thread_enable0_reg: 0x%016lx", l_enable);
l_xive_ic_ptr->phys_thread_enable0_set = l_enable;
}
else //Normal Cores 16-23 are handled in thread enable1 reg
{
//Shift offset as a second register is used for cores 16-23
// so core 16 in reg 1 is equivalent to core 0 in reg0
l_masterCoreID = l_masterCoreID - 16;
uint64_t l_enable =
(XIVE_IC_THREAD0_ENABLE >> ((4*l_masterCoreID)+l_masterThreadID));
TRACFCOMP(g_trac_intr, INFO_MRK"IntrRp::enableInterrupts() "
" Set phys_thread_enable1_reg: 0x%016lx", l_enable);
l_xive_ic_ptr->phys_thread_enable1_set = l_enable;
}
eieio();
//Set bit to configure LSI mode for HB cec interrupts
volatile XIVE_IVPE_THREAD_CONTEXT_t * this_ivpe_ptr =
reinterpret_cast<XIVE_IVPE_THREAD_CONTEXT_t *> (iv_xiveTmBar1Address);
this_ivpe_ptr->cams_vt = XIVE_IVPE_QW3_LSI_ENABLE;
eieio();
TRACFCOMP(g_trac_intr, INFO_MRK"LSI Mode active (cams_vt)");
} while (0);
//TODO RTC 150260 - Determine if any error checking can be done above, if so
// create/return errorlogs. If not, change the funciton return type.
return err;
}
void IntrRp::enableSlaveProcInterruptRouting(intr_hdlr_t *i_proc)
{
PSIHB_SW_INTERFACES_t * l_psihb_ptr = i_proc->psiHbBaseAddr;
//Route LSI Trigger Page to Master Proc Chip by setting the
// ESB Notification Address register on the PSIHB
uint64_t l_baseAddr =
iv_masterHdlr->proc->getAttr<TARGETING::ATTR_XIVE_CONTROLLER_BAR_ADDR>();
TRACFCOMP(g_trac_intr, INFO_MRK"Routing LSI Trigger page to Master Proc"
" chip by setting esb notification address to:%lx",
l_baseAddr + XIVE_IC_ESB_LSI_TRIGGER_PAGE_OFFSET);
//Set notify to base address, then set valid bit
uint64_t l_notifyValue = l_baseAddr + XIVE_IC_ESB_LSI_TRIGGER_PAGE_OFFSET;
l_psihb_ptr->esbnotifyaddr = l_notifyValue;
l_psihb_ptr->esbnotifyaddr = l_notifyValue + PSI_BRIDGE_ESB_NOTIFY_VALID;
//Enable Interrupt routing to trigger page written above by setting
// the Interrupt Control Register to all 0's
l_psihb_ptr->icr = PSI_BRIDGE_ENABLE_LSI_INTR_REMOTE;
}
errlHndl_t IntrRp::disableInterrupts()
{
errlHndl_t err = NULL;
// Disable the interrupt on master processor core, thread 0
uint64_t baseAddr = iv_baseAddr + cpuOffsetAddr(iv_masterCpu);
err = checkAddress(baseAddr);
if(!err)
{
uint8_t * cppr = reinterpret_cast<uint8_t*>(baseAddr+CPPR_OFFSET);
*cppr = 0;
}
return err;
}
/**
* Helper function to start the messge handler
*/
void* IntrRp::msg_handler(void * unused)
{
Singleton<IntrRp>::instance().msgHandler();
return NULL;
}
void IntrRp::msgHandler()
{
TRACDCOMP(g_trac_intr, ENTER_MRK"IntrRp::msgHandler()");
while(1)
{
msg_t* msg = msg_wait(iv_msgQ); // wait for interrupt msg
switch(msg->type)
{
//Both cases require the same functinality, EXTERN comes from
// the kernel. COALESCE comes from userspace as the final step of
// the EOI path involves a read, if that returns 1 it signifies a
// new interrupt is already pending. So the EOI path will send a
// new COALESCE message to trigger the handling.
case MSG_INTR_COALESCE:
case MSG_INTR_EXTERN:
{
//ext_intr_t type = NO_INTERRUPT;
//Keep a list of all pending interrupts and which proc the
// interrupt condition was seen on
std::vector< std::pair<intr_hdlr_t, ext_intr_t> >
l_pendingIntr;
uint32_t ackResponse =
static_cast<uint32_t>(msg->data[0]>>32);
//Check if LSI-Based Interrupt
if ((ackResponse & LSI_INTERRUPT) == LSI_INTERRUPT)
{
TRACFCOMP(g_trac_intr, "IntrRp::msgHandler() "
"- LSI Interrupt Detected");
//An external interrupt comes from two paths
// 1) kernel space - synchronous - response needed
// 2) User space (coalesce interrupt) - asynchronous
// - no response needed, just free message
if (msg_is_async(msg))
{
msg_free(msg);
}
else
{
// Acknowlege msg
msg->data[1] = 0;
msg_respond(iv_msgQ, msg);
}
//Read Interrupt Condition(s) and route to appropriate
//interrupt handlers
handleExternalInterrupt();
}
}
break;
case MSG_INTR_CPU_WAKEUP:
{
uint64_t l_xirr_pir = msg->data[0];
uint64_t l_data0 = (l_xirr_pir & 0xFFFFFFFF);
PIR_t l_pir = static_cast<PIR_t>(l_data0);
PIR_t l_core_pir = l_pir;
l_core_pir.threadId = 0;
if (iv_ipisPending.count(l_core_pir))
{
TRACFCOMP(g_trac_intr,INFO_MRK
"IntrRp::msgHandler Doorbell wakeup received"
" for %d", l_pir.word);
IPI_Info_t& ipiInfo = iv_ipisPending[l_core_pir];
ipiInfo.first &=
~(0x8000000000000000 >> l_pir.threadId);
if (0 == ipiInfo.first)
{
msg_t* ipiMsg = ipiInfo.second;
iv_ipisPending.erase(l_core_pir);
ipiMsg->data[1] = 0;
msg_respond(iv_msgQ, ipiMsg);
}
else
{
TRACFCOMP(g_trac_intr,INFO_MRK
"IPI still pending for %x",
ipiInfo.first);
}
}
}
break;
/*TODO RTC 150861 -- I think a new IPC message type needs to be defined.
* And the code below should be executed when this new message
* type is received. The Kernel will send this message to
* here (this intrrp code) during doorbell wakeup.
// Now handle any IPC messages
// If something is registered for IPIs
// and msg is ready, then handle
if(r != iv_registry.end() &&
(KernelIpc::ipc_data_area.msg_queue_id !=
IPC_DATA_AREA_CLEAR) &&
(KernelIpc::ipc_data_area.msg_queue_id !=
IPC_DATA_AREA_LOCKED))
{
msg_q_t msgQ = r->second.msgQ;
msg_t * rmsg = msg_allocate();
rmsg->type = r->second.msgType;
rmsg->data[0] = type; // interrupt type
rmsg->data[1] = l_xirr_pir;
rmsg->extra_data = NULL;
int rc = msg_sendrecv_noblk(msgQ, rmsg, iv_msgQ);
if(rc)
{
TRACFCOMP(g_trac_intr,ERR_MRK
"IPI Interrupt received, but could "
"not send message to the registered "
"handler. Ignoring it. rc = %d",
rc);
}
}
**/
case MSG_INTR_EOI:
{
// Use standrard EOI (End of Interrupt) sequence
if(msg->data[0] != INTERPROC_XISR)
{
uint64_t intSource = msg->data[0];
PIR_t l_pir = msg->data[1];
sendEOI(intSource, l_pir);
}
msg_free(msg);
}
break;
case MSG_INTR_REGISTER_MSGQ:
{
msg_q_t l_msgQ = reinterpret_cast<msg_q_t>(msg->data[0]);
uint64_t l_type = msg->data[1];
LSIvalue_t l_intr_type = static_cast<LSIvalue_t>
(l_type & LSI_SOURCE_MASK);
errlHndl_t err = registerInterruptXISR(l_msgQ, l_type >> 32,
l_intr_type);
if (err)
{
TRACFCOMP(g_trac_intr,
"IntrRp::msgHandler MSG_INTR_REGISTER_MSGQ error "
"registering handler for interrupt type: %lx",
l_intr_type);
}
else
{
//Enable (aka unmask) Interrupts for the source being
// registered for
for(ChipList_t::iterator targ_itr = iv_chipList.begin();
targ_itr != iv_chipList.end(); ++targ_itr)
{
err = unmaskInterruptSource(l_intr_type, *targ_itr);
if (err)
{
TRACFCOMP(g_trac_intr,
"IntrRp::msgHandler MSG_INTR_REGISTER_MSGQ "
"error unmasking interrupt type: %lx",
l_intr_type);
break;
}
}
}
msg->data[1] = reinterpret_cast<uint64_t>(err);
msg_respond(iv_msgQ,msg);
}
break;
case MSG_INTR_UNREGISTER_MSGQ:
{
TRACFCOMP(g_trac_intr,
"INTR remove registration of interrupt type = 0x%lx",
msg->data[0]);
LSIvalue_t l_type = static_cast<LSIvalue_t>(msg->data[0]);
LSIvalue_t l_intr_type = static_cast<LSIvalue_t>
(l_type & LSI_SOURCE_MASK);
// Mask the interrupt source prior to unregistering
errlHndl_t err = maskInterruptSource(l_intr_type);
if(err)
{
TRACFCOMP(g_trac_intr,
"IntrRp::msgHandler MSG_INTR_UNREGISTER_MSGQ error"
" masking interrupt type: %lx",
l_intr_type);
errlCommit(err,INTR_COMP_ID);
}
// Unregister for this source and return rc in response
msg_q_t msgQ = unregisterInterruptXISR(l_type);
msg->data[1] = reinterpret_cast<uint64_t>(msgQ);
msg_respond(iv_msgQ, msg);
}
break;
case MSG_INTR_ENABLE:
{
errlHndl_t err = NULL;
for(ChipList_t::iterator targ_itr = iv_chipList.begin();
targ_itr != iv_chipList.end(); ++targ_itr)
{
err = enableInterrupts(*targ_itr);
if (err)
{
break;
}
}
msg->data[1] = reinterpret_cast<uint64_t>(err);
msg_respond(iv_msgQ,msg);
}
break;
case MSG_INTR_DISABLE:
{
errlHndl_t err = disableInterrupts();
msg->data[1] = reinterpret_cast<uint64_t>(err);
msg_respond(iv_msgQ,msg);
}
break;
case MSG_INTR_ENABLE_PSI_INTR:
{
TRACFCOMP(g_trac_intr, "MSG_INTR_ENABLE_PSI_INTR received");
TARGETING::Target * target =
reinterpret_cast<TARGETING::Target *>(msg->data[0]);
errlHndl_t err = enableSlaveProcInterrupts(target);
msg->data[1] = reinterpret_cast<uint64_t>(err);
msg_respond(iv_msgQ,msg);
}
break;
// Called when a new cpu becomes active other than the master
// Expect a call for each new core
case MSG_INTR_ADD_CPU:
{
//Get the base PIR sent from the kernel
PIR_t pir = msg->data[1];
//No need to care about thread ID as that will be gathered
// below
pir.threadId = 0;
//Push back base core PIR for later use
iv_cpuList.push_back(pir);
TRACFCOMP(g_trac_intr,"Add CPU group[%d], chip[%d],"
"core[%d], thread[%d]",
pir.groupId, pir.chipId, pir.coreId,
pir.threadId);
//Get threads to be enabled so they will be monitored
uint64_t en_threads = get_enabled_threads();
iv_ipisPending[pir] = IPI_Info_t(en_threads, msg);
//Create handleCpuTimeout task - this task will monitor
// for wakeup messages from each individual expected
// thread to be sent.
task_create(handleCpuTimeout,
reinterpret_cast<void*>(pir.word));
TRACFCOMP(g_trac_intr, "handleCpuTimeout task started"
" responding to kernel message");
}
break;
case MSG_INTR_ADD_CPU_TIMEOUT:
{
PIR_t pir = msg->data[0];
TRACDCOMP("IntrRp::msgHandler() CPU Timeout Message "
"received for: %x", pir.word);
size_t count = msg->data[1];
if(iv_ipisPending.count(pir))
{
if (count < CPU_WAKEUP_INTERVAL_COUNT)
{
TRACFCOMP(g_trac_intr,
INFO_MRK "Cpu wakeup pending on %x",
pir.word);
// Tell child thread to retry.
msg->data[1] = EAGAIN;
}
else // Timed out.
