summaryrefslogtreecommitdiffstats
path: root/src/usr/hwpf/hwp/runtime_attributes/pm_hwp_attributes.xml
blob: 082f5e42561d9e7b0306c9742352ee946ad8e119 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
<!-- IBM_PROLOG_BEGIN_TAG                                                   -->
<!-- This is an automatically generated prolog.                             -->
<!--                                                                        -->
<!-- $Source: src/usr/hwpf/hwp/runtime_attributes/pm_hwp_attributes.xml $   -->
<!--                                                                        -->
<!-- OpenPOWER HostBoot Project                                             -->
<!--                                                                        -->
<!-- COPYRIGHT International Business Machines Corp. 2012,2014              -->
<!--                                                                        -->
<!-- Licensed under the Apache License, Version 2.0 (the "License");        -->
<!-- you may not use this file except in compliance with the License.       -->
<!-- You may obtain a copy of the License at                                -->
<!--                                                                        -->
<!--     http://www.apache.org/licenses/LICENSE-2.0                         -->
<!--                                                                        -->
<!-- Unless required by applicable law or agreed to in writing, software    -->
<!-- distributed under the License is distributed on an "AS IS" BASIS,      -->
<!-- WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or        -->
<!-- implied. See the License for the specific language governing           -->
<!-- permissions and limitations under the License.                         -->
<!--                                                                        -->
<!-- IBM_PROLOG_END_TAG                                                     -->
<!-- $Id: pm_hwp_attributes.xml,v 1.11 2014/02/06 19:08:22 stillgs Exp $ -->
<!--
    XML file specifying Power Management HWPF attributes.
    These attributes are initialized to zero by the platform and set to a
    meaningful value by a HWP
-->

<attributes>
<!-- *********************************************************************** -->

<attribute>
    <id>ATTR_PROC_DPLL_DIVIDER</id>
    <targetType>TARGET_TYPE_PROC_CHIP</targetType>
    <description>The product of the DPLL internal prescalar divide (CD_DIV124_DC) and the output divider(CD_DPLLOUT124_DC).  This estalishes the step size of the DPLL in terms of this number divided into the processor reference clock.</description>
    <valueType>uint32</valueType>
    <writeable/>
</attribute>


<attribute>
    <id>ATTR_PM_POWER_PROXY_TRACE_TIMER</id>
    <targetType>TARGET_TYPE_PROC_CHIP</targetType>
    <description>The  Power Proxy Trace timer (binary in microseconds) defines the time between Power Proxy Trace records when no other event that would otherwise produce a record has occured.  Values must be within a range of 32us to 64ms.</description>
    <valueType>uint32</valueType>
    <writeable/>
</attribute>

<attribute>
    <id>ATTR_PM_PPT_TIMER_MATCH_VALUE</id>
    <targetType>TARGET_TYPE_PROC_CHIP</targetType>
    <description>The delay is 32us * ATTR_PM_PPT_TIMER_MATCH_VALUE</description>
    <valueType>uint32</valueType>
    <writeable/>
</attribute>

<attribute>
    <id>ATTR_PM_PPT_TIMER_TICK</id>
    <targetType>TARGET_TYPE_PROC_CHIP</targetType>
    <description>Defines the Power Proxy Trace interval timer tick (0=25us, 1=0.5us, 2=1us, and 3=2us)</description>
    <valueType>uint32</valueType>
    <writeable/>
</attribute>

<attribute>
    <id>ATTR_PM_AISS_TIMEOUT</id>
    <targetType>TARGET_TYPE_PROC_CHIP</targetType>
    <description>Defines the timeout value for the Architected Idle State Sequencer (AISS).</description>
    <valueType>uint8</valueType>
    <enum>1MS=0,  2MS=1,  4MS=2,  8MS=3, 16MS=4, 32MS=5, 64MS=6, 128MS=7, 256MS=8, 512MS=9</enum>
    <writeable/>
</attribute>

<attribute>
    <id>ATTR_PM_PSTATE_STEPSIZE</id>
    <targetType>TARGET_TYPE_PROC_CHIP</targetType>
    <description>Unsigned 7 bit (baby-) stepsize for Pstate transitions between the Global Pstate Actual and the Global Pstate Target. Only non-zero values are supported for this dial.

Used to setup the PMC voltage controller

Producer: proc_build_pstate_tables.C

Consumer: OCC pstate_init()</description>
    <valueType>uint8</valueType>
    <writeable/>
</attribute>

<attribute>
    <id>ATTR_PM_EXTERNAL_VRM_STEPDELAY_RANGE</id>
    <targetType>TARGET_TYPE_PROC_CHIP</targetType>
    <description>Selects the resolution for the step delay count after a voltage change (decimal value N for this field divides the prv clock by 2^(N+3))

A 4 bit field  selects one of the the upper 16bit of a 19bit counter (16+3) incremented in the nest/4 domain

Consumer: proc_pm.scominit</description>
    <valueType>uint8</valueType>
    <writeable/>
</attribute>

