summaryrefslogtreecommitdiffstats
path: root/src/usr/hwas/common/hwas.C
blob: 2b7f584c231ebcfc5747c7bf566fc5b4850ff2c8 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
/* IBM_PROLOG_BEGIN_TAG                                                   */
/* This is an automatically generated prolog.                             */
/*                                                                        */
/* $Source: src/usr/hwas/common/hwas.C $                                  */
/*                                                                        */
/* OpenPOWER HostBoot Project                                             */
/*                                                                        */
/* Contributors Listed Below - COPYRIGHT 2012,2016                        */
/* [+] Google Inc.                                                        */
/* [+] International Business Machines Corp.                              */
/*                                                                        */
/*                                                                        */
/* Licensed under the Apache License, Version 2.0 (the "License");        */
/* you may not use this file except in compliance with the License.       */
/* You may obtain a copy of the License at                                */
/*                                                                        */
/*     http://www.apache.org/licenses/LICENSE-2.0                         */
/*                                                                        */
/* Unless required by applicable law or agreed to in writing, software    */
/* distributed under the License is distributed on an "AS IS" BASIS,      */
/* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or        */
/* implied. See the License for the specific language governing           */
/* permissions and limitations under the License.                         */
/*                                                                        */
/* IBM_PROLOG_END_TAG                                                     */
/**
 *  @file hwas.C
 *
 *  HardWare Availability Service functions.
 *  See hwas.H for doxygen documentation tags.
 *
 */


/******************************************************************************/
// Includes
/******************************************************************************/
#include <stdint.h>
#include <algorithm>
#ifdef __HOSTBOOT_MODULE
#include <config.h>
#endif

#include <targeting/common/commontargeting.H>
#include <targeting/common/utilFilter.H>

#include <hwas/common/hwas.H>
#include <hwas/common/hwasCommon.H>
#include <hwas/common/hwasError.H>

#include <hwas/common/deconfigGard.H>
#include <hwas/common/hwas_reasoncodes.H>
#include <targeting/common/utilFilter.H>

namespace HWAS
{

using namespace TARGETING;
using namespace HWAS::COMMON;

// trace setup; used by HWAS_DBG and HWAS_ERR macros
HWAS_TD_t g_trac_dbg_hwas   = NULL; // debug - fast
HWAS_TD_t g_trac_imp_hwas   = NULL; // important - slow

#ifdef __HOSTBOOT_MODULE
TRAC_INIT(&g_trac_dbg_hwas, "HWAS",     KILOBYTE );
TRAC_INIT(&g_trac_imp_hwas, "HWAS_I",   KILOBYTE );
#else
TRAC_INIT(&g_trac_dbg_hwas, "HWAS",     1024 );
TRAC_INIT(&g_trac_imp_hwas, "HWAS_I",   1024 );
#endif

// SORT functions that we'll use for PR keyword processing
bool compareProcGroup(procRestrict_t t1, procRestrict_t t2)
{
    if (t1.group == t2.group)
    {
        return (t1.target->getAttr<ATTR_HUID>() <
                    t2.target->getAttr<ATTR_HUID>());
    }
    return (t1.group < t2.group);
}

bool compareAffinity(const TargetInfo t1, const TargetInfo t2)
{
        return t1.affinityPath < t2.affinityPath;
}

/**
 * @brief       simple helper fn to get and set hwas state to poweredOn,
 *                  present, functional
 *
 * @param[in]   i_target        pointer to target that we're looking at
 * @param[in]   i_present       boolean indicating present or not
 * @param[in]   i_functional    boolean indicating functional or not
 * @param[in]   i_errlEid       erreid that caused change to non-funcational;
 *                              0 if not associated with an error or if
 *                              functional is true
 *
 * @return      none
 *
 */
void enableHwasState(Target *i_target,
        bool i_present, bool i_functional,
        uint32_t i_errlEid)
{
    HwasState hwasState = i_target->getAttr<ATTR_HWAS_STATE>();

    if (i_functional == false)
    {   // record the EID as a reason that we're marking non-functional
        hwasState.deconfiguredByEid = i_errlEid;
    }
    hwasState.poweredOn     = true;
    hwasState.present       = i_present;
    hwasState.functional    = i_functional;
    i_target->setAttr<ATTR_HWAS_STATE>( hwasState );
}