{
TRACFCOMP(g_trac_intr,
ERR_MRK "Cpu wakeup timeout on %x",
pir.word);
// Tell child thread to exit.
msg->data[1] = 0;
// Get saved thread info.
IPI_Info_t& ipiInfo = iv_ipisPending[pir];
msg_t* ipiMsg = ipiInfo.second;
iv_ipisPending.erase(pir);
// Respond to waiting thread with ETIME.
ipiMsg->data[1] = -ETIME;
msg_respond(iv_msgQ, ipiMsg);
}
}
else // Ended successfully.
{
TRACFCOMP(g_trac_intr,
INFO_MRK "Cpu wakeup completed on %x",
pir.word);
// Tell child thread to exit.
msg->data[1] = 0;
}
msg_respond(iv_msgQ, msg);
}
break;
case MSG_INTR_SHUTDOWN:
{
TRACFCOMP(g_trac_intr,"Shutdown event received");
shutDown(msg->data[0]);
msg_respond(iv_msgQ, msg);
}
break;
#ifdef CONFIG_MPIPL_ENABLED //TODO RTC 134431
case MSG_INTR_ADD_HBNODE: // node info for mpipl
{
errlHndl_t err = addHbNodeToMpiplSyncArea(msg->data[0]);
if(err)
{
errlCommit(err,INTR_COMP_ID);
}
msg_free(msg); // async message
}
break;
#endif
case MSG_INTR_DRAIN_QUEUE:
{
//The purpose of this message is allow the
//intrp to drain its message queue of pending EOIs
//just respond
msg_respond(iv_msgQ,msg);
}
break;
default:
msg->data[1] = -EINVAL;
msg_respond(iv_msgQ, msg);
}
}
}
errlHndl_t IntrRp::sendEOI(uint64_t& i_intSource, PIR_t& i_pir)
{
intr_hdlr_t* l_proc = NULL;
errlHndl_t l_err = NULL;
//Find target handle for Proc to send EOI to
for(ChipList_t::iterator targ_itr = iv_chipList.begin();
targ_itr != iv_chipList.end(); ++targ_itr)
{
uint64_t l_groupId = (*targ_itr)->proc->getAttr
<TARGETING::ATTR_FABRIC_GROUP_ID>();
uint64_t l_chipId = (*targ_itr)->proc->getAttr
<TARGETING::ATTR_FABRIC_CHIP_ID>();
//Core + Thread IDs not important so use 0's
PIR_t l_pir = PIR_t(l_groupId, l_chipId, 0, 0);
if (l_pir == i_pir)
{
l_proc = *targ_itr;
break;
}
}
do {
//Check if we found a matching proc handler for the interrupt to EOI
if (l_proc == NULL)
{
TRACFCOMP(g_trac_intr, ERR_MRK"IntrRp::sendEOI couldn't find proc"
" handler that matches pir: 0x%lx", i_pir);
break;
}
else
{
//Make object to search pending interrupt
// list for
std::pair<PIR_t, ext_intr_t> l_intr = std::make_pair(
i_pir,
static_cast<ext_intr_t>(i_intSource));
//See if an interrupt with from Proc with
// the same PIR + interrupt source are
// still being processed
auto l_found = std::find_if(
iv_pendingIntr.begin(),
iv_pendingIntr.end(),
[&l_intr](auto k)->bool
{
return (k.first == l_intr.first) &&
(k.second == l_intr.second);
});
if (l_found == iv_pendingIntr.end())
{
TRACFCOMP(g_trac_intr, ERR_MRK"IntrRp::msgHandler() Pending"
"Interrupt NOT found for pir: 0x%lx,"
" interrupt type: %d. Ignoring.",
i_pir, static_cast<ext_intr_t>(i_intSource));
}
else
{
//Delete pending interrupt for source type
TRACFCOMP(g_trac_intr, "IntrRp::sendEOI() Removing pending"
" interrupt for pir: 0x%lx, interrupt type: %d",
i_pir, static_cast<ext_intr_t>(i_intSource));
iv_pendingIntr.erase(l_found);
}
}
//Send an EOI to the Power bus using the PSIHB ESB Space
//This is done with a read to the page specific to the interrupt source.
//Each interrupt source gets one page
uint64_t * l_psiHbPowerBusEoiAddr =
l_proc->psiHbEsbBaseAddr + ((i_intSource)*PAGE_SIZE)/sizeof(uint64_t);
uint64_t eoiRead = *l_psiHbPowerBusEoiAddr;
if (eoiRead != 0)
{
TRACFCOMP(g_trac_intr, ERR_MRK"IntrRp::sendEOI error sending EOI"
" to PSIHB ESB. EOI load returned: %x", eoiRead);
/*@ errorlog tag
* @errortype ERRL_SEV_UNRECOVERABLE
* @moduleid INTR::MOD_INTRRP_SENDEOI
* @reasoncode INTR::RC_PSIHB_ESB_EOI_FAIL
* @userdata1 Value read from EOI load
* @userdata2 Interrupt Source to issue EOI to
* @devdesc Unexpected RC from issuing PSIHB EOI store
*/
l_err = new ERRORLOG::ErrlEntry
(
ERRORLOG::ERRL_SEV_UNRECOVERABLE, // severity
INTR::MOD_INTRRP_SENDEOI, // moduleid
INTR::RC_PSIHB_ESB_EOI_FAIL, // reason code
eoiRead, // read value
i_intSource // interrupt source number
);
break;
}
TRACDCOMP(g_trac_intr, "IntrRp::sendEOI read response: %lx", eoiRead);
//EOI Part 2 - LSI ESB Internal to the IVPE of the Master Proc
volatile uint64_t * l_lsiEoi = iv_masterHdlr->xiveIcBarAddr;
l_lsiEoi += XIVE_IC_LSI_EOI_OFFSET;
uint64_t l_intPending = *l_lsiEoi;
//If an interrupt is pending, HB userspace will send a message to
// trigger the handling of a 'new' interrupt. In this situation the
// interrupt will not be triggered via the kernel.
if (l_intPending == 1)
{
TRACFCOMP(g_trac_intr, "IntrRp::Need to acknowledge interrupt\n");
//First acknowledge the interrupt so it won't be re-presented
acknowledgeInterrupt();
uint64_t l_data0 = LSI_INTERRUPT << 32;
if (iv_msgQ)
{
msg_t * int_msg = msg_allocate();
int_msg->type = MSG_INTR_COALESCE;
int_msg->data[0] = reinterpret_cast<uint64_t>(l_data0);
int send_rc = msg_send(iv_msgQ, int_msg);
if (send_rc != 0)
{
TRACFCOMP(g_trac_intr, ERR_MRK"IntrRp::sendEOI error "
"sending coalesce message");
/*@ errorlog tag
* @errortype ERRL_SEV_UNRECOVERABLE
* @moduleid INTR::MOD_INTRRP_SENDEOI
* @reasoncode INTR::RC_MESSAGE_SEND_ERROR
* @userdata1 RC from msg_send command
* @devdesc Error encountered sending coalesce
* message to INTRP
*/
l_err = new ERRORLOG::ErrlEntry
(
ERRORLOG::ERRL_SEV_UNRECOVERABLE, // severity
INTR::MOD_INTRRP_SENDEOI, // moduleid
INTR::RC_MESSAGE_SEND_ERROR, // reason code
send_rc,
0
);
break;
}
}
}
} while(0);
return l_err;
}
void IntrRp::routeInterrupt(intr_hdlr_t* i_proc,
ext_intr_t i_type,
PIR_t& i_pir)
{
//Search if anyone is subscribed to the given
// interrupt source
Registry_t::iterator r = iv_registry.find(i_type);
if(r != iv_registry.end() && i_type != INTERPROC_XISR)
{
msg_q_t msgQ = r->second.msgQ;
msg_t * rmsg = msg_allocate();
rmsg->type = r->second.msgType;
rmsg->data[0] = i_type; // interrupt type
rmsg->data[1] = i_pir.word;
rmsg->extra_data = NULL;
int rc = msg_sendrecv_noblk(msgQ,rmsg, iv_msgQ);
if(rc)
{
TRACFCOMP(g_trac_intr,ERR_MRK
"External Interrupt received type = %d, "
"but could not send message to registered"
" handler. Ignoring it. rc = %d",
(uint32_t) i_type, rc);
}
}
else if (i_type == LSI_PSU)
{
TRACFCOMP(g_trac_intr, "PSU Interrupt Detected");
handlePsuInterrupt(i_type, i_proc, i_pir);
}
else // no queue registered for this interrupt type
{
// Throw it away for now.