<attribute>
    <id>ATTR_PM_EXTERNAL_VRM_STEPDELAY_VALUE</id>
    <targetType>TARGET_TYPE_PROC_CHIP</targetType>
    <description>Step delay after a voltage change in increments of vrm_stepdelay_range.  Setting this dial to a value N causes a delay of N cycles of the divided nest clk (see dial vrm_stepdelay_range). The closed formula is as follows: Delay_seconds = vrm_stepdelay_value * ( 2^(3 + vrm_stepdelay_range) / (Nest_frequency_Hz/4))

Consumer: proc_pm.scominit</description>
    <valueType>uint8</valueType>
    <writeable/>
</attribute>

<attribute>
    <id>ATTR_PM_PMC_HANGPULSE_DIVIDER</id>
    <targetType>TARGET_TYPE_PROC_CHIP</targetType>
    <description>Divides the hang pulse to PMC to achieve XXXX. Note that this needs to be set according to the description of dial pmc_occ_heartbeat_time

Producer:  proc_pm_init

Consumer: proc_pm.scominit</description>
    <valueType>uint8</valueType>
    <writeable/>
</attribute>

<attribute>
    <id>ATTR_PM_PVSAFE_PSTATE</id>
    <targetType>TARGET_TYPE_PROC_CHIP</targetType>
    <description>
Pstate that is invoked in the PMC voltage controller upon the loss of the OCC Heartbeat..

Producer:  proc_pm_init.C

Consumer: proc_pm.scominit</description>
    <valueType>uint8</valueType>
    <writeable/>
</attribute>

<attribute>
    <id>ATTR_PM_SPIVID_FRAME_SIZE</id>
    <targetType>TARGET_TYPE_PROC_CHIP</targetType>
    <description>Number of data bits per individual SPIVID transaction (also referred to as frame) during chip select assertion

Supported values: 0x20 (32d)

Chip Select assertion duration is spi_frame_size + 2</description>
    <valueType>uint8</valueType>
    <writeable/>
</attribute>

<attribute>
    <id>ATTR_PM_SPIVID_IN_DELAY_FRAME1</id>
    <targetType>TARGET_TYPE_PROC_CHIP</targetType>
    <description>Number of SPIVID clocks after chip select to wait before capturing MISO input in frame 1

Supported values: 0x00 to spi_frame_size.  Values beyond spi_frame_size result in the input never being captured</description>
    <valueType>uint8</valueType>
    <writeable/>
</attribute>

<attribute>
    <id>ATTR_PM_SPIVID_IN_DELAY_FRAME2</id>
    <targetType>TARGET_TYPE_PROC_CHIP</targetType>
    <description>Number of SPI clocks after chip select to wait before capturing MISO input in frame 2

Supported values: 0x00 to spi_frame_size.  Values beyond spi_frame_size result in the input never being captured</description>
    <valueType>uint8</valueType>
    <writeable/>
</attribute>

<attribute>
    <id>ATTR_PM_SPIVID_CLOCK_POLARITY</id>
    <targetType>TARGET_TYPE_PROC_CHIP</targetType>
    <description>SPVID Clock Polarity  (CPOL=0 means that clk idle is deasserted, CPOL=1 means that clk idle is asserted)</description>
    <valueType>uint8</valueType>
    <enum>IDLELOW=0, IDLEHIGH = 1</enum>
    <writeable/>
</attribute>

<attribute>
    <id>ATTR_PM_SPIVID_CLOCK_PHASE</id>
    <targetType>TARGET_TYPE_PROC_CHIP</targetType>
    <description>SPI clock phase (CPHA=0 means to change/sample values of data signals on first edge, otherwise on 2nd)</description>
    <valueType>uint8</valueType>
    <enum>FIRSTEDGE=0, 
SECONDEDGE=1</enum>
    <writeable/>
</attribute>

<attribute>
    <id>ATTR_PM_SPIVID_CLOCK_DIVIDER</id>
    <targetType>TARGET_TYPE_PROC_CHIP</targetType>
    <description>SPIVID clock speed divider to divide the nest_nclk/4 mesh clock, which results in a divider = (nest_freq/ (SPI_freq*8))-1
For a 2.4GHz nest clock, this means that the SPI clk can be theoretically adjusted between 600MHz and 0.29MHz (cycle time 1.66ns...3.41us, in 1.66ns steps). However, a practical range is 0.5...25MHz.</description>
    <valueType>uint32</valueType>
    <writeable/>
</attribute>

<attribute>
    <id>ATTR_PM_SPIVID_INTERFRAME_DELAY_WRITE_STATUS</id>
    <targetType>TARGET_TYPE_PROC_CHIP</targetType>
    <description>Delay between command and status frames of a SPIVID WRITE operation (binary in nanoseconds)
Consumer: proc_pmc_init</description>
    <valueType>uint32</valueType>
    <writeable/>
</attribute>

<attribute>
    <id>ATTR_PM_SPIVID_INTERFRAME_DELAY_WRITE_STATUS_VALUE</id>
    <targetType>TARGET_TYPE_PROC_CHIP</targetType>
    <description>Delay between two frames of a Write command as measured from the end of the last bit of the first frame until the chip select of the second frame, which contains the status, is asserted.  This delay allows for the checking and status data production in the SPIVID chip.