/**
 * @brief       simple helper fn to check IOX/PBIOX pairs in PG XBUS data
 *
 * @param[in]   i_pgData        XBUS data from PG keyword VPD
 *
 * @return bool                 pairs are valid
 *
 */
bool areIoxPairsValid(uint16_t i_pgData)
{
    bool l_valid = true;

    // Check that pairs are valid, that is, both good or both bad
    for (uint8_t l_pair = 0;
         l_pair <= 2;
         l_pair++)
    {
        // Check if both are good in the pair
        if ((i_pgData & VPD_CP00_PG_XBUS_IOX_PAIR[l_pair]) == 0)
        {
            continue;
        }

        // Check if both are bad in the pair
        if ((i_pgData & VPD_CP00_PG_XBUS_IOX_PAIR[l_pair]) ==
            VPD_CP00_PG_XBUS_IOX_PAIR[l_pair])
        {
            continue;
        }

        l_valid = false;
        break;
    }

    return l_valid;
}


/**
 * @brief simple helper fn to check L3/L2/REFR triplets in PG EPx data
 *
 * @param[in] i_pgData EPx data from PG keyword VPD
 *
 * @return bool triplets are valid
 *
 */
bool areL3L2REFRtripletsValid(uint16_t i_pgData)
{
    bool l_valid = true;

    // Check that triplets are valid, that is, all good or all bad
    for (uint8_t l_triplet = 0;
         l_triplet <= 1;
         l_triplet++)
    {
        // Check if all are good in the triplet
        if ((i_pgData & VPD_CP00_PG_EPx_L3L2REFR[l_triplet]) == 0)
        {
            continue;
        }

        // Check if all are bad in the triplet
        if ((i_pgData & VPD_CP00_PG_EPx_L3L2REFR[l_triplet]) ==
            VPD_CP00_PG_EPx_L3L2REFR[l_triplet])
        {
            continue;
        }

        l_valid = false;
        break;
    }

    return l_valid;
}


errlHndl_t discoverTargets()
{
    HWAS_DBG("discoverTargets entry");
    errlHndl_t errl = NULL;

    //  loop through all the targets and set HWAS_STATE to a known default
    for (TargetIterator target = targetService().begin();
            target != targetService().end();
            ++target)
    {
        HwasState hwasState             = target->getAttr<ATTR_HWAS_STATE>();
        hwasState.deconfiguredByEid     = 0;
        hwasState.poweredOn             = false;
        hwasState.present               = false;
        hwasState.functional            = false;
        hwasState.dumpfunctional        = false;
        target->setAttr<ATTR_HWAS_STATE>(hwasState);
    }

    // Assumptions and actions:
    // CLASS_SYS (exactly 1) - mark as present
    // CLASS_ENC, TYPE_PROC, TYPE_MCS, TYPE_MEMBUF, TYPE_DIMM
    //     (ALL require hardware query) - call platPresenceDetect
    //  \->children: CLASS_* (NONE require hardware query) - mark as present
    do
    {
        // find CLASS_SYS (the top level target)
        Target* pSys;
        targetService().getTopLevelTarget(pSys);

        HWAS_ASSERT(pSys,
                "HWAS discoverTargets: no CLASS_SYS TopLevelTarget found");

        // mark this as present
        enableHwasState(pSys, true, true, 0);
        HWAS_DBG("pSys %.8X - marked present",
            pSys->getAttr<ATTR_HUID>());

        // find list of all we need to call platPresenceDetect against
        PredicateCTM predEnc(CLASS_ENC);
        PredicateCTM predChip(CLASS_CHIP);
        PredicateCTM predDimm(CLASS_LOGICAL_CARD, TYPE_DIMM);
        PredicateCTM predMcs(CLASS_UNIT, TYPE_MCS);
        PredicatePostfixExpr checkExpr;
        checkExpr.push(&predChip).push(&predDimm).Or().push(&predEnc).Or().
                  push(&predMcs).Or();

        TargetHandleList pCheckPres;
        targetService().getAssociated( pCheckPres, pSys,
            TargetService::CHILD, TargetService::ALL, &checkExpr );