TRACFCOMP(g_trac_intr,ERR_MRK
"External Interrupt received type = %d, but "
"nothing registered to handle it. Ignoring it.",
(uint32_t)i_type);
}
return;
}
void IntrRp::handleExternalInterrupt()
{
//Read LSI Interrupt Status register from each enabled
// proc chip to see which caused the interrupt
for(ChipList_t::iterator targ_itr = iv_chipList.begin();
targ_itr != iv_chipList.end(); ++targ_itr)
{
uint64_t lsiIntStatus = (*targ_itr)->psiHbBaseAddr->lsiintstatus;
TRACFCOMP(g_trac_intr, "IntrRp::msgHandler() lsiIntStatus 0x%016lx",
lsiIntStatus);
//Loop through each bit, and add any pending
// interrupts to list for later handling
for (uint8_t i=0; i < LSI_LAST_SOURCE; i++)
{
uint64_t lsiIntMask = 0x8000000000000000 >> i;
if (lsiIntMask & lsiIntStatus)
{
TRACDCOMP(g_trac_intr,"IntrRp::msgHandler()"
" Interrupt Type: %d found", i);
//Get PIR value for the proc with the
// interrupt condition
uint64_t l_groupId =
(*targ_itr)->proc->getAttr<TARGETING::ATTR_FABRIC_GROUP_ID>();
uint64_t l_chipId =
(*targ_itr)->proc->getAttr<TARGETING::ATTR_FABRIC_CHIP_ID>();
//Core + Thread IDs not important so use 0's
PIR_t l_pir = PIR_t(l_groupId, l_chipId, 0, 0);
//Make object to search pending interrupt
// list for
std::pair<PIR_t, ext_intr_t> l_intr =
std::make_pair( l_pir, static_cast<ext_intr_t>(i));
//See if an interrupt with from Proc with
// the same PIR + interrupt source are
// still being processed
auto l_found = std::find_if( iv_pendingIntr.begin(),
iv_pendingIntr.end(),
[&l_intr](auto k)->bool
{
return ((k.first == l_intr.first) &&
(k.second == l_intr.second));
});
if (l_found != iv_pendingIntr.end())
{
TRACFCOMP(g_trac_intr, "IntrRp::msgHandler() Pending"
" Interrupt already found for pir: 0x%lx,"
" interrupt type: %d, Ignoring",
l_pir, static_cast<ext_intr_t>(i));
}
else
{
//New pending interrupt for source type
TRACFCOMP(g_trac_intr, "IntrRp::msgHandler() External "
"Interrupt found for pir: 0x%lx,interrupt type: %d",
l_pir, static_cast<ext_intr_t>(i));
//Add to list of interrupts in flight
iv_pendingIntr.push_back(l_intr);
//Call function to route the interrupt
//to the appropriate handler
routeInterrupt((*targ_itr), static_cast<ext_intr_t>(i),
l_pir);
}
}
}
}
}
errlHndl_t IntrRp::maskAllInterruptSources()
{
errlHndl_t l_err = NULL;
for (uint8_t i = 0; i < LSI_LAST_SOURCE; i++)
{
TRACDCOMP(g_trac_intr, "MaskInterruptSource: %d", i);
l_err = maskInterruptSource(i);
if (l_err)
{
TRACFCOMP(g_trac_intr, "Error Masking Interrupt source: %x", i);
break;
}
}
TRACDCOMP(g_trac_intr, EXIT_MRK"MaskAllInterruptSources");
return l_err;
}
errlHndl_t IntrRp::maskInterruptSource(uint8_t i_intr_source,
intr_hdlr_t *i_chip)
{
errlHndl_t l_err = NULL;
uint64_t * l_psiHbEsbptr = i_chip->psiHbEsbBaseAddr;
l_psiHbEsbptr +=
(((i_intr_source*PAGE_SIZE)+PSI_BRIDGE_ESB_OFF_OFFSET)
/sizeof(uint64_t));
//MMIO Read to this address transitions the ESB to the off state
volatile uint64_t l_maskRead = *l_psiHbEsbptr;
eieio();
//Perform 2nd read to verify in OFF state - the read returns the previous
// esb state, so a 2nd read is required to know it is in the off state
l_maskRead = *l_psiHbEsbptr;
if (l_maskRead != ESB_STATE_OFF)
{
TRACFCOMP(g_trac_intr, "Error masking interrupt source: %x."
" ESB state is: %lx.",
i_intr_source, l_maskRead);
l_err = new ERRORLOG::ErrlEntry
(
ERRORLOG::ERRL_SEV_INFORMATIONAL, // severity
INTR::MOD_INTRRP_MASKINTERRUPT, // moduleid
INTR::RC_XIVE_ESB_WRONG_STATE, // reason code
i_intr_source,
l_maskRead
);
}
return l_err;
}
errlHndl_t IntrRp::maskInterruptSource(uint8_t l_intr_source)
{
bool l_masked = false;
errlHndl_t l_err = NULL;
for(MaskList_t::iterator mask_itr = iv_maskList.begin();
mask_itr != iv_maskList.end(); ++mask_itr)
{
if ((*mask_itr) == l_intr_source)
{
TRACFCOMP(g_trac_intr, "IntrRp::maskInterruptSource()"
" Interrupt source: %x already masked - ignoring",
l_intr_source);
l_masked = true;
}
}
if(l_masked == false)
{
iv_maskList.push_back(l_intr_source);
for(ChipList_t::iterator targ_itr = iv_chipList.begin();
targ_itr != iv_chipList.end(); ++targ_itr)
{
l_err = maskInterruptSource(l_intr_source,
*targ_itr);
if (l_err)
{
break;
}
}
}
return l_err;
}
errlHndl_t IntrRp::unmaskInterruptSource(uint8_t l_intr_source,
intr_hdlr_t *i_proc)
{
bool l_masked = false;
errlHndl_t l_err = NULL;
for(MaskList_t::iterator mask_itr = iv_maskList.begin();
mask_itr != iv_maskList.end(); ++mask_itr)
{
if ((*mask_itr) == l_intr_source)
{
TRACFCOMP(g_trac_intr, "IntrRp::unmaskInterruptSource()"
" Interrupt source: %x masked - will unmask",
l_intr_source);
l_masked = true;
iv_maskList.erase(mask_itr);
break;
}
}
if (l_masked == true)
{
for(ChipList_t::iterator targ_itr = iv_chipList.begin();
targ_itr != iv_chipList.end(); ++targ_itr)
{
uint64_t * l_psiHbEsbptr = (*targ_itr)->psiHbEsbBaseAddr;
l_psiHbEsbptr +=
(((l_intr_source*PAGE_SIZE)+PSI_BRIDGE_ESB_RESET_OFFSET)
/sizeof(uint64_t));
//MMIO Read to this address transitions the ESB to the RESET state
volatile uint64_t l_unmaskRead = *l_psiHbEsbptr;
eieio();
//Perform 2nd read to verify in RESET state - the read returns the
// previous esb state, so a 2nd read is required to know it is in
// the off state
l_unmaskRead = *l_psiHbEsbptr;
if (l_unmaskRead != ESB_STATE_RESET)
{
TRACFCOMP(g_trac_intr, "Error unmasking interrupt source: %x."
" ESB state is: %lx.",
l_intr_source, l_unmaskRead);
/*@ errorlog tag
* @errortype ERRL_SEV_INFORMATIONAL
* @moduleid INTR::MOD_INTRRP_UNMASKINTERRUPT
* @reasoncode INTR::RC_XIVE_ESB_WRONG_STATE
* @userdata1 Interrupt Source Number
* @userdata12 MMIO Read Value for unmasking
* @devdesc Error unmasking interrupt source
*/
l_err = new ERRORLOG::ErrlEntry
(
ERRORLOG::ERRL_SEV_INFORMATIONAL, // severity
INTR::MOD_INTRRP_UNMASKINTERRUPT, // moduleid
INTR::RC_XIVE_ESB_WRONG_STATE, // reason code
l_intr_source,
l_unmaskRead
);
break;
}
}
}
return l_err;
}
errlHndl_t IntrRp::setMasterInterruptBARs(TARGETING::Target * i_target)
{
errlHndl_t l_err = NULL;
do {
l_err = setXiveIvpeTmBAR1(i_target);
if (l_err)
{
TRACFCOMP(g_trac_intr, "Error setting XIVE TM BAR1");
break;
}
} while (0);
return l_err;
}
errlHndl_t IntrRp::setCommonInterruptBARs(intr_hdlr_t * i_proc)
{
errlHndl_t l_err = NULL;
do {
l_err = setPsiHbBAR(i_proc);
if (l_err)
{
TRACFCOMP(g_trac_intr, "Error setting PSIHB BAR");
break;
}
//Turn off VPC error when in LSI mode
l_err = disableVPCPullErr(i_proc);
if (l_err)
{
TRACFCOMP(g_trac_intr, "Error masking VPC Pull Lsi Err");
break;
}
l_err = setPsiHbEsbBAR(i_proc, true);
if (l_err)
{
TRACFCOMP(g_trac_intr, "Error setting PSIHB ESB BAR");
break;
}
l_err = setXiveIcBAR(i_proc);
if (l_err)
{
TRACFCOMP(g_trac_intr, "Error setting XIVE IC BAR");
break;
}
} while (0);
return l_err;
}
errlHndl_t IntrRp::handlePsuInterrupt(ext_intr_t i_type,
intr_hdlr_t* i_proc,
PIR_t& i_pir)
{
//TODO FIXME RTC 149698
// Long term will leverage mask register to avoid
// polling loop below
errlHndl_t l_err = NULL;
uint32_t l_addr = PSI_BRIDGE_PSU_DOORBELL_REG;
size_t scom_len = sizeof(uint64_t);
uint64_t reg = 0x0;
uint64_t l_elapsed_time_ns = 0;
TARGETING::Target* procTarget = i_proc->proc;
do
{
l_err = deviceRead(procTarget,
®,
scom_len,
DEVICE_SCOM_ADDRESS(l_addr));
if (l_err)
{
TRACFCOMP(g_trac_intr, "Error Reading PSU SCOM address: %lx",
l_addr);
break;
}
//If the PSU Host Doorbell bit is on, wait for the
// PSU DD to handle
if (reg & PSI_BRIDGE_PSU_HOST_DOORBELL)
{
TRACDCOMP(g_trac_intr, "Host/SBE Mailbox "
"response. Wait for Polling to handle"
" response");
nanosleep(0,10000);
l_elapsed_time_ns += 10000;
}
else
{
//Polling Complete
break;
}
if (l_elapsed_time_ns > MAX_PSU_LONG_TIMEOUT_NS)
{
TRACFCOMP(g_trac_intr, "PSU Timeout hit");
/*@ errorlog tag
* @errortype ERRL_SEV_UNRECOVERABLE
* @moduleid INTR::MOD_INTRRP_HNDLPSUINTERRUPT
* @reasoncode INTR::RC_PSU_DOORBELL_TIMEOUT
* @userdata1 Scom Address with interrupt condition
* @userdata2 Register Value
* @devdesc PSU Doorbell Timeout hit waiting for doorbell
* interrupt condition to be cleared
*/
l_err = new ERRORLOG::ErrlEntry
(
ERRORLOG::ERRL_SEV_UNRECOVERABLE, // severity
INTR::MOD_INTRRP_HNDLPSUINTERRUPT, // moduleid
INTR::RC_PSU_DOORBELL_TIMEOUT, // reason code
l_addr,
reg
);
break;
}
} while(1);
do {
if (l_err)
{
break;
}
//Clear the PSU Scom Reg Interrupt Status register
uint64_t l_barValue = 0;
uint64_t size = sizeof(l_barValue);
l_err = deviceWrite(procTarget,
&l_barValue,
size,
DEVICE_SCOM_ADDRESS(l_addr));
if (l_err)
{
TRACFCOMP(g_trac_intr, "Error clearing scom - %x", l_addr);
break;
}
//Issue standard EOI for the PSU Interupt
uint64_t intSource = i_type;
TRACFCOMP(g_trac_intr, "Sending PSU EOI");
sendEOI(intSource, i_pir);
} while(0);
return l_err;
}
errlHndl_t IntrRp::getNxIRSN(TARGETING::Target * i_target,
uint32_t& o_irsn, uint32_t& o_num)
{
errlHndl_t err = NULL;
size_t scom_len = sizeof(uint64_t);
uint64_t reg = 0x0;
do{
err = deviceRead
( i_target,
®,
scom_len,
DEVICE_SCOM_ADDRESS(NX_BUID_SCOM_ADDR));
if(err)
{
break;
}
//only calc IRSN if downstream interrupts are enabled
o_irsn = 0;
if(reg &(1ull << (63-NX_BUID_ENABLE))) //reg has NX_BUID_ENABLE set
{
uint32_t l_mask = ((static_cast<uint32_t>(reg >> NX_IRSN_MASK_SHIFT)
& NX_IRSN_MASK_MASK) | NX_IRSN_UPPER_MASK);
o_irsn = ((static_cast<uint32_t>(reg >> NX_IRSN_COMP_SHIFT)
& IRSN_COMP_MASK) & l_mask);
//To get the number of interrupts, we need to "count" the 0 bits
//cheat by extending mask to FFF8 + mask, then invert and add 1
o_num = (~((~IRSN_COMP_MASK) | l_mask)) +1;
}
}while(0);
TRACFCOMP(g_trac_intr,"NX_ISRN: 0x%x, num: 0x%x",o_irsn, o_num);
return err;
}
//----------------------------------------------------------------------------
errlHndl_t IntrRp::registerInterruptXISR(msg_q_t i_msgQ,
uint32_t i_msg_type,
ext_intr_t i_xisr)
{
errlHndl_t err = NULL;
Registry_t::iterator r = iv_registry.find(i_xisr);
if(r == iv_registry.end())
{
TRACFCOMP(g_trac_intr,"INTR::register intr type 0x%x", i_xisr);
iv_registry[i_xisr] = intr_response_t(i_msgQ,i_msg_type);
}
else
{
if(r->second.msgQ != i_msgQ)
{
/*@ errorlog tag
* @errortype ERRL_SEV_INFORMATIONAL
* @moduleid INTR::MOD_INTRRP_REGISTERINTERRUPT
* @reasoncode INTR::RC_ALREADY_REGISTERED
* @userdata1 XISR
* @userdata2 0
*
* @devdesc Interrupt type already registered
*
*/
err = new ERRORLOG::ErrlEntry
(
ERRORLOG::ERRL_SEV_INFORMATIONAL, // severity
INTR::MOD_INTRRP_REGISTERINTERRUPT, // moduleid
INTR::RC_ALREADY_REGISTERED, // reason code
i_xisr,
0
);
}
}
return err;
}
msg_q_t IntrRp::unregisterInterruptXISR(ext_intr_t i_xisr)
{
msg_q_t msgQ = NULL;
Registry_t::iterator r = iv_registry.find(i_xisr);
if(r != iv_registry.end())
{
TRACFCOMP(g_trac_intr,INFO_MRK "Removing interrupt listener: %lx",
i_xisr);
msgQ = r->second.msgQ;
iv_registry.erase(r);
}
return msgQ;
}
void IntrRp::sendIPI(const PIR_t i_pir) const
{
uint64_t baseAddr = iv_baseAddr + cpuOffsetAddr(i_pir);
volatile uint8_t * mfrr =
reinterpret_cast<uint8_t*>(baseAddr + MFRR_OFFSET);
eieio(); sync();
MAGIC_INSTRUCTION(MAGIC_SIMICS_CORESTATESAVE);
(*mfrr) = IPI_USR_PRIO;
}
errlHndl_t IntrRp::checkAddress(uint64_t i_addr)
{
errlHndl_t err = NULL;
if(i_addr < VMM_VADDR_DEVICE_SEGMENT_FIRST)
{
/*@ errorlog tag
* @errortype ERRL_SEV_INFORMATIONAL
* @moduleid INTR::MOD_INTRRP_CHECKADDRESS
* @reasoncode INTR::RC_BAD_VIRTUAL_IO_ADDRESS
* @userdata1 The bad virtual address
* @userdata2 0
*
* @devdesc The virtual address is not a valid IO address
*
*/
err = new ERRORLOG::ErrlEntry
(
ERRORLOG::ERRL_SEV_INFORMATIONAL,
INTR::MOD_INTRRP_CHECKADDRESS,
INTR::RC_BAD_VIRTUAL_IO_ADDRESS,
i_addr,
0
);
}
return err;
}
void IntrRp::shutDown(uint64_t i_status)
{
msg_t * rmsg = msg_allocate();
errlHndl_t l_err = NULL;
TRACFCOMP(g_trac_intr, "IntrRp::shutDown - Sending shutdown message"
" to registered handlers");
// Call everyone and say shutting down!