Delay is computed as:  (value * ~100ns_hang_pulse)  +0/-~100ns_hang_pulse time

0x00000: Wait 1 SPI Clock
0x00001 - 0x1FFFF: value = number of ~100ns_hang_pulses

For values greater than 0x00000, the actual delay is 1 SPI Clock + the time delay designated by the value defined. Max. delay at 0x1FFFF: 13.1ms + 1 SPI clock cycle.</description>
    <valueType>uint32</valueType>
    <writeable/>
</attribute>

<attribute>
    <id>ATTR_PM_SPIVID_INTER_RETRY_DELAY_VALUE</id>
    <targetType>TARGET_TYPE_PROC_CHIP</targetType>
    <description>Delay between command retry attempts.

Delay is computed as:  (value * ~100ns_hang_pulse)  +0/-~100ns_hang_pulse time

0x0000: Wait 1 SPI Clock
0x0001 - 0xFFFF: value = number of ~100ns_hang_pulses

For values greater than 0x00000, the actual delay is 1 SPI Clock + the time delay designated by the value defined. Max. delay at 0x1FFFF: 13.1ms + 1 SPI clock cycle.</description>
    <valueType>uint32</valueType>
    <writeable/>
</attribute>

<attribute>
    <id>ATTR_PM_SPIVID_INTER_RETRY_DELAY</id>
    <targetType>TARGET_TYPE_PROC_CHIP</targetType>
    <description>Delay between SPIVID reture attempts when WRITE command status indicates an error (binary in nanoseconds)
Consumer: proc_pmc_init</description>
    <valueType>uint32</valueType>
    <writeable/>
</attribute>

<attribute>
    <id>ATTR_PM_SPIVID_CRC_GEN_ENABLE</id>
    <targetType>TARGET_TYPE_PROC_CHIP</targetType>
    <description>EnableS CRC generation from processor to VRM device. This will produce an 8b CRC per the enabled polynomial. If CRC generation is disabled, the full 32 bits at the data input of the SPI master are transmitted.</description>
    <valueType>uint8</valueType>
    <enum>TRUE = 1, FALSE = 0</enum>
    <writeable/>
</attribute>

<attribute>
    <id>ATTR_PM_SPIVID_CRC_CHECK_ENABLE</id>
    <targetType>TARGET_TYPE_PROC_CHIP</targetType>
    <description>Enables CRC checking in the processor of frames from the VRM device.</description>
    <valueType>uint8</valueType>
    <enum>TRUE = 1, FALSE = 0</enum>
    <writeable/>
</attribute>

<attribute>
    <id>ATTR_PM_SPIVID_MAJORITY_VOTE_ENABLE</id>
    <targetType>TARGET_TYPE_PROC_CHIP</targetType>
    <description>enables the a majority vote on the 3B of status payload on a frame received by the master as each of these have a 1 byte status field replicated three (3) times by the slave.</description>
    <valueType>uint8</valueType>
    <enum>TRUE = 1, FALSE = 0</enum>
    <writeable/>
</attribute>

<attribute>
    <id>ATTR_PM_SPIVID_MAX_RETRIES</id>
    <targetType>TARGET_TYPE_PROC_CHIP</targetType>
    <description>Number retries upon detected errors.

0x00: No retry
0x01 to 0x1F: 1 to 31 respectively</description>
    <valueType>uint8</valueType>
    <writeable/>
</attribute>

<attribute>
    <id>ATTR_PM_SPIVID_CRC_POLYNOMIAL_ENABLES</id>
    <targetType>TARGET_TYPE_PROC_CHIP</targetType>
    <description>CRC8 Polynomial Enables

An 8 bit mask vector to enable XORs in the CRC generation and checking LFSRs at the respective bit position. MSB (x^8) is omitted since it is always enabled, so the mask layout is (x^7,x^6,x^5,x^4,x^3,x^2,x^1,1)

Planned CRC8 polynomial: x^8 + x^7 + x^6 + x^4 + x^2 + 1
Value to enable planned polynomial: 0b1101_0101 (=0xD5)</description>
    <valueType>uint8</valueType>
    <writeable/>
</attribute>

<attribute>
    <id>ATTR_PM_OCC_HEARTBEAT_TIME</id>
    <targetType>TARGET_TYPE_PROC_CHIP</targetType>
    <description>Time within which the OCC firmware must access the PMC or the OCC will be considered faulty whereby  FIRs and malfunction alerts will be produced . (binary in nanoseconds)
Consumer: OCC FW</description>
    <valueType>uint32</valueType>
</attribute>

<attribute>
    <id>ATTR_PM_SLEEP_WINKLE_REQUEST_TIMEOUT</id>
    <targetType>TARGET_TYPE_PROC_CHIP</targetType>
    <description>Time (binary in ns) that will be the threshold value for the PMC PORE request timeout.