        // pass this list to the hwas platform-specific api where
        // pCheckPres will be modified to only have present targets
        HWAS_DBG("pCheckPres size: %d", pCheckPres.size());
        errl = platPresenceDetect(pCheckPres);
        HWAS_DBG("pCheckPres size: %d", pCheckPres.size());

        if (errl != NULL)
        {
            break; // break out of the do/while so that we can return
        }

        // for each, read their ID/EC level. if that works,
        //  mark them and their descendants as present
        //  read the partialGood vector to determine if any are not functional
        //  and read and store values from the PR keyword

        // list of procs and data that we'll need to look at the PR keyword
        procRestrict_t l_procEntry;
        std::vector <procRestrict_t> l_procPRList;

        // sort the list by ATTR_HUID to ensure that we
        //  start at the same place each time
        std::sort(pCheckPres.begin(), pCheckPres.end(),
                compareTargetHuid);

        for (TargetHandleList::const_iterator pTarget_it = pCheckPres.begin();
                pTarget_it != pCheckPres.end();
                ++pTarget_it
            )
        {
            TargetHandle_t pTarget = *pTarget_it;

            // if CLASS_ENC is still in this list, mark as present
            if (pTarget->getAttr<ATTR_CLASS>() == CLASS_ENC)
            {
                enableHwasState(pTarget, true, true, 0);
                HWAS_DBG("pTarget %.8X - CLASS_ENC marked present",
                    pTarget->getAttr<ATTR_HUID>());

                // on to the next target
                continue;
            }

            bool chipPresent = true;
            bool chipFunctional = true;
            uint32_t errlEid = 0;
            uint16_t pgData[VPD_CP00_PG_DATA_LENGTH / sizeof(uint16_t)];
            bzero(pgData, sizeof(pgData));

            if (pTarget->getAttr<ATTR_CLASS>() == CLASS_CHIP)
            {
                // read Chip ID/EC data from these physical chips
                errl = platReadIDEC(pTarget);

                if (errl)
                {   // read of ID/EC failed even tho we THOUGHT we were present.
                    HWAS_INF("pTarget %.8X - read IDEC failed (eid 0x%X) - bad",
                        errl->eid(), pTarget->getAttr<ATTR_HUID>());
                    // chip NOT present and NOT functional, so that FSP doesn't
                    // include this for HB to process
                    chipPresent = false;
                    chipFunctional = false;
                    errlEid = errl->eid();

                    // commit the error but keep going
                    errlCommit(errl, HWAS_COMP_ID);
                    // errl is now NULL
                }
                else if (pTarget->getAttr<ATTR_TYPE>() == TYPE_PROC)
                {
                    // read partialGood vector from these as well.
                    errl = platReadPartialGood(pTarget, pgData);

                    if (errl)
                    {   // read of PG failed even tho we were present..
                        HWAS_INF("pTarget %.8X - read PG failed (eid 0x%X)- bad",
                            errl->eid(), pTarget->getAttr<ATTR_HUID>());
                        chipFunctional = false;
                        errlEid = errl->eid();

                        // commit the error but keep going
                        errlCommit(errl, HWAS_COMP_ID);
                        // errl is now NULL
                    }
                    else
                    {
                      // look at the 'nest' logic to override the functionality
                      //  of this proc
                      chipFunctional = isChipFunctional(pTarget, pgData);

                      if (chipFunctional)
                      {
                        // read the PR keywords that we need, so that if
                        //  we have errors, we can handle them as approprite.
                        uint8_t prData[VPD_VINI_PR_DATA_LENGTH/sizeof(uint8_t)];
                        bzero(prData, sizeof(prData));
                        errl = platReadPR(pTarget, prData);
                        if (errl != NULL)
                        {   // read of PR keyword failed
                            HWAS_INF("pTarget %.8X - read PR failed - bad",
                                pTarget->getAttr<ATTR_HUID>());
                            chipFunctional = false;
                            errlEid = errl->eid();