for(Registry_t::iterator r = iv_registry.begin();
r != iv_registry.end();
++r)
{
msg_q_t msgQ = r->second.msgQ;
rmsg->type = r->second.msgType;
rmsg->data[0] = SHUT_DOWN;
rmsg->data[1] = i_status;
rmsg->extra_data = NULL;
int rc = msg_sendrecv(msgQ,rmsg);
if(rc)
{
TRACFCOMP(g_trac_intr,ERR_MRK
"Could not send message to registered handler to Shut"
" down. Ignoring it. rc = %d",
rc);
}
}
msg_free(rmsg);
//Mask any future interrupts to avoid receiving anymore while in the process
// of resetting the rest of the Interrupt Logic
l_err = maskAllInterruptSources();
if (l_err)
{
delete l_err; //errl comp already shutdown. Log error and continue
TRACFCOMP(g_trac_intr, "IntrRp::shutDown() Error masking all interrupt sources.");
}
//Reset PSIHB Interrupt Space
TRACFCOMP(g_trac_intr, "Reset PSIHB Interrupt Space");
//First reset INTRP logic for slave procs
for(ChipList_t::iterator targ_itr = iv_chipList.begin();
targ_itr != iv_chipList.end(); ++targ_itr)
{
if (*targ_itr != iv_masterHdlr)
{
PSIHB_SW_INTERFACES_t * this_psihb_ptr = (*targ_itr)->psiHbBaseAddr;
this_psihb_ptr->icr = PSI_BRIDGE_INTP_STATUS_CTL_RESET;
resetIntUnit(*targ_itr);
}
}
//Then reset master proc INTRP logic
PSIHB_SW_INTERFACES_t * this_psihb_ptr = iv_masterHdlr->psiHbBaseAddr;
this_psihb_ptr->icr = PSI_BRIDGE_INTP_STATUS_CTL_RESET;
TRACFCOMP(g_trac_intr, "Reset PSIHB INTR Complete");
//Reset XIVE Interrupt unit
resetIntUnit(iv_masterHdlr);
#ifdef CONFIG_ENABLE_P9_IPI
size_t threads = cpu_thread_count();
uint64_t en_threads = get_enabled_threads();
for(CpuList_t::iterator pir_itr = iv_cpuList.begin();
pir_itr != iv_cpuList.end();
++pir_itr)
{
PIR_t pir = *pir_itr;
for(size_t thread = 0; thread < threads; ++thread)
{
// Skip threads that were never started
if( !(en_threads & (0x8000000000000000>>thread)) )
{
TRACDCOMP(g_trac_intr,"IntrRp::shutDown: Skipping thread %d",thread);
continue;
}
pir.threadId = thread;
//wh_p9 disableInterruptPresenter(pir);
}
}
#endif
TRACFCOMP(g_trac_intr,INFO_MRK"INTR is shutdown");
}
//----------------------------------------------------------------------------
#ifdef CONFIG_MPIPL_ENABLED
errlHndl_t IntrRp::hw_disableRouting(TARGETING::Target * i_proc,
INTR_ROUTING_t i_rx_tx)
{
errlHndl_t err = NULL;
do
{
size_t scom_len = sizeof(uint64_t);
// PSI
PSIHB_ISRN_REG_t reg;
err = deviceRead
(
i_proc,
®,
scom_len,
DEVICE_SCOM_ADDRESS(PSIHB_ISRN_REG_t::PSIHB_STATUS_CTL_REG)
);
if(err)
{
break;
}
switch(i_rx_tx)
{
case INTR_UPSTREAM:
reg.uie = 0; //upstream interrupt enable = 0 (disable)
break;
case INTR_DOWNSTREAM:
reg.die = 0; //downstream interrupt enable = 0 (disable)
break;
}
scom_len = sizeof(uint64_t);
err = deviceWrite
(
i_proc,
®,
scom_len,
DEVICE_SCOM_ADDRESS(PSIHB_ISRN_REG_t::PSIHB_STATUS_CTL_REG)
);
if(err)
{
break;
}
for(size_t i = 0;
i < sizeof(cv_PE_BAR_SCOM_LIST)/sizeof(cv_PE_BAR_SCOM_LIST[0]);
++i)
{
uint64_t reg = 0;
scom_len = sizeof(uint64_t);
err = deviceRead
(
i_proc,
®,
scom_len,
DEVICE_SCOM_ADDRESS(cv_PE_BAR_SCOM_LIST[i])
);
if(err)
{
break;
}
switch(i_rx_tx)
{
case INTR_UPSTREAM:
// reset bit PE_IRSN_UPSTREAM
reg &= ~((1ull << (63-PE_IRSN_UPSTREAM)));
break;
case INTR_DOWNSTREAM:
// reset bit PE_IRSN_DOWNSTREAM
reg &= ~((1ull << (63-PE_IRSN_DOWNSTREAM)));
break;
}
scom_len = sizeof(uint64_t);
err = deviceWrite
(
i_proc,
®,
scom_len,
DEVICE_SCOM_ADDRESS(cv_PE_BAR_SCOM_LIST[i])
);
if(err)
{
break;
}
}
if(err)
{
break;
}
//NX has no up/down stream enable bit - just one enable bit.