Consumer: proc_pmc_init.C.  Will be translated to a DYNAMIC ATTRIBUTE for use by proc_pm..scominit  as a multiple of PM hang pulses.. Counter starts at 0, is increased with every tp_pmc_hang_pulse as long as PORE is busy and set the PMC local FIR bit 19 when count = threshold.</description>
    <valueType>uint32</valueType>
    <writeable/>
</attribute>


<attribute>
    <id>ATTR_PM_PFET_POWERUP_CORE_DELAY0</id>
    <targetType>TARGET_TYPE_PROC_CHIP</targetType>
    <description>Delay (binary in nanoseconds) after a step in the Core power-up  PFET sequence.  Enabled per step by the vector defined in ATTR_PM_PFET_POWERUP_CORE_SEQUENCE_DELAY_SELECT</description>
    <valueType>uint32</valueType>
    <platInit/>
</attribute>

<attribute>
    <id>ATTR_PM_PFET_POWERUP_CORE_DELAY1</id>
    <targetType>TARGET_TYPE_PROC_CHIP</targetType>
    <description>Delay (binary in nanoseconds) after a step in the Core power-up  PFET sequence.  Enabled per step by the vector defined in ATTR_PM_PFET_POWERUP_CORE_SEQUENCE_DELAY_SELECT</description>
    <valueType>uint32</valueType>
    <platInit/>
</attribute>

<attribute>
    <id>ATTR_PM_PFET_POWERUP_CORE_DELAY0_VALUE</id>
    <targetType>TARGET_TYPE_PROC_CHIP</targetType>
    <description>Delay value 0  between any step in the Core power-up  PFET sequence.</description>
    <valueType>uint8</valueType>
</attribute>

<attribute>
    <id>ATTR_PM_PFET_POWERUP_CORE_DELAY1_VALUE</id>
    <targetType>TARGET_TYPE_PROC_CHIP</targetType>
    <description>Delay value 1  between any step in the Core power-up  PFET sequence.</description>
    <valueType>uint8</valueType>
</attribute>

<attribute>
    <id>ATTR_PM_PFET_POWERUP_CORE_SEQUENCE_DELAY_SELECT</id>
    <targetType>TARGET_TYPE_PROC_CHIP</targetType>
    <description>Binary vector where the most significant bits (0:11) identify the delay to be used for that step of the sequence.  Power up goes from 11, then 10, then 9,.... then 0.

0 in the bit position:  use ATTR_PM_PFET_POWERUP_CORE_DELAY0;

1 in the bit position:  use ATTR_PM_PFET_POWERUP_CORE_DELAY1</description>
    <valueType>uint32</valueType>
    <writeable/>
</attribute>

<attribute>
    <id>ATTR_PM_PFET_POWERDOWN_CORE_DELAY0</id>
    <targetType>TARGET_TYPE_PROC_CHIP</targetType>
    <description>Delay (binary in nanoseconds) between a step in the Core power-down  PFET sequence.  Enabled per step by the vector defined in ATTR_PM_PFET_POWERDOWN_CORE_SEQUENCE_DELAY_SELECT</description>
    <valueType>uint32</valueType>
    <platInit/>
</attribute>

<attribute>
    <id>ATTR_PM_PFET_POWERDOWN_CORE_DELAY1</id>
    <targetType>TARGET_TYPE_PROC_CHIP</targetType>
    <description>Delay (binary in nanoseconds) between a step in the Core power-down  PFET sequence.  Enabled per step by the vector defined in ATTR_PM_PFET_POWERDOWN_CORE_SEQUENCE_DELAY_SELECT</description>
    <valueType>uint32</valueType>
    <platInit/>
</attribute>

<attribute>
    <id>ATTR_PM_PFET_POWERDOWN_CORE_DELAY0_VALUE</id>
    <targetType>TARGET_TYPE_PROC_CHIP</targetType>
    <description>Delay value 0  between any step in the Core power-up  PFET sequence.</description>
    <valueType>uint8</valueType>
</attribute>

<attribute>
    <id>ATTR_PM_PFET_POWERDOWN_CORE_DELAY1_VALUE</id>
    <targetType>TARGET_TYPE_PROC_CHIP</targetType>
    <description>Delay value 1  between any step in the Core power-up  PFET sequence.</description>
    <valueType>uint8</valueType>
</attribute>

<attribute>
    <id>ATTR_PM_PFET_POWERDOWN_CORE_SEQUENCE_DELAY_SELECT</id>
    <targetType>TARGET_TYPE_PROC_CHIP</targetType>
    <description>Binary vector where the most significant bits (0:11) identify the delay to be used for that step of the sequence.  Power up goes from 11, then 10, then 9,.... then 0.