                            // commit the error but keep going
                            errlCommit(errl, HWAS_COMP_ID);
                            // errl is now NULL
                        }
                        else
                        {
                            // save info so that we can
                            //  process the PR keyword after this loop
                            HWAS_INF("pTarget %.8X - pushing to procPRlist; FRU_ID %d",
                                pTarget->getAttr<ATTR_HUID>(),
                                pTarget->getAttr<ATTR_FRU_ID>());
                            l_procEntry.target = pTarget;
                            l_procEntry.group = pTarget->getAttr<ATTR_FRU_ID>();
                            l_procEntry.procs =
                                        (prData[7] & VPD_VINI_PR_B7_MASK) + 1;
                            l_procEntry.maxECs = l_procEntry.procs *
                                        (prData[2] & VPD_VINI_PR_B2_MASK)
                                            >> VPD_VINI_PR_B2_SHIFT;
                            l_procPRList.push_back(l_procEntry);

                            if (l_procEntry.maxECs == 0)
                            {
                                // this is PROBABLY bad PR, so YELL...
                                HWAS_ERR("pTarget %.8X - PR VPD says 0 CORES",
                                    pTarget->getAttr<ATTR_HUID>());
                            }
                        }
                      }
                    }
                } // TYPE_PROC
            } // CLASS_CHIP

            HWAS_DBG("pTarget %.8X - detected present, %sfunctional",
                pTarget->getAttr<ATTR_HUID>(),
                chipFunctional ? "" : "NOT ");

            // now need to mark all of this target's
            //  physical descendants as present and functional as appropriate
            TargetHandleList pDescList;
            targetService().getAssociated( pDescList, pTarget,
                TargetService::CHILD, TargetService::ALL);
            for (TargetHandleList::const_iterator pDesc_it = pDescList.begin();
                    pDesc_it != pDescList.end();
                    ++pDesc_it)
            {
                TargetHandle_t pDesc = *pDesc_it;
                // by default, the descendant's functionality is 'inherited'
                bool descFunctional = chipFunctional;

                if (chipFunctional)
                {   // if the chip is functional, then look through the
                    //  partialGood vector to see if its chiplets
                    //  are functional
                    descFunctional = isDescFunctional(pDesc, pgData);
                }

                // for sub-parts, if it's not functional, it's not present.
                enableHwasState(pDesc, descFunctional, descFunctional,
                                errlEid);
                HWAS_DBG("pDesc %.8X - marked %spresent, %sfunctional",
                    pDesc->getAttr<ATTR_HUID>(),
                    descFunctional ? "" : "NOT ",
                    descFunctional ? "" : "NOT ");
            }

            // set HWAS state to show CHIP is present, functional per above
            enableHwasState(pTarget, chipPresent, chipFunctional, errlEid);

        } // for pTarget_it

        // Check for non-present Procs and if found, trigger
        // DeconfigGard::_invokeDeconfigureAssocProc() to run by setting
        // setXABusEndpointDeconfigured to true
        PredicateCTM predProc(CLASS_CHIP, TYPE_PROC);
        TargetHandleList l_procs;
        targetService().getAssociated(l_procs,
                                      pSys,
                                      TargetService::CHILD,
                                      TargetService::ALL,
                                      &predProc);

        for (TargetHandleList::const_iterator
             l_procsIter = l_procs.begin();
             l_procsIter != l_procs.end();
             ++l_procsIter)
        {
            if ( !(*l_procsIter)->getAttr<ATTR_HWAS_STATE>().present )
            {
                HWAS_INF("discoverTargets: Proc %.8X not present",
                    (*l_procsIter)->getAttr<ATTR_HUID>());
                HWAS::theDeconfigGard().setXABusEndpointDeconfigured(true);
            }
        }

        // PR keyword processing - potentially reduce the number of ec/core
        //  units that are functional based on what's in the PR keyword.
        //  call to restrict EC units, marking bad units as present=false;
        //  deconfigReason = 0 because present is false so this is not a
        //  deconfigured event.
#ifndef CONFIG_SKIP_RESTRICT_EC_UNITS
        errl = restrictECunits(l_procPRList, false, 0);

        if (errl)
        {
            HWAS_ERR("discoverTargets: restrictECunits failed");
            break;
        }
#endif

        // call invokePresentByAssoc() to obtain functional MCSs, MEMBUFs, and
        // DIMMs for non-direct memory or MCSs, MCAs, and DIMMs for direct
        // memory. Call algorithm function presentByAssoc() to determine
        // targets that need to be deconfigured
        invokePresentByAssoc();