//The NX should be cleared as part of an MPIPL so no
//interrupts should be pending from this unit, however
//we must allow EOIs to flow, so only disable when
//downstream is requested
if(i_rx_tx == INTR_DOWNSTREAM)
{
uint64_t reg = 0;
scom_len = sizeof(uint64_t);
err = deviceRead
(
i_proc,
®,
scom_len,
DEVICE_SCOM_ADDRESS(NX_BUID_SCOM_ADDR)
);
if(err)
{
break;
}
// reset bit NX_BUID_ENABLE
reg &= ~(1ull << (63-NX_BUID_ENABLE));
scom_len = sizeof(uint64_t);
err = deviceWrite
(
i_proc,
®,
scom_len,
DEVICE_SCOM_ADDRESS(NX_BUID_SCOM_ADDR)
);
if(err)
{
break;
}
}
} while(0);
return err;
}
#endif
//----------------------------------------------------------------------------
#ifdef CONFIG_MPIPL_ENABLED
errlHndl_t IntrRp::hw_resetIRSNregs(TARGETING::Target * i_proc)
{
errlHndl_t err = NULL;
size_t scom_len = sizeof(uint64_t);
do
{
// PSI
PSIHB_ISRN_REG_t reg1; // zeros self
reg1.irsn -= 1; // default all '1's according to scom spec
// all other fields = 0
err = deviceWrite
(
i_proc,
®1,
scom_len,
DEVICE_SCOM_ADDRESS(PSIHB_ISRN_REG_t::PSIHB_ISRN_REG)
);
if(err)
{
break;
}
// PE
for(size_t i = 0;
i < sizeof(cv_PE_BAR_SCOM_LIST)/sizeof(cv_PE_BAR_SCOM_LIST[0]);
++i)
{
uint64_t reg = 0;
scom_len = sizeof(uint64_t);
// Note: no default value specified in scom spec - assume 0
err = deviceWrite
(
i_proc,
®,
scom_len,
DEVICE_SCOM_ADDRESS(cv_PE_IRSN_COMP_SCOM_LIST[i])
);
if(err)
{
break;
}
scom_len = sizeof(uint64_t);
// Note: no default value specified in scom spec - assume 0
err = deviceWrite
(
i_proc,
®,
scom_len,
DEVICE_SCOM_ADDRESS(cv_PE_IRSN_MASK_SCOM_LIST[i])
);
if(err)
{
break;
}
}
if(err)
{
break;
}
// NX [1:19] is BUID [20:32] mask
// No default value specified in scom spec. assume 0
uint64_t reg = 0;
scom_len = sizeof(uint64_t);
err = deviceWrite
(
i_proc,
®,
scom_len,
DEVICE_SCOM_ADDRESS(NX_BUID_SCOM_ADDR)
);
if(err)
{
break;
}
} while(0);
return err;
}
#endif
//----------------------------------------------------------------------------
#ifdef CONFIG_MPIPL_ENABLED
errlHndl_t IntrRp::blindIssueEOIs(TARGETING::Target * i_proc)
{
errlHndl_t err = NULL;
TARGETING::TargetHandleList procCores;
getChildChiplets(procCores, i_proc, TYPE_CORE, false); //state can change
do
{
//Issue eio to IPIs first
for(TARGETING::TargetHandleList::iterator
core = procCores.begin();
core != procCores.end();
++core)
{
FABRIC_CHIP_ID_ATTR chip = i_proc->getAttr<ATTR_FABRIC_CHIP_ID>();
FABRIC_NODE_ID_ATTR node = i_proc->getAttr<ATTR_FABRIC_NODE_ID>();
CHIP_UNIT_ATTR coreId =
(*core)->getAttr<TARGETING::ATTR_CHIP_UNIT>();
PIR_t pir(0);
pir.groupId = node;
pir.chipId = chip;
pir.coreId = coreId;
size_t threads = cpu_thread_count();
for(size_t thread = 0; thread < threads; ++thread)
{
pir.threadId = thread;
uint64_t xirrAddr = iv_baseAddr +
cpuOffsetAddr(pir);
uint32_t * xirrPtr =
reinterpret_cast<uint32_t*>(xirrAddr + XIRR_OFFSET);
uint8_t * mfrrPtr = reinterpret_cast<uint8_t*>(
xirrAddr + MFRR_OFFSET);
//need to set mfrr to 0xFF first
TRACDCOMP(g_trac_intr,"Clearing IPI to xirrPtr[%p]", xirrPtr);
*mfrrPtr = 0xFF;
*xirrPtr = 0xFF000002;
}
}
PIR_t pir(iv_masterCpu);
pir.threadId = 0;
//Can just write all EOIs to master core thread 0 XIRR
uint64_t xirrAddr = iv_baseAddr + cpuOffsetAddr(pir);
volatile uint32_t * xirrPtr =
reinterpret_cast<uint32_t*>(xirrAddr +XIRR_OFFSET);
//Issue eio to PSI logic
uint32_t l_psiBaseIsn;
uint32_t l_maxInt = 0;
err = getPsiIRSN(i_proc, l_psiBaseIsn, l_maxInt);
if(err)
{
break;
}
//Only issue if ISN is non zero (ie set)
if(l_psiBaseIsn)
{
l_psiBaseIsn |= 0xFF000000;
uint32_t l_psiMaxIsn = l_psiBaseIsn + l_maxInt;
TRACFCOMP(g_trac_intr,"Issuing EOI to PSIHB range %x - %x",
l_psiBaseIsn, l_psiMaxIsn);
for(uint32_t l_isn = l_psiBaseIsn; l_isn < l_psiMaxIsn; ++l_isn)
{
TRACDCOMP(g_trac_intr," xirrPtr[%p] xirr[%x]\n", xirrPtr, l_isn);
*xirrPtr = l_isn;
}
}
//Don't need to issue EOIs to PHBs
//since PHB ETU reset cleans them up
//Issue eio to NX logic
uint32_t l_nxBaseIsn;
err = getNxIRSN(i_proc, l_nxBaseIsn, l_maxInt);
if(err)
{
break;
}
//Only issue if ISN is non zero (ie set)
if(l_nxBaseIsn)
{
l_nxBaseIsn |= 0xFF000000;
uint32_t l_nxMaxIsn = l_nxBaseIsn + l_maxInt;
TRACFCOMP(g_trac_intr,"Issuing EOI to NX range %x - %x",
l_nxBaseIsn, l_nxMaxIsn);
for(uint32_t l_isn = l_nxBaseIsn; l_isn < l_nxMaxIsn; ++l_isn)
{
*xirrPtr = l_isn;
}
}
} while(0);
return err;
}
#endif
//----------------------------------------------------------------------------
errlHndl_t IntrRp::findProcs_Cores(TARGETING::TargetHandleList & o_procs,
TARGETING::TargetHandleList& o_cores)
{
errlHndl_t err = NULL;
do
{
//Build a list of "functional" processors. This needs to be
//done without targeting support (just blueprint) since
//on MPIPL the targeting information is obtained in
//discover_targets -- much later in the IPL.
//Since this is MPIPL we will rely on two things:
// 1) FSI will be active to present chips
// 2) The MPIPL HW bit in CFAM 2839 will be set
//force FSI to init so we can rely on slave data
err = FSI::initializeHardware();
if(err)
{
break;
}
TARGETING::TargetHandleList procChips;
TARGETING::PredicateCTM predProc( TARGETING::CLASS_CHIP,
TARGETING::TYPE_PROC );
TARGETING::TargetService& tS = TARGETING::targetService();
TARGETING::Target * sysTarget = NULL;
tS.getTopLevelTarget( sysTarget );
assert( sysTarget != NULL );
TARGETING::Target* masterProcTarget = NULL;
TARGETING::targetService().masterProcChipTargetHandle(
masterProcTarget );
tS.getAssociated( procChips,
sysTarget,
TARGETING::TargetService::CHILD,
TARGETING::TargetService::ALL,
&predProc );
for(TARGETING::TargetHandleList::iterator proc = procChips.begin();
proc != procChips.end();
++proc)
{
//if master proc -- just add it as we are running on it
if (*proc == masterProcTarget)
{
o_procs.push_back(*proc);
continue;
}
//First see if present
if(FSI::isSlavePresent(*proc))
{
TRACFCOMP(g_trac_intr,"Proc %x detected via FSI", TARGETING::get_huid(*proc));
//Second check to see if MPIPL bit is on cfam "2839" which
//Note 2839 is ecmd addressing, real address is 0x28E4 (byte)
uint64_t l_addr = 0x28E4;
uint32_t l_data = 0;
size_t l_size = sizeof(uint32_t);
err = deviceRead(*proc,
&l_data,
l_size,
DEVICE_FSI_ADDRESS(l_addr));
if (err)
{
TRACFCOMP(g_trac_intr,"Failed to read CFAM 2839 on %x",
TARGETING::get_huid(*proc));
break;
}
TRACFCOMP(g_trac_intr,"Proc %x 2839 val [%x]", TARGETING::get_huid(*proc),
l_data);
if(l_data & 0x80000000)
{
//Chip is present and functional -- add it to our list
o_procs.push_back(*proc);
//Also need to force it to use Xscom
//Note that it has to support (ie it is part of the SMP)
ScomSwitches l_switches =
(*proc)->getAttr<ATTR_SCOM_SWITCHES>();
l_switches.useSbeScom = 0;
l_switches.useFsiScom = 0;
l_switches.useXscom = 1;
(*proc)->setAttr<ATTR_SCOM_SWITCHES>(l_switches);
}
}
}
if (err)
{
break;
}
//Build up a list of all possible cores (don't care if func/present,
//just that they exist in the blueprint
TARGETING::TargetHandleList l_cores;
for(TARGETING::TargetHandleList::iterator proc = o_procs.begin();
proc != o_procs.end();
++proc)
{
l_cores.clear();
getChildChiplets(l_cores, *proc, TYPE_CORE, false);
for(TARGETING::TargetHandleList::iterator core = l_cores.begin();
core != l_cores.end();
++core)
{
o_cores.push_back(*core);
}
}
}while(0);
return err;
}
void IntrRp::allowAllInterrupts(TARGETING::Target* i_core)
{
const TARGETING::Target * proc = getParentChip(i_core);
FABRIC_CHIP_ID_ATTR chip = proc->getAttr<ATTR_FABRIC_CHIP_ID>();
FABRIC_NODE_ID_ATTR node = proc->getAttr<ATTR_FABRIC_NODE_ID>();
CHIP_UNIT_ATTR coreId = i_core->getAttr<TARGETING::ATTR_CHIP_UNIT>();
PIR_t pir(0);
pir.groupId = node;
pir.chipId = chip;
pir.coreId = coreId;
size_t threads = cpu_thread_count();
for(size_t thread = 0; thread < threads; ++thread)
{
pir.threadId = thread;
uint64_t cpprAddr=cpuOffsetAddr(pir)+iv_baseAddr+CPPR_OFFSET;
uint8_t *cppr = reinterpret_cast<uint8_t*>(cpprAddr);
*cppr = 0xff; // allow all interrupts
}
}
void IntrRp::disableAllInterrupts(TARGETING::Target* i_core)
{
const TARGETING::Target * proc = getParentChip(i_core);
FABRIC_CHIP_ID_ATTR chip = proc->getAttr<ATTR_FABRIC_CHIP_ID>();
FABRIC_NODE_ID_ATTR node = proc->getAttr<ATTR_FABRIC_NODE_ID>();
CHIP_UNIT_ATTR coreId = i_core->getAttr<TARGETING::ATTR_CHIP_UNIT>();
PIR_t pir(0);
pir.groupId = node;
pir.chipId = chip;
pir.coreId = coreId;
size_t threads = cpu_thread_count();
for(size_t thread = 0; thread < threads; ++thread)
{
pir.threadId = thread;
//wh_p9 disableInterruptPresenter(pir);
}
}
void IntrRp::drainMpIplInterrupts(TARGETING::TargetHandleList & i_cores)
{
TRACFCOMP(g_trac_intr,"Drain pending interrupts");
bool interrupt_found = false;
size_t retryCount = 10;
do
{
interrupt_found = false;
nanosleep(0,1000000); // 1 ms
for(TARGETING::TargetHandleList::iterator
core = i_cores.begin();
core != i_cores.end();
++core)
{
const TARGETING::Target * proc = getParentChip(*core);
FABRIC_CHIP_ID_ATTR chip = proc->getAttr<ATTR_FABRIC_CHIP_ID>();
FABRIC_NODE_ID_ATTR node = proc->getAttr<ATTR_FABRIC_NODE_ID>();
CHIP_UNIT_ATTR coreId =
(*core)->getAttr<TARGETING::ATTR_CHIP_UNIT>();
PIR_t pir(0);
pir.groupId = node;
pir.chipId = chip;
pir.coreId = coreId;
TRACFCOMP(g_trac_intr," n%d p%d c%d", node, chip, coreId);
size_t threads = cpu_thread_count();
for(size_t thread = 0; thread < threads; ++thread)
{
pir.threadId = thread;
uint64_t xirrAddr = iv_baseAddr +
cpuOffsetAddr(pir) + XIRR_RO_OFFSET;
volatile uint32_t * xirrPtr =
reinterpret_cast<uint32_t*>(xirrAddr);
uint32_t xirr = *xirrPtr & 0x00FFFFFF;
TRACDCOMP(g_trac_intr," xirrPtr[%p] xirr[%x]\n", xirrPtr, xirr);
if(xirr)
{
// Found pending interrupt!
interrupt_found = true;
TRACFCOMP(g_trac_intr,
ERR_MRK
"Pending interrupt found on MPIPL."