0 in the bit position:  use ATTR_PM_PFET_POWERUP_CORE_DELAY0;

1 in the bit position:  use ATTR_PM_PFET_POWERUP_CORE_DELAY1</description>
    <valueType>uint32</valueType>
    <writeable/>
</attribute>

<attribute>
    <id>ATTR_PM_PFET_POWERUP_ECO_DELAY0</id>
    <targetType>TARGET_TYPE_PROC_CHIP</targetType>
    <description>Delay (binary in nanoseconds) after a step in the ECO power-up  PFET sequence.  Enabled per step by the vector defined in ATTR_PM_PFET_POWERUP_ECO_SEQUENCE_DELAY_SELECT</description>
    <valueType>uint32</valueType>
    <platInit/>
</attribute>

<attribute>
    <id>ATTR_PM_PFET_POWERUP_ECO_DELAY1</id>
    <targetType>TARGET_TYPE_PROC_CHIP</targetType>
    <description>Delay (binary in nanoseconds) after a step in the ECO power-up  PFET sequence.  Enabled per step by the vector defined in ATTR_PM_PFET_POWERUP_ECO_SEQUENCE_DELAY_SELECT</description>
    <valueType>uint32</valueType>
    <platInit/>
</attribute>

<attribute>
    <id>ATTR_PM_PFET_POWERUP_ECO_DELAY0_VALUE</id>
    <targetType>TARGET_TYPE_PROC_CHIP</targetType>
    <description>Delay value 0  between any step in the ECO power-up  PFET sequence.</description>
    <valueType>uint8</valueType>
</attribute>

<attribute>
    <id>ATTR_PM_PFET_POWERUP_ECO_DELAY1_VALUE</id>
    <targetType>TARGET_TYPE_PROC_CHIP</targetType>
    <description>Delay value 1  between any step in the ECO power-up  PFET sequence.</description>
    <valueType>uint8</valueType>
</attribute>

<attribute>
    <id>ATTR_PM_PFET_POWERUP_ECO_SEQUENCE_DELAY_SELECT</id>
    <targetType>TARGET_TYPE_PROC_CHIP</targetType>
    <description>Binary vector where the most significant bits (0:11) identify the delay to be used for that step of the sequence.  Power up goes from 11, then 10, then 9,.... then 0.

0 in the bit position:  use ATTR_PM_PFET_POWERUP_ECO_DELAY0;

1 in the bit position:  use ATTR_PM_PFET_POWERUP_ECO_DELAY1</description>
    <valueType>uint32</valueType>
    <writeable/>
</attribute>

<attribute>
    <id>ATTR_PM_PFET_POWERDOWN_ECO_DELAY0</id>
    <targetType>TARGET_TYPE_PROC_CHIP</targetType>
    <description>Delay (binary in nanoseconds) between a step in the ECO power-down  PFET sequence.  Enabled per step by the vector defined in ATTR_PM_PFET_POWERDOWN_ECO_SEQUENCE_DELAY_SELECT</description>
    <valueType>uint32</valueType>
    <platInit/>
</attribute>

<attribute>
    <id>ATTR_PM_PFET_POWERDOWN_ECO_DELAY1</id>
    <targetType>TARGET_TYPE_PROC_CHIP</targetType>
    <description>Delay (binary in nanoseconds) between a step in the ECO power-down  PFET sequence.  Enabled per step by the vector defined in ATTR_PM_PFET_POWERDOWN_ECO_SEQUENCE_DELAY_SELECT</description>
    <valueType>uint32</valueType>
    <platInit/>
</attribute>

<attribute>
    <id>ATTR_PM_PFET_POWERDOWN_ECO_DELAY0_VALUE</id>
    <targetType>TARGET_TYPE_PROC_CHIP</targetType>
    <description>Delay value 0  between any step in the ECO power-up  PFET sequence.</description>
    <valueType>uint8</valueType>
</attribute>

<attribute>
    <id>ATTR_PM_PFET_POWERDOWN_ECO_DELAY1_VALUE</id>
    <targetType>TARGET_TYPE_PROC_CHIP</targetType>
    <description>Delay value 1  between any step in the ECO power-up  PFET sequence.</description>
    <valueType>uint8</valueType>
</attribute>

<attribute>
    <id>ATTR_PM_PFET_POWERDOWN_ECO_SEQUENCE_DELAY_SELECT</id>
    <targetType>TARGET_TYPE_PROC_CHIP</targetType>
    <description>Binary vector where the most significant bits (0:11) identify the delay to be used for that step of the ECO power up sequence.  Power up goes from 11, then 10, then 9,.... then 0.  0 in the bit position:  use ATTR_PM_PFET_POWERUP_ECO_DELAY0;  1 in the bit position:  use ATTR_PM_PFET_POWERUP_ECO_DELAY1</description>
    <valueType>uint32</valueType>
    <writeable/>
</attribute>

<attribute>
    <id>ATTR_PM_PSTATE0_FREQUENCY</id>
    <targetType>TARGET_TYPE_PROC_CHIP</targetType>
    <description>Defines the center point of the Pstate space in the frequency domain.  Binary in Khz.