    } while (0);

    if (errl)
    {
        HWAS_INF("discoverTargets failed (plid 0x%X)", errl->plid());
    }
    else
    {
        HWAS_INF("discoverTargets completed successfully");
    }
    return errl;
} // discoverTargets


bool isChipFunctional(const TARGETING::TargetHandle_t &i_target,
                      const uint16_t i_pgData[])
{
    bool l_chipFunctional = true;

    // Check all bits in FSI entry
    if (i_pgData[VPD_CP00_PG_FSI_INDEX] !=
        VPD_CP00_PG_FSI_GOOD)
    {
        HWAS_INF("pTarget %.8X - FSI pgData[%d]: "
                 "actual 0x%04X, expected 0x%04X - bad",
                 i_target->getAttr<ATTR_HUID>(),
                 VPD_CP00_PG_FSI_INDEX,
                 i_pgData[VPD_CP00_PG_FSI_INDEX],
                 VPD_CP00_PG_FSI_GOOD);
        l_chipFunctional = false;
    }
    else
    // Check all bits in PRV entry
    if (i_pgData[VPD_CP00_PG_PERVASIVE_INDEX] !=
        VPD_CP00_PG_PERVASIVE_GOOD)
    {
        HWAS_INF("pTarget %.8X - Pervasive pgData[%d]: "
                 "actual 0x%04X, expected 0x%04X - bad",
                 i_target->getAttr<ATTR_HUID>(),
                 VPD_CP00_PG_PERVASIVE_INDEX,
                 i_pgData[VPD_CP00_PG_PERVASIVE_INDEX],
                 VPD_CP00_PG_PERVASIVE_GOOD);
        l_chipFunctional = false;
    }
    else
    // Check all bits in N0 entry
    if (i_pgData[VPD_CP00_PG_N0_INDEX] != VPD_CP00_PG_N0_GOOD)
    {
        HWAS_INF("pTarget %.8X - N0 pgData[%d]: "
                 "actual 0x%04X, expected 0x%04X - bad",
                 i_target->getAttr<ATTR_HUID>(),
                 VPD_CP00_PG_N0_INDEX,
                 i_pgData[VPD_CP00_PG_N0_INDEX],
                 VPD_CP00_PG_N0_GOOD);
        l_chipFunctional = false;
    }
    else
    // Check bits in N1 entry except those in partial good region
    if ((i_pgData[VPD_CP00_PG_N1_INDEX] &
         ~VPD_CP00_PG_N1_PG_MASK) != VPD_CP00_PG_N1_GOOD)
    {
        HWAS_INF("pTarget %.8X - N1 pgData[%d]: "
                 "actual 0x%04X, expected 0x%04X - bad",
                 i_target->getAttr<ATTR_HUID>(),
                 VPD_CP00_PG_N1_INDEX,
                 i_pgData[VPD_CP00_PG_N1_INDEX],
                 VPD_CP00_PG_N1_GOOD);
        l_chipFunctional = false;
    }
    else
    // Check all bits in N2 entry
    if (i_pgData[VPD_CP00_PG_N2_INDEX] != VPD_CP00_PG_N2_GOOD)
    {
        HWAS_INF("pTarget %.8X - N2 pgData[%d]: "
                 "actual 0x%04X, expected 0x%04X - bad",
                 i_target->getAttr<ATTR_HUID>(),
                 VPD_CP00_PG_N2_INDEX,
                 i_pgData[VPD_CP00_PG_N2_INDEX],
                 VPD_CP00_PG_N2_GOOD);
        l_chipFunctional = false;
    }
    else
    // Check bits in N3 entry except those in partial good region
    if ((i_pgData[VPD_CP00_PG_N3_INDEX] &
         ~VPD_CP00_PG_N3_PG_MASK) != VPD_CP00_PG_N3_GOOD)
    {
        HWAS_INF("pTarget %.8X - N3 pgData[%d]: "
                 "actual 0x%04X, expected 0x%04X - bad",
                 i_target->getAttr<ATTR_HUID>(),
                 VPD_CP00_PG_N3_INDEX,
                 i_pgData[VPD_CP00_PG_N3_INDEX],
                 VPD_CP00_PG_N3_GOOD);
        l_chipFunctional = false;
    }
    else
    // Check bits in XBUS entry, validating pairs in partial good region
    if (((i_pgData[VPD_CP00_PG_XBUS_INDEX] &
          ~VPD_CP00_PG_XBUS_PG_MASK) != VPD_CP00_PG_XBUS_GOOD)
        ||
        (!areIoxPairsValid(i_pgData[VPD_CP00_PG_XBUS_INDEX])))
    {
        HWAS_INF("pTarget %.8X - XBUS pgData[%d]: "
                 "actual 0x%04X, expected 0x%04X - bad",
                 i_target->getAttr<ATTR_HUID>(),
                 VPD_CP00_PG_XBUS_INDEX,
                 i_pgData[VPD_CP00_PG_XBUS_INDEX],
                 VPD_CP00_PG_XBUS_GOOD);
        l_chipFunctional = false;
    }