" CpuId:0x%x XIRR:0x%x",
pir.word,
xirr);
uint8_t * mfrrPtr =
reinterpret_cast<uint8_t*>(xirrAddr + MFRR_OFFSET);
// Signal EOI - read then write xirr value
++xirrPtr; // move to RW XIRR reg
volatile uint32_t xirr_rw = *xirrPtr;
//If IPI need to set mfrr to 0xFF
if(INTERPROC_XISR == xirr)
{
*mfrrPtr = 0xFF;
}
*xirrPtr = xirr_rw;
--xirrPtr; // back to RO XIRR reg
}
}
}
} while(interrupt_found == true && --retryCount != 0);
if(interrupt_found && (retryCount == 0))
{
// traces above should identify stuck interrupt
INITSERVICE::doShutdown(INTR::RC_PERSISTENT_INTERRUPTS);
}
}
#ifdef CONFIG_MPIPL_ENABLED
errlHndl_t IntrRp::hw_disableIntrMpIpl()
{
errlHndl_t err = NULL;
TARGETING::TargetHandleList funcProc, procCores;
//Need to clear out all pending interrupts. This includes
//ones that PHYP already accepted and ones "hot" in the XIRR
//register. Must be done for all processors prior to opening
//up traffic for mailbox (since we switch the IRSN). PHYP
//can route PSI interrupts to any chip in the system so all
//must be cleaned up prior to switching
do
{
//extract the node layout for later
err = extractHbNodeInfo();
if(err)
{
break;
}
//Get the procs/cores
err = findProcs_Cores(funcProc, procCores);
if(err)
{
break;
}
//since HB will need to use PSI interrupt block, we need to
//perform the extra step of disabling FSP PSI interrupts at
//source(theoretically upstream disable should have handled,
//but it seesms to slip through somehow and doesn't get fully
//cleaned up cause we clear the XIVR
for(TARGETING::TargetHandleList::iterator proc = funcProc.begin();
(proc != funcProc.end()) && !err;
++proc)
{
uint64_t reg = PSI_FSP_INT_ENABLE;
size_t scom_len = sizeof(uint64_t);
err = deviceWrite
(
(*proc),
®,
scom_len,
DEVICE_SCOM_ADDRESS(PSI_HBCR_AND_SCOM_ADDR)
);
}
if(err)
{
break;
}
// Disable upstream intr routing on all processor chips
TRACFCOMP(g_trac_intr,"Disable upstream interrupt");
for(TARGETING::TargetHandleList::iterator proc = funcProc.begin();
(proc != funcProc.end()) && !err;
++proc)
{
// disable upstream intr routing
err = hw_disableRouting(*proc,INTR_UPSTREAM);
}
if(err)
{
break;
}
err = syncNodes(INTR_MPIPL_UPSTREAM_DISABLED);
if ( err )
{
break;
}
// Set interrupt presenter to allow all interrupts
TRACFCOMP(g_trac_intr,"Allow interrupts");
for(TARGETING::TargetHandleList::iterator
core = procCores.begin();
core != procCores.end();
++core)
{
allowAllInterrupts(*core);
}
// Now look for interrupts
drainMpIplInterrupts(procCores);
// Issue blind EOIs to all threads IPIs and to clean up stale XIRR
TRACFCOMP(g_trac_intr,"Issue blind EOIs to all ISRN and IPIs");
for(TARGETING::TargetHandleList::iterator proc = funcProc.begin();
(proc != funcProc.end()) && !err;
++proc)
{
err = blindIssueEOIs(*proc);
}
if(err)
{
break;
}
err = syncNodes(INTR_MPIPL_DRAINED);
if( err )
{
break;
}
// Disable all interrupt presenters
for(TARGETING::TargetHandleList::iterator core = procCores.begin();
core != procCores.end();
++core)
{
disableAllInterrupts(*core);
}
// disable downstream routing and clean up IRSN regs
for(TARGETING::TargetHandleList::iterator proc = funcProc.begin();
proc != funcProc.end();
++proc)
{
// disable downstream routing
err = hw_disableRouting(*proc,INTR_DOWNSTREAM);
if(err)
{
break;
}
// reset IRSN values
err = hw_resetIRSNregs(*proc);
if(err)
{
break;
}
//Now mask off all XIVRs under the PSI unit
//This prevents hot PSI mbox interrupts from flowing up to HB
//and allows PHYP to deal with them
err = maskXIVR(*proc);
if(err)
{
break;
}
}
if(err)
{
break;
}
} while(0);
return err;
}
#endif
errlHndl_t syncNodesError(void * i_p, uint64_t i_len)
{
TRACFCOMP(g_trac_intr,"Failure calling mm_block_map: phys_addr=%p",
i_p);
/*@
* @errortype ERRL_SEV_UNRECOVERABLE
* @moduleid INTR::MOD_INTR_SYNC_NODES
* @reasoncode INTR::RC_CANNOT_MAP_MEMORY
* @userdata1 physical address
* @userdata2 Block size requested
* @devdesc Error mapping in memory
*/
return new ERRORLOG::ErrlEntry
(
ERRORLOG::ERRL_SEV_UNRECOVERABLE,
INTR::MOD_INTR_SYNC_NODES,
INTR::RC_CANNOT_MAP_MEMORY,
reinterpret_cast<uint64_t>(i_p),
i_len,
true /*Add HB Software Callout*/);
}
errlHndl_t IntrRp::syncNodes(intr_mpipl_sync_t i_sync_type)
{
errlHndl_t err = NULL;
bool reported[MAX_NODES_PER_SYS] = { false,};
uint64_t hrmorBase = KernelIpc::ipc_data_area.hrmor_base;
void * node_info_ptr =
reinterpret_cast<void *>((iv_masterCpu.groupId * hrmorBase) +
VMM_INTERNODE_PRESERVED_MEMORY_ADDR);
internode_info_t * this_node_info =
reinterpret_cast<internode_info_t *>
(mm_block_map(node_info_ptr,INTERNODE_INFO_SIZE));
do
{
if(this_node_info == NULL)
{
err = syncNodesError(this_node_info, INTERNODE_INFO_SIZE);
break;
}
if(this_node_info->eye_catcher != NODE_INFO_EYE_CATCHER)
{
TRACFCOMP(g_trac_intr, INFO_MRK
"MPIPL, but INTR node data sync area unintialized."
" Assuming single HB Intance system");
break;
}
// Map the internode data areas to a virtual address
internode_info_t * vaddr[MAX_NODES_PER_SYS];
for(uint64_t node = 0; node < MAX_NODES_PER_SYS; ++node)
{
if (node == iv_masterCpu.groupId)
{
vaddr[node] = this_node_info;
}
else if(this_node_info->exist[node])
{
node_info_ptr =
reinterpret_cast<void *>
((node*hrmorBase)+VMM_INTERNODE_PRESERVED_MEMORY_ADDR);
internode_info_t * node_info =
reinterpret_cast<internode_info_t *>
(mm_block_map(node_info_ptr,
INTERNODE_INFO_SIZE));
if(node_info == NULL)
{
err = syncNodesError(node_info_ptr,
INTERNODE_INFO_SIZE);
break;
}
vaddr[node] = node_info;
reported[node] = false;
}
}
if (err)
{
break;
}
// This node has hit the sync point
this_node_info->mpipl_intr_sync = i_sync_type;
lwsync();
bool synched = false;
// Loop until all nodes have reached the sync point
while(synched == false)
{
synched = true;
for(uint64_t node = 0; node < MAX_NODES_PER_SYS; ++node)
{
if(this_node_info->exist[node])
{
intr_mpipl_sync_t sync_type =
vaddr[node]->mpipl_intr_sync;
if(sync_type < i_sync_type)
{
synched = false;
// Insure simics does a context switch
setThreadPriorityLow();
setThreadPriorityHigh();
}
else if(reported[node] == false)
{
reported[node] = true;
TRACFCOMP( g_trac_intr, INFO_MRK
"MPIPL node %ld reached syncpoint %d",
node, (uint32_t)i_sync_type);
}
}
}
}
isync();
for(uint64_t node = 0; node < MAX_NODES_PER_SYS; ++node)
{
if(this_node_info->exist[node])
{
// We are still using this_node_info area
// so unmap it later.
if(node != iv_masterCpu.groupId)
{
mm_block_unmap(vaddr[node]);
}
}
}
mm_block_unmap(this_node_info);
} while(0);
return err;
}
#ifdef CONFIG_MPIPL_ENABLED
errlHndl_t IntrRp::initializeMpiplSyncArea()
{
errlHndl_t err = NULL;
uint64_t hrmorBase = KernelIpc::ipc_data_area.hrmor_base;
void * node_info_ptr =
reinterpret_cast<void *>((iv_masterCpu.groupId * hrmorBase) +
VMM_INTERNODE_PRESERVED_MEMORY_ADDR);
internode_info_t * this_node_info =
reinterpret_cast<internode_info_t *>
(mm_block_map(node_info_ptr,INTERNODE_INFO_SIZE));
if(this_node_info)
{
TRACFCOMP( g_trac_intr,
"MPIPL SYNC at phys %p virt %p value %lx\n",
node_info_ptr, this_node_info, NODE_INFO_EYE_CATCHER );
this_node_info->eye_catcher = NODE_INFO_EYE_CATCHER;
this_node_info->version = NODE_INFO_VERSION;
this_node_info->mpipl_intr_sync = INTR_MPIPL_SYNC_CLEAR;
for(uint64_t node = 0; node < MAX_NODES_PER_SYS; ++node)
{
if(iv_masterCpu.groupId == node)
{
this_node_info->exist[node] = true;
}
else
{
this_node_info->exist[node] = false;
}
}
mm_block_unmap(this_node_info);
}
else
{
TRACFCOMP( g_trac_intr, "Failure calling mm_block_map : phys_addr=%p",
node_info_ptr);
/*@
* @errortype ERRL_SEV_UNRECOVERABLE
* @moduleid INTR::MOD_INTR_INIT_MPIPLAREA
* @reasoncode INTR::RC_CANNOT_MAP_MEMORY
* @userdata1 physical address
* @userdata2 Size
* @devdesc Error mapping in memory
*/
err = new ERRORLOG::ErrlEntry(
ERRORLOG::ERRL_SEV_UNRECOVERABLE,
INTR::MOD_INTR_INIT_MPIPLAREA,
INTR::RC_CANNOT_MAP_MEMORY,
reinterpret_cast<uint64_t>(node_info_ptr),
INTERNODE_INFO_SIZE,
true /*Add HB Software Callout*/);
}
return err;
}
#endif
#ifdef CONFIG_MPIPL_ENABLED
errlHndl_t IntrRp::addHbNodeToMpiplSyncArea(uint64_t i_hbNode)
{
errlHndl_t err = NULL;
uint64_t hrmorBase = KernelIpc::ipc_data_area.hrmor_base;
void * node_info_ptr =
reinterpret_cast<void *>((iv_masterCpu.groupId * hrmorBase) +
VMM_INTERNODE_PRESERVED_MEMORY_ADDR);
internode_info_t * this_node_info =
reinterpret_cast<internode_info_t *>
(mm_block_map(node_info_ptr,INTERNODE_INFO_SIZE));
if(this_node_info)
{
if(this_node_info->eye_catcher != NODE_INFO_EYE_CATCHER)
{
// Initialize the mutli-node area for this node.
err = initializeMpiplSyncArea();
}
this_node_info->exist[i_hbNode] = true;
this_node_info->mpipl_intr_sync = INTR_MPIPL_SYNC_CLEAR;
mm_block_unmap(this_node_info);
}
else
{
TRACFCOMP( g_trac_intr, "Failure calling mm_block_map : phys_addr=%p",
node_info_ptr);
/*@
* @errortype ERRL_SEV_UNRECOVERABLE
* @moduleid INTR::MOD_INTR_SYNC_ADDNODE
* @reasoncode INTR::RC_CANNOT_MAP_MEMORY
* @userdata1 physical address
* @userdata2 Size
* @devdesc Error mapping in memory
*/
err = new ERRORLOG::ErrlEntry(
ERRORLOG::ERRL_SEV_UNRECOVERABLE,
INTR::MOD_INTR_SYNC_ADDNODE,
INTR::RC_CANNOT_MAP_MEMORY,
reinterpret_cast<uint64_t>(node_info_ptr),
INTERNODE_INFO_SIZE,
true /*Add HB Software Callout*/);
}
return err;
}
#endif
#ifdef CONFIG_MPIPL_ENABLED
errlHndl_t IntrRp::extractHbNodeInfo(void)
{
errlHndl_t err = NULL;
uint64_t hrmorBase = KernelIpc::ipc_data_area.hrmor_base;
TARGETING::ATTR_HB_EXISTING_IMAGE_type hb_existing_image = 0;
void * node_info_ptr =
reinterpret_cast<void *>((iv_masterCpu.groupId * hrmorBase) +
VMM_INTERNODE_PRESERVED_MEMORY_ADDR);
internode_info_t * this_node_info =
reinterpret_cast<internode_info_t *>
(mm_block_map(node_info_ptr,INTERNODE_INFO_SIZE));
if(this_node_info)
{
if(this_node_info->eye_catcher != NODE_INFO_EYE_CATCHER)
{
TRACFCOMP(g_trac_intr, INFO_MRK
"MPIPL, but INTR node data sync area unintialized."