Producer: proc_build_gpstate.C

Consumers: proc_pcbs_init.C, proc_pcbs_lpst_init.C, </description>
    <valueType>uint32</valueType>
</attribute>

<attribute>
    <id>ATTR_PM_IVRMS_ENABLED</id>
    <targetType>TARGET_TYPE_PROC_CHIP</targetType>
    <description>Indicates whether available internal voltage regulation macros (iVRMs) are to enabled.  This indicates that module VPD has valid #M keywords available.</description>
    <valueType>uint8</valueType>
    <enum>TRUE = 1, FALSE = 0</enum>
    <writeable/>
</attribute>

<attribute>
    <id>ATTR_PM_SAFE_PSTATE</id>
    <targetType>TARGET_TYPE_PROC_CHIP</targetType>
    <description>Safe Pstate

Valid Values:-128 thru 127

Producer: proc_pm_init.C

DYNAMIC_ATTRIBUTE

Consumer: proc_pcbs_init.C

Establishes the Pstate that the core chiplet will take on if:
psafe less-than-or-equal PMSR[global_actual_pstate]
AND any of the following conditions are true:
Loss of OCC Heartbeat if occ_heartbeat_en is set
PMGP0[force_safe_mode] is set

If psafe greater-than PMSR[global_actual_pstate], the  global_actual_pstate is forced.

The value of Psafe needs to be at or below the nominal Pstate to make sure safe operation of all chiplets.</description>
    <valueType>uint8</valueType>
    <writeable/>
</attribute>

<attribute>
    <id>ATTR_PM_RESONANT_CLOCK_ENABLE</id>
    <targetType>TARGET_TYPE_PROC_CHIP</targetType>
    <description>Resonant Clock Enable</description>
    <valueType>uint8</valueType>
    <writeable/>
</attribute>

<attribute>
    <id>ATTR_PM_RESONANT_CLOCK_FULL_CSB_PSTATE</id>
    <targetType>TARGET_TYPE_PROC_CHIP</targetType>
    <description>FCSB  Full Clock Sector Buffer (8b in terms of Pstate)
Defines the Pstate for the point at which clock sector buffers should be at full strength.  This is to support Vmin operation.
</description>
    <valueType>uint8</valueType>
    <writeable/>
</attribute>

<attribute>
    <id>ATTR_PM_RESONANT_CLOCK_LFRLOW_PSTATE</id>
    <targetType>TARGET_TYPE_PROC_CHIP</targetType>
    <description>LFRLower  Low Frequency Resonant Lower.  Defines the Pstate for the lower end of the Low Frequency Resonant band</description>
    <valueType>uint8</valueType>
    <writeable/>
</attribute>

<attribute>
    <id>ATTR_PM_RESONANT_CLOCK_LFRUPPER_PSTATE</id>
    <targetType>TARGET_TYPE_PROC_CHIP</targetType>
    <description>LFRUpper  Low Frequency Resonant Upper. Defines the Pstate for the upper end of the Low Frequency Resonant band</description>
    <valueType>uint8</valueType>
    <writeable/>
</attribute>

<attribute>
    <id>ATTR_PM_RESONANT_CLOCK_HFRLOW_PSTATE</id>
    <targetType>TARGET_TYPE_PROC_CHIP</targetType>
    <description>HFRLower  High Frequency Resonant Low. Defines the Pstate for the lower end of the High Frequency Resonant band</description>
    <valueType>uint8</valueType>
    <writeable/>
</attribute>

<attribute>
    <id>ATTR_PM_RESONANT_CLOCK_HFRHIGH_PSTATE</id>
    <targetType>TARGET_TYPE_PROC_CHIP</targetType>
    <description>HFRUpper  High Frequency Resonant Upper. Defines the Pstate for the upper end of the High Frequency Resonant band</description>
    <valueType>uint8</valueType>
    <writeable/>
</attribute>

<attribute>
    <id>ATTR_PM_SPIPSS_FRAME_SIZE</id>
    <targetType>TARGET_TYPE_PROC_CHIP</targetType>
    <description>Number of data bits per individual SPIPSS transaction (also referred to as frame) during chip select assertion

Supported values: 0x10 (16d),

Chip Select assertion duration is spi_frame_size + 2</description>
    <valueType>uint8</valueType>
    <writeable/>
</attribute>

<attribute>
    <id>ATTR_PM_SPIPSS_OUT_COUNT</id>
    <targetType>TARGET_TYPE_PROC_CHIP</targetType>
    <description>Number of bits sent out MOSI of the frame

Supported values: 0x000 to spi_frame_size.  Values beyond spi_frame_size are ignored.</description>
    <valueType>uint8</valueType>
    <writeable/>
</attribute>

<attribute>
    <id>ATTR_PM_SPIPSS_IN_DELAY</id>
    <targetType>TARGET_TYPE_PROC_CHIP</targetType>
    <description>Number of SPI clocks after chip select to wait before capturing MISO input

Supported values: 0x000 to spi_frame_size.  Values beyond spi_frame_size result in the input never being captured</description>
    <valueType>uint8</valueType>
    <writeable/>
</attribute>

<attribute>
    <id>ATTR_PM_SPIPSS_IN_COUNT</id>
    <targetType>TARGET_TYPE_PROC_CHIP</targetType>
    <description>Number of bits captured on MISO input

Supported values: 0x000 to spi_frame_size.  The actual number of bits captured is spi_frame_size - spi_in_delay</description>
    <valueType>uint8</valueType>
    <writeable/>
</attribute>