    return l_chipFunctional;
} // isChipFunctional


bool isDescFunctional(const TARGETING::TargetHandle_t &i_desc,
                      const uint16_t i_pgData[])
{
    bool l_descFunctional = true;

    if (i_desc->getAttr<ATTR_TYPE>() == TYPE_XBUS)
    {
        ATTR_CHIP_UNIT_type indexXB =
            i_desc->getAttr<ATTR_CHIP_UNIT>();
        // Check pair of bits in XBUS entry
        if ((i_pgData[VPD_CP00_PG_XBUS_INDEX] &
             VPD_CP00_PG_XBUS_IOX_PAIR[indexXB]) != 0)
        {
            HWAS_INF("pDesc %.8X - XBUS%d pgData[%d]: "
                     "actual 0x%04X, expected 0x%04X - bad",
                     i_desc->getAttr<ATTR_HUID>(), indexXB,
                     VPD_CP00_PG_XBUS_INDEX,
                     i_pgData[VPD_CP00_PG_XBUS_INDEX],
                     (i_pgData[VPD_CP00_PG_XBUS_INDEX] &
                      ~VPD_CP00_PG_XBUS_IOX_PAIR[indexXB]));
            l_descFunctional = false;
        }
    }
    else
    if (i_desc->getAttr<ATTR_TYPE>() == TYPE_OBUS)
    {
        ATTR_CHIP_UNIT_type indexOB =
            i_desc->getAttr<ATTR_CHIP_UNIT>();
        // Check all bits in OBUSx entry
        if (i_pgData[VPD_CP00_PG_OB0_INDEX + indexOB] !=
            VPD_CP00_PG_OBUS_GOOD)
        {
            HWAS_INF("pDesc %.8X - OB%d pgData[%d]: "
                     "actual 0x%04X, expected 0x%04X - bad",
                     i_desc->getAttr<ATTR_HUID>(), indexOB,
                     VPD_CP00_PG_OB0_INDEX + indexOB,
                     i_pgData[VPD_CP00_PG_OB0_INDEX + indexOB],
                     VPD_CP00_PG_OBUS_GOOD);
            l_descFunctional = false;
        }
        else
        // Check PBIOO0 bit in N1 entry
        // @TODO RTC:134608 PBIOO0 seems to be good with Nimbus and Cumulus
        //                  except Nimbus Sforza (without optics and NVLINK)
        //                  so is it associated with all OBUS entries or just
        //                  with OBUS0 and OBUS3 -- verify this
        if ((i_pgData[VPD_CP00_PG_N1_INDEX] &
              VPD_CP00_PG_N1_PBIOO0) != 0)
        {
            HWAS_INF("pDesc %.8X - OB%d pgData[%d]: "
                     "actual 0x%04X, expected 0x%04X - bad",
                     i_desc->getAttr<ATTR_HUID>(), indexOB,
                     VPD_CP00_PG_N1_INDEX,
                     i_pgData[VPD_CP00_PG_N1_INDEX],
                     (i_pgData[VPD_CP00_PG_N1_INDEX] &
                      ~VPD_CP00_PG_N1_PBIOO0));
            l_descFunctional = false;
        }
        else
        // Check PBIOO1 bit in N1 entry if second or third OBUS
        // @TODO RTC:134608 PBIOO1 seems to be associated with OBUS1 and OBUS2
        //                  which only are valid on a Cumulus -- verify this
        if (((1 == indexOB) || (2 == indexOB)) &&
            ((i_pgData[VPD_CP00_PG_N1_INDEX] &
              VPD_CP00_PG_N1_PBIOO1) != 0))