" Assuming single HB Intance system");
}
else //multinode
{
TARGETING::ATTR_HB_EXISTING_IMAGE_type mask = 0x1 <<
(MAX_NODES_PER_SYS -1);
for(uint64_t node = 0; node < MAX_NODES_PER_SYS; ++node)
{
//If comm area indicates node exists, add to map
if(this_node_info->exist[node])
{
hb_existing_image |= (mask >> node);
}
}
}
mm_block_unmap(this_node_info);
}
else
{
TRACFCOMP( g_trac_intr, "Failure calling mm_block_map : phys_addr=%p",
node_info_ptr);
/*@
* @errortype ERRL_SEV_UNRECOVERABLE
* @moduleid INTR::MOD_INTR_EXTRACTNODEINFO
* @reasoncode INTR::RC_CANNOT_MAP_MEMORY
* @userdata1 physical address
* @userdata2 Size
* @devdesc Error mapping in memory
*/
err = new ERRORLOG::ErrlEntry(
ERRORLOG::ERRL_SEV_UNRECOVERABLE,
INTR::MOD_INTR_EXTRACTNODEINFO,
INTR::RC_CANNOT_MAP_MEMORY,
reinterpret_cast<uint64_t>(node_info_ptr),
INTERNODE_INFO_SIZE,
true /*Add HB Software Callout*/);
}
TARGETING::Target * sys = NULL;
TARGETING::targetService().getTopLevelTarget(sys);
sys->setAttr<TARGETING::ATTR_HB_EXISTING_IMAGE>(hb_existing_image);
TRACFCOMP( g_trac_intr, "extractHbNodeInfo found map: %x", hb_existing_image);
return err;
}
#endif
//----------------------------------------------------------------------------
// External interfaces
//----------------------------------------------------------------------------
// Register a message queue with a particular intr type
errlHndl_t INTR::registerMsgQ(msg_q_t i_msgQ,
uint32_t i_msg_type,
ext_intr_t i_intr_type)
{
errlHndl_t err = NULL;
// Can't add while handling an interrupt, so
// send msg instead of direct call
msg_q_t intr_msgQ = msg_q_resolve(VFS_ROOT_MSG_INTR);
if(intr_msgQ)
{
msg_t * msg = msg_allocate();
msg->type = MSG_INTR_REGISTER_MSGQ;
msg->data[0] = reinterpret_cast<uint64_t>(i_msgQ);
msg->data[1] = static_cast<uint64_t>(i_intr_type);
msg->data[1] |= static_cast<uint64_t>(i_msg_type) << 32;
int rc = msg_sendrecv(intr_msgQ, msg);
if(!rc)
{
err = reinterpret_cast<errlHndl_t>(msg->data[1]);
}
else
{
TRACFCOMP(g_trac_intr,ERR_MRK
"INTR::registerMsgQ - msg_sendrecv failed. errno = %d",
rc);
}
msg_free(msg);
}
else
{
/*@ errorlog tag
* @errortype ERRL_SEV_INFORMATIONAL
* @moduleid INTR::MOD_INTR_REGISTER
* @reasoncode INTR::RC_REGISTRY_NOT_READY
* @userdata1 Interrupt type to register
* @userdata2 0
*
* @devdesc Interrupt resource provider not initialized yet.
*
*/
err = new ERRORLOG::ErrlEntry
(
ERRORLOG::ERRL_SEV_INFORMATIONAL, // severity
INTR::MOD_INTR_REGISTER, // moduleid
INTR::RC_REGISTRY_NOT_READY, // reason code
static_cast<uint64_t>(i_intr_type),
0
);
}
return err;
}
void INTR::sendEOI(msg_q_t i_q, msg_t* i_msg)
{
//Fix up message to make it easier to handle
//Users are required to NOT touch it
i_msg->type = MSG_INTR_EOI;
msg_respond(i_q,i_msg);
}
// Unregister message queue from interrupt handler
msg_q_t INTR::unRegisterMsgQ(ext_intr_t i_type)
{
msg_q_t msgQ = NULL;
msg_q_t intr_msgQ = msg_q_resolve(VFS_ROOT_MSG_INTR);
if(intr_msgQ)
{
msg_t * msg = msg_allocate();
msg->type = MSG_INTR_UNREGISTER_MSGQ;
msg->data[0] = static_cast<uint64_t>(i_type);
int rc = msg_sendrecv(intr_msgQ,msg);
if(!rc)
{
msgQ = reinterpret_cast<msg_q_t>(msg->data[1]);
}
else
{
TRACFCOMP(g_trac_intr,ERR_MRK
"INTR::unRegisterMsgQ - msg_sendrecv failed. errno = %d",
rc);
}
msg_free(msg);
}
return msgQ;
}
/*
* Enable hardware to report external interrupts
*/
errlHndl_t INTR::enableExternalInterrupts()
{
errlHndl_t err = NULL;
msg_q_t intr_msgQ = msg_q_resolve(VFS_ROOT_MSG_INTR);
if(intr_msgQ)
{
msg_t * msg = msg_allocate();
msg->type = MSG_INTR_ENABLE;
msg_sendrecv(intr_msgQ, msg);
err = reinterpret_cast<errlHndl_t>(msg->data[1]);
msg_free(msg);
}
else
{
/*@ errorlog tag
* @errortype ERRL_SEV_INFORMATIONAL
* @moduleid INTR::MOD_INTR_ENABLE
* @reasoncode INTR::RC_RP_NOT_INITIALIZED
* @userdata1 MSG_INTR_ENABLE
* @userdata2 0
*
* @devdesc Interrupt resource provider not initialized yet.
*
*/
err = new ERRORLOG::ErrlEntry
(
ERRORLOG::ERRL_SEV_INFORMATIONAL, // severity
INTR::MOD_INTR_ENABLE, // moduleid
INTR::RC_RP_NOT_INITIALIZED, // reason code
static_cast<uint64_t>(MSG_INTR_ENABLE),
0
);
}
return err;
}
/*
* Disable hardware from reporting external interrupts
*/
errlHndl_t INTR::disableExternalInterrupts()
{
errlHndl_t err = NULL;
// Can't disable while handling interrupt, so send msg to serialize
msg_q_t intr_msgQ = msg_q_resolve(VFS_ROOT_MSG_INTR);
if(intr_msgQ)
{
msg_t * msg = msg_allocate();
msg->type = MSG_INTR_DISABLE;
msg_sendrecv(intr_msgQ, msg);
err = reinterpret_cast<errlHndl_t>(msg->data[1]);
msg_free(msg);
}
else
{
/*@ errorlog tag
* @errortype ERRL_SEV_INFORMATIONAL
* @moduleid INTR::MOD_INTR_DISABLE
* @reasoncode INTR::RC_RP_NOT_INITIALIZED
* @userdata1 MSG_INTR_DISABLE
* @userdata2 0
*
* @devdesc Interrupt resource provider not initialized yet.
*
*/
err = new ERRORLOG::ErrlEntry
(
ERRORLOG::ERRL_SEV_INFORMATIONAL, // severity
INTR::MOD_INTR_DISABLE, // moduleid
INTR::RC_RP_NOT_INITIALIZED, // reason code
static_cast<uint64_t>(MSG_INTR_DISABLE),
0
);
}
return err;
}
errlHndl_t IntrRp::setPsiHbBAR(intr_hdlr_t *i_proc)
{
errlHndl_t l_err = NULL;
TARGETING::Target *l_target = i_proc->proc;
uint64_t l_baseBarValue =
l_target->getAttr<TARGETING::ATTR_PSI_BRIDGE_BASE_ADDR>();
do {
//Get base BAR Value from attribute
uint64_t l_barValue = l_baseBarValue;
TRACFCOMP(g_trac_intr,"INTR: Setting PSI BRIDGE Bar Address value for -"
" Target %p. PSI BRIDGE BAR value: 0x%016lx",
l_target,l_barValue);
//Set base BAR Value
uint64_t size = sizeof(l_barValue);
l_err = deviceWrite(l_target,
&l_barValue,
size,
DEVICE_SCOM_ADDRESS(PSI_BRIDGE_BAR_SCOM_ADDR));
if(l_err)
{
TRACFCOMP(g_trac_intr,ERR_MRK"Unable to set PSI BRIDGE BAR Address");
break;
}
//Now set the enable bit
l_barValue += PSI_BRIDGE_BAR_ENABLE;
size = sizeof(l_barValue);
TRACDCOMP(g_trac_intr,"INTR: Setting PSI BRIDGE Bar enable value for Target - %p. PSI BRIDGE BAR value: 0x%016lx",
l_target,l_barValue);
l_err = deviceWrite(l_target,
&l_barValue,
size,
DEVICE_SCOM_ADDRESS(PSI_BRIDGE_BAR_SCOM_ADDR));
if(l_err)
{
TRACFCOMP(g_trac_intr,ERR_MRK"Error enabling PSIHB BAR");
break;
}
//Map Memory Internally for HB and store in member variable
void *l_psiHbAddress =
reinterpret_cast<void *>(l_baseBarValue);
i_proc->psiHbBaseAddr =
reinterpret_cast<PSIHB_SW_INTERFACES_t *>
(mmio_dev_map(l_psiHbAddress, PAGE_SIZE));
} while(0);
return l_err;
}
errlHndl_t IntrRp::setPsiHbEsbBAR(intr_hdlr_t *i_proc,
bool i_enable)
{
TARGETING::Target *l_target = i_proc->proc;
errlHndl_t l_err = NULL;
uint64_t l_baseBarValue
= l_target->getAttr<TARGETING::ATTR_PSI_HB_ESB_ADDR>();
do {
uint64_t l_barValue = l_baseBarValue;
TRACFCOMP(g_trac_intr,"INTR: Target %p. "
"PSI BRIDGE ESB BAR value: 0x%016lx",
l_target,l_barValue);
uint64_t size = sizeof(l_barValue);
l_err = deviceWrite(l_target,
&l_barValue,
size,
DEVICE_SCOM_ADDRESS(PSI_BRIDGE_ESB_BAR_SCOM_ADDR));
if(l_err)
{
TRACFCOMP(g_trac_intr,ERR_MRK"Unable to set PSIHB ESB BAR ");
break;
}
//If we are trying to enable this BAR register
if (i_enable)
{
l_barValue += PSI_BRIDGE_ESB_BAR_VALID;
TRACFCOMP(g_trac_intr,"INTR: Target %p. PSI BRIDGE ESB BAR value: 0x%016lx",
l_target,l_barValue);
size = sizeof(l_barValue);
l_err = deviceWrite(l_target,
&l_barValue,
size,
DEVICE_SCOM_ADDRESS(PSI_BRIDGE_ESB_BAR_SCOM_ADDR));
if(l_err)
{
TRACFCOMP(g_trac_intr,ERR_MRK"Error setting PSIHB ESB BAR");
break;
}
//Map Memory Internally for HB and store in member variable
void *l_psiHbEoiAddress =
reinterpret_cast<void *>(l_baseBarValue);
i_proc->psiHbEsbBaseAddr =
reinterpret_cast<uint64_t *>
(mmio_dev_map(l_psiHbEoiAddress, (LSI_LAST_SOURCE)*PAGE_SIZE));
}
} while (0);
return l_err;
}
errlHndl_t IntrRp::setXiveIvpeTmBAR1(TARGETING::Target * i_target)
{