<attribute>
    <id>ATTR_PM_SPIPSS_CLOCK_POLARITY</id>
    <targetType>TARGET_TYPE_PROC_CHIP</targetType>
    <description>SPIPSS Clock Polarity  (CPOL=0 means that clk idle is deasserted, CPOH=1 means that clk idle is asserted)</description>
    <valueType>uint8</valueType>
    <enum>CPOL=0, CPOH=1</enum>
    <writeable/>
</attribute>

<attribute>
    <id>ATTR_PM_SPIPSS_CLOCK_PHASE</id>
    <targetType>TARGET_TYPE_PROC_CHIP</targetType>
    <description>SPIPSS clock phase (CPHA=0 means to change/sample values of data signals on first edge, otherwise on 2nd)</description>
    <valueType>uint8</valueType>
    <enum>FIRSTEDGE=0, SECONDEDGE=1</enum>
    <writeable/>
</attribute>

<attribute>
    <id>ATTR_PM_SPIPSS_CLOCK_DIVIDER</id>
    <targetType>TARGET_TYPE_PROC_CHIP</targetType>
    <description>SPI clock speed divider to divide the nest_nclk/4 mesh clock, which results in a divider = (nest_freq/ (SPI_freq*8))-1</description>
    <valueType>uint8</valueType>
    <writeable/>
</attribute>

<attribute>
    <id>ATTR_PM_SPIPSS_INTER_FRAME_DELAY_SETTING</id>
    <targetType>TARGET_TYPE_PROC_CHIP</targetType>
    <description>
Delay is computed as:  (value * ~100ns_hang_pulse)  +0/-~100ns_hang_pulse time

0x00000: Wait 1 PSS Clock
0x00001 - 0x1FFFF: value = number of ~100ns_hang_pulses

For values greater than 0x00000, the actual delay is 1 PSS Clock + the time delay designated by the value defined. Max. delay at 0x1FFFF: 13.1ms + 1 PSSI clock cycle.

Producer: proc_pm_init

Consumer: proc_pss_init</description>
    <valueType>uint32</valueType>
    <writeable/>
</attribute>

<attribute>
    <id>ATTR_PM_SPIPSS_INTER_FRAME_DELAY</id>
    <targetType>TARGET_TYPE_PROC_CHIP</targetType>
    <description>Delay between two frames of a P2S command as measured from the end of the last bit of the first frame until the chip select of the second frame.  (binary in nanoseconds)

Consumer: proc_pm_init

Produces ATTR_PM_SPIPSS_INTER_FRAME_DELAY_SETTING</description>
    <valueType>uint32</valueType>
    <writeable/>
</attribute>

<attribute>
    <id>ATTR_PM_PBAX_RCV_RESERV_TIMEOUT</id>
    <targetType>TARGET_TYPE_PROC_CHIP</targetType>
    <description>PBAX Data Timeout Divider
Divider for the 1us PBAX hang pulse.  A hang is detected after two divided hang pulses are received under the following conditions:
 Data Hi packet accepted and timeout waiting for Data Lo packet.
 Reservation aquired and timeout waiting for Data Hi packet.

00000  Data Timeout is Disabled
00001  divided hang pulse = PBAX hang pulse
00010  divided hang pulse = PBAX hang pulse/2
00011  divided hang pulse = PBAX hang pulse/3
. . .
11111   divided hang pulse = PBAX hang pulse/31</description>
    <valueType>uint8</valueType>
</attribute>

<attribute>
    <id>ATTR_PM_PBAX_SND_RETRY_COUNT_OVERCOMMIT_ENABLE</id>
    <targetType>TARGET_TYPE_PROC_CHIP</targetType>
    <description>PBAX Send Retry count overcommit
Mode bit to count overcommit retries for the send retry threshold when sending PBAX commands on the powerbus.</description>
    <valueType>uint8</valueType>
</attribute>

<attribute>
    <id>ATTR_PM_PBAX_SND_RETRY_THRESHOLD</id>
    <targetType>TARGET_TYPE_PROC_CHIP</targetType>
    <description>PBAX Send Retry Threshold
Defines the maximum number of retry attempts by the Send Engine for any phase of the PBAX transaction set before the operation is dropped and status bit are set.  This does not count PowerBus overcommit retries unless snd_retry_count_overcom bit is set.

0x00 :  No Timeout
0x01 :  1 attempt
0x02 :   2 attempts
.etc.
0xFF :  255 attempts</description>
    <valueType>uint8</valueType>
</attribute>

<attribute>
    <id>ATTR_PM_PBAX_SND_RESERV_TIMEOUT</id>
    <targetType>TARGET_TYPE_PROC_CHIP</targetType>
    <description>PBAX Send Reservation Timeout Divider
Divider for the 1us PBAX hang pulse.  A hang is detected after two divided hang pulses are received after attempting to acquire a reservation with the PBAX Receive engine before declaring a Send Reservation Timeout error.