errlHndl_t l_err = NULL;
uint64_t l_baseBarValue =
i_target->getAttr<TARGETING::ATTR_XIVE_THREAD_MGMT1_BAR_ADDR>();
do
{
uint64_t l_barValue = l_baseBarValue + XIVE_IVPE_TM_BAR1_VALIDATE;
TRACDCOMP(g_trac_intr,"INTR: Target %p. XIVE IVPE TM BAR1 value: 0x%016lx",
i_target,l_barValue);
uint64_t size = sizeof(l_barValue);
l_err = deviceWrite(i_target,
&l_barValue,
size,
DEVICE_SCOM_ADDRESS(XIVE_IVPE_TM_BAR1_SCOM_ADDR));
if(l_err)
{
TRACFCOMP(g_trac_intr,ERR_MRK"Unable to set XIVE IVPE TM BAR1");
break;
}
//Map Memory Internally for HB and store in member variable
void *l_xiveTmBar1Address =
reinterpret_cast<void *>(l_baseBarValue);
iv_xiveTmBar1Address =
reinterpret_cast<uint64_t *>
(mmio_dev_map(l_xiveTmBar1Address, PAGE_SIZE));
} while(0);
return l_err;
}
errlHndl_t IntrRp::setXiveIcBAR(intr_hdlr_t *i_proc)
{
TARGETING::Target *l_target = i_proc->proc;
errlHndl_t l_err = NULL;
uint64_t l_baseBarValue
= l_target->getAttr<TARGETING::ATTR_XIVE_CONTROLLER_BAR_ADDR>();
do {
uint64_t l_barValue = l_baseBarValue + XIVE_IC_BAR_VALID;
TRACDCOMP(g_trac_intr,"INTR: Target %p. XIVE IC BAR value: 0x%016lx",
l_target,l_barValue);
uint64_t size = sizeof(l_barValue);
l_err = deviceWrite(l_target,
&l_barValue,
size,
DEVICE_SCOM_ADDRESS(XIVE_IC_BAR_SCOM_ADDR));
if(l_err)
{
TRACFCOMP(g_trac_intr,ERR_MRK"Unable to set XIVE IC BAR");
break;
}
//Map Memory Internally for HB and store in member variable
void *l_xiveIcBarAddress =
reinterpret_cast<void *>(l_baseBarValue);
i_proc->xiveIcBarAddr =
reinterpret_cast<uint64_t *>
(mmio_dev_map(l_xiveIcBarAddress, 40*PAGE_SIZE));
} while(0);
return l_err;
}
errlHndl_t IntrRp::disableVPCPullErr(intr_hdlr_t * i_proc)
{
errlHndl_t l_err = NULL;
TARGETING::Target *l_target = i_proc->proc;
size_t size;
do {
uint64_t l_vpcErrCnfg;
size = sizeof(l_vpcErrCnfg);
l_err = deviceRead(l_target,
&l_vpcErrCnfg,
size,
DEVICE_SCOM_ADDRESS(PU_INT_PC_VPC_ERR_CFG1));
if(l_err)
{
TRACFCOMP(g_trac_intr,ERR_MRK"Unable to read VPC Err Cnfg");
break;
}
l_vpcErrCnfg &= ~XIVE_IC_VPC_PULL_ERR;
l_err = deviceWrite(l_target,
&l_vpcErrCnfg,
size,
DEVICE_SCOM_ADDRESS(PU_INT_PC_VPC_ERR_CFG1));
if(l_err)
{
TRACFCOMP(g_trac_intr,ERR_MRK"Unable to write VPC Err Cnfg");
break;
}
} while(0);
return l_err;
}
errlHndl_t IntrRp::enableVPCPullErr(TARGETING::Target * i_target)
{
errlHndl_t l_err = NULL;
size_t size;
do {
uint64_t l_vpcErrCnfg;
size = sizeof(l_vpcErrCnfg);
l_err = deviceRead(i_target,
&l_vpcErrCnfg,
size,
DEVICE_SCOM_ADDRESS(PU_INT_PC_VPC_ERR_CFG1));
if(l_err)
{
TRACFCOMP(g_trac_intr,ERR_MRK"Unable to read VPC Err Cnfg");
break;
}
l_vpcErrCnfg |= XIVE_IC_VPC_PULL_ERR;
l_err = deviceWrite(i_target,
&l_vpcErrCnfg,
size,
DEVICE_SCOM_ADDRESS(PU_INT_PC_VPC_ERR_CFG1));
if(l_err)
{
TRACFCOMP(g_trac_intr,ERR_MRK"Unable to write VPC Err Cnfg");
break;
}
} while(0);
return l_err;
}
uint64_t INTR::getIntpAddr(const TARGETING::Target * i_ec, uint8_t i_thread)
{
const TARGETING::Target * l_proc = getParentChip(i_ec);
uint64_t l_intB =l_proc->getAttr<TARGETING::ATTR_INTP_BASE_ADDR>();
PIR_t pir(0);
pir.groupId = l_proc->getAttr<TARGETING::ATTR_FABRIC_GROUP_ID>();
pir.chipId = l_proc->getAttr<TARGETING::ATTR_FABRIC_CHIP_ID>();
pir.coreId = i_ec->getAttr<TARGETING::ATTR_CHIP_UNIT>();
pir.threadId = i_thread;
return (l_intB+ InterruptMsgHdlr::mmio_offset(
pir.word & (InterruptMsgHdlr::P9_PIR_THREADID_MSK |
InterruptMsgHdlr::P9_PIR_COREID_MSK)));
}
void* INTR::IntrRp::handleCpuTimeout(void* _pir)
{
uint64_t pir = reinterpret_cast<uint64_t>(_pir);
task_detach();
int count = 0;
int rc = 0;
// Allocate a message to send to the RP thread.
msg_t* msg = msg_allocate();
msg->type = MSG_INTR_ADD_CPU_TIMEOUT;
msg->data[0] = pir;
msg_q_t intr_msgQ = msg_q_resolve(VFS_ROOT_MSG_INTR);
TRACFCOMP( g_trac_intr,"handleCpuTimeout for pir: %lx", pir);
do
{
// Sleep for the right amount.
nanosleep(0, CPU_WAKEUP_INTERVAL_NS);
// Check the status with the RP thread.
msg->data[1] = count;
msg_sendrecv(intr_msgQ, msg);
// Get the status from the response message.
rc = msg->data[1];
count++;
} while(rc == EAGAIN);
msg_free(msg);
return NULL;
}
errlHndl_t INTR::addHbNode(uint64_t i_hbNode)
{
errlHndl_t err = NULL;
msg_q_t intr_msgQ = msg_q_resolve(VFS_ROOT_MSG_INTR);
TRACFCOMP( g_trac_intr,"Add node %d for MPIPL",i_hbNode);
if(intr_msgQ)
{
msg_t * msg = msg_allocate();
msg->data[0] = i_hbNode;
msg->type = MSG_INTR_ADD_HBNODE;
msg_send(intr_msgQ, msg);
}
else
{
/*@ errorlog tag
* @errortype ERRL_SEV_INFORMATIONAL
* @moduleid INTR::MOD_INTR_ADDHBNODE
* @reasoncode INTR::RC_RP_NOT_INITIALIZED
* @userdata1 MSG_INTR_ADD_HBNODE
* @userdata2 hbNode to add
*
* @devdesc Interrupt resource provider not initialized yet.
*
*/
err = new ERRORLOG::ErrlEntry
(
ERRORLOG::ERRL_SEV_INFORMATIONAL, // severity
INTR::MOD_INTR_ADDHBNODE, // moduleid
INTR::RC_RP_NOT_INITIALIZED, // reason code
static_cast<uint64_t>(MSG_INTR_ADD_HBNODE),
i_hbNode
);
}
return err;
}
void INTR::drainQueue()
{
// send a sync message if queue is found
msg_q_t intr_msgQ = msg_q_resolve(VFS_ROOT_MSG_INTR);
if(intr_msgQ)
{
msg_t * msg = msg_allocate();
msg->type = MSG_INTR_DRAIN_QUEUE;
msg_sendrecv(intr_msgQ, msg);
msg_free(msg);
}
//else no queue, no need to do anything
}
uint64_t INTR::get_enabled_threads( void )
{
TARGETING::Target* sys = NULL;
TARGETING::targetService().getTopLevelTarget(sys);
assert( sys != NULL );
uint64_t en_threads = sys->getAttr<TARGETING::ATTR_ENABLED_THREADS>();
if( en_threads == 0 )
{
//TODO RTC 151022
//Read <SBE memory area> for enabled threads value
// and set attribute appropriately
en_threads = 0xF000000000000000; //Enable all the threads
sys->setAttr<TARGETING::ATTR_ENABLED_THREADS>(en_threads);
}
return en_threads;
}
errlHndl_t INTR::enablePsiIntr(TARGETING::Target * i_target)
{
errlHndl_t err = NULL;
msg_q_t intr_msgQ = msg_q_resolve(VFS_ROOT_MSG_INTR);
if(intr_msgQ)
{
msg_t * msg = msg_allocate();
msg->type = MSG_INTR_ENABLE_PSI_INTR;
msg->data[0] = reinterpret_cast<uint64_t>(i_target);
msg_sendrecv(intr_msgQ, msg);
err = reinterpret_cast<errlHndl_t>(msg->data[1]);
msg_free(msg);
}
else
{
/*@ errorlog tag
* @errortype ERRL_SEV_INFORMATIONAL
* @moduleid INTR::MOD_INTR_ENABLE_PSI_INTR
* @reasoncode INTR::RC_RP_NOT_INITIALIZED
* @userdata1 MSG_INTR_ENABLE_PSI_INTR
* @userdata2 0
*
* @devdesc Interrupt resource provider not initialized yet.
*
*/
err = new ERRORLOG::ErrlEntry
(
ERRORLOG::ERRL_SEV_INFORMATIONAL, // severity
INTR::MOD_INTR_ENABLE_PSI_INTR, // moduleid
INTR::RC_RP_NOT_INITIALIZED, // reason code
static_cast<uint64_t>(MSG_INTR_ENABLE_PSI_INTR),
0
);
}
return err;
}
errlHndl_t INTR::IntrRp::enableSlaveProcInterrupts(TARGETING::Target * i_target)
{
errlHndl_t l_err = NULL;
do
{
TRACFCOMP(g_trac_intr, "Enabling Interrupts for slave proc with huid: %x",
TARGETING::get_huid(i_target));
intr_hdlr_t* l_procIntrHdlr = new intr_hdlr_t(i_target);
iv_chipList.push_back(l_procIntrHdlr);
//Setup the base Interrupt BAR Registers for this non-master proc
l_err = setCommonInterruptBARs(l_procIntrHdlr);
if (l_err)
{
TRACFCOMP(g_trac_intr, ERR_MRK" could not set common interrupt BARs");
break;
}
//Apply the masking of the interrupt sources from the master chip to
// the slave chip to block unwanted spurious interrupts that there is
// no handler for
for(MaskList_t::iterator mask_itr = iv_maskList.begin();
mask_itr != iv_maskList.end(); ++mask_itr)
{
l_err = maskInterruptSource(*mask_itr,
l_procIntrHdlr);
if (l_err)
{
break;
}
}
if (l_err)
{
break;
}
//Setup the PSIHB interrupt routing to route interrupts from nom-master
// proc back to master proc
enableSlaveProcInterruptRouting(l_procIntrHdlr);
} while(0);
TRACFCOMP(g_trac_intr, INFO_MRK"Slave Proc Interrupt Routing setup complete\n");
return l_err;
}
|