00000  Send Reservation Timeout is Disabled
00001  divided hang pulse = PBAX hang pulse
00010  divided hang pulse = PBAX hang pulse/2
00011  divided hang pulse = PBAX hang pulse/3
. . .
11111   divided hang pulse = PBAX hang pulse/31</description>
    <valueType>uint8</valueType>
</attribute>

<attribute>
    <id>ATTR_PM_SPWUP_FSP</id>
    <targetType>TARGET_TYPE_EX_CHIPLET</targetType>
    <description>Arbitration Attribute for FSP special wakeups:  upon set, increment, upon clear, decrement;   hardware bit only cleared upon attribute being 0.</description>
    <valueType>uint32</valueType>
    <writeable/>
</attribute>

<attribute>
    <id>ATTR_PM_SPWUP_OCC</id>
    <targetType>TARGET_TYPE_EX_CHIPLET</targetType>
    <description>Arbitration Attribute for OCC special wakeups:  upon set, increment, upon clear, decrement;   hardware bit only cleared upon attribute being 0.</description>
    <valueType>uint32</valueType>
    <writeable/>
</attribute>

<attribute>
    <id>ATTR_PM_SPWUP_PHYP</id>
    <targetType>TARGET_TYPE_EX_CHIPLET</targetType>
    <description>Arbitration Attribute for PHUP special wakeups:  upon set, increment, upon clear, decrement;   hardware bit only cleared upon attribute being 0.</description>
    <valueType>uint32</valueType>
    <writeable/>
</attribute>

<attribute>
    <id>ATTR_PM_SPWUP_OHA_FLAG</id>
    <targetType>TARGET_TYPE_EX_CHIPLET</targetType>
    <description>Flag storage to break the recursive calling loop for when accessing the OHA address space from the Special Wakeup procedure.</description>
    <valueType>uint8</valueType>
    <writeable/>
</attribute>

<attribute>
    <id>ATTR_PM_SPWUP_IGNORE_XSTOP_FLAG</id>
    <targetType>TARGET_TYPE_EX_CHIPLET</targetType>
    <description>Flag storage to have the Special Wakeup procedure ignore a checkstop condition.</description>
    <valueType>uint8</valueType>
    <writeable/>
</attribute>

<attribute>
    <id>ATTR_CPM_INFLECTION_POINTS</id>
    <targetType>TARGET_TYPE_PROC_CHIP</targetType>
    <description>Structure to communicate the CPM inflection points from the CPM code to the Pstate code
    
    Datablock consisting of: 
        8 Inflection Point frequency entries (binary in ATTR_FREQ_PROC_REFCLOCK_KHZ / ATTR_PROC_DPLL_DIVIDER units)
        1 ValidRanges entry - the number of valid inflection points in the previous locations (unit origin)
        1 pMax frequency entry - the maximum allowed boosted frequency (binary in ATTR_FREQ_PROC_REFCLOCK_KHZ / ATTR_DPLL_DIVIDER units)
        6 spare entries
    
    
    Producer: p8_cpm_cal_load

    Consumer: p8_pstate_datablock
    </description>
    
    <valueType>uint32</valueType>
    <array>16</array>
    <writeable/>
</attribute>

<attribute>
    <id>ATTR_PM_SLW_CONTROL_VECTOR_OFFSET</id>
    <targetType>TARGET_TYPE_SYSTEM</targetType>
    <description>
    Stores the offset in SLW image of this control vector for later use by scripts to control error injection.
    This value is added to the contents of PBABAR2 for given chip to calculated the memory address for this vector per chip.
    </description>
    <valueType>uint32</valueType>
    <writeable/>
</attribute>

<attribute>
    <id>ATTR_PM_SLW_DEEP_WINKLE_EXIT_GOOD_HALT_ADDR</id>
    <targetType>TARGET_TYPE_SYSTEM</targetType>
    <description>
    Stores the offset in SLW image of the halt point for a good Deep Winkle Exit transition.  
    This is value may used by FAPI code to check that the SLW engine achieved an expected state.
    </description>
    <valueType>uint32</valueType>
    <writeable/>
</attribute>

<attribute>
    <id>ATTR_PM_SLW_DEEP_SLEEP_EXIT_GOOD_HALT_ADDR</id>
    <targetType>TARGET_TYPE_SYSTEM</targetType>
    <description>
    Stores the offset in SLW image of the halt point for a good Deep Sleep Exit transition.  
    This is value may used by FAPI code to check that the SLW engine achieved an expected state.
    </description>
    <valueType>uint32</valueType>
    <writeable/>
</attribute>

<attribute>
    <id>ATTR_PM_PCBS_FSM_TRACE_EN</id>
    <targetType>TARGET_TYPE_SYSTEM</targetType>
    <description>
    Overridable attribute to allow for PCBS FSM tracing by Power Management procedures
    </description>
    <valueType>uint8</valueType>
    <writeable/>
</attribute>

<attribute>
    <id>ATTR_PM_GLOBAL_FIR_TRACE_EN</id>
    <targetType>TARGET_TYPE_SYSTEM</targetType>
    <description>
    Overridable attribute to allow for Global checkstop and recoverable FIR tracing by Power Management procedures
    </description>
    <valueType>uint8</valueType>
    <writeable/>
</attribute>

</attributes>

OpenPOWER on IntegriCloud