        {
            HWAS_INF("pDesc %.8X - OB%d pgData[%d]: "
                     "actual 0x%04X, expected 0x%04X - bad",
                     i_desc->getAttr<ATTR_HUID>(), indexOB,
                     VPD_CP00_PG_N1_INDEX,
                     i_pgData[VPD_CP00_PG_N1_INDEX],
                     (i_pgData[VPD_CP00_PG_N1_INDEX] &
                      ~VPD_CP00_PG_N1_PBIOO1));
            l_descFunctional = false;
        }
    }
    else
    if (i_desc->getAttr<ATTR_TYPE>() == TYPE_PEC)
    {
        ATTR_CHIP_UNIT_type indexPCI =
            i_desc->getAttr<ATTR_CHIP_UNIT>();
        // Check all bits in PCIx entry
        if (i_pgData[VPD_CP00_PG_PCI0_INDEX + indexPCI] !=
            VPD_CP00_PG_PCIx_GOOD[indexPCI])
        {
            HWAS_INF("pDesc %.8X - PCI%d pgData[%d]: "
                     "actual 0x%04X, expected 0x%04X - bad",
                     i_desc->getAttr<ATTR_HUID>(), indexPCI,
                     VPD_CP00_PG_PCI0_INDEX + indexPCI,
                     i_pgData[VPD_CP00_PG_PCI0_INDEX + indexPCI],
                     VPD_CP00_PG_PCIx_GOOD[indexPCI]);
            l_descFunctional = false;
        }
    }
    else
    if (i_desc->getAttr<ATTR_TYPE>() == TYPE_EQ)
    {
        ATTR_CHIP_UNIT_type indexEP =
            i_desc->getAttr<ATTR_CHIP_UNIT>();
        // Check bits in EPx entry, validating triplets in partial good region
        if (((i_pgData[VPD_CP00_PG_EP0_INDEX + indexEP]
              & ~VPD_CP00_PG_EPx_PG_MASK) !=
              VPD_CP00_PG_EPx_GOOD) ||
            (!areL3L2REFRtripletsValid(i_pgData[VPD_CP00_PG_EP0_INDEX +
                                       indexEP])))
        {
            HWAS_INF("pDesc %.8X - EQ%d pgData[%d]: "
                     "actual 0x%04X, expected 0x%04X - bad",
                     i_desc->getAttr<ATTR_HUID>(), indexEP,
                     VPD_CP00_PG_EP0_INDEX + indexEP,
                     i_pgData[VPD_CP00_PG_EP0_INDEX + indexEP],
                     VPD_CP00_PG_EPx_GOOD);
            l_descFunctional = false;
        }
    }
    else
    if (i_desc->getAttr<ATTR_TYPE>() == TYPE_EX)
    {
        ATTR_CHIP_UNIT_type indexEX =
            i_desc->getAttr<ATTR_CHIP_UNIT>();
        // 2 EX chiplets per EP/EQ chiplet
        size_t indexEP = indexEX / 2;
        // 2 L3/L2/REFR triplets per EX chiplet
        size_t indexL3L2REFR = indexEX % 2;
        // Check triplet of bits in EPx entry
        if ((i_pgData[VPD_CP00_PG_EP0_INDEX + indexEP] &
             VPD_CP00_PG_EPx_L3L2REFR[indexL3L2REFR]) != 0)
        {
            HWAS_INF("pDesc %.8X - EX%d pgData[%d]: "
                     "actual 0x%04X, expected 0x%04X - bad",
                     i_desc->getAttr<ATTR_HUID>(), indexEX,
                     VPD_CP00_PG_EP0_INDEX + indexEP,
                     i_pgData[VPD_CP00_PG_EP0_INDEX + indexEP],
                     (i_pgData[VPD_CP00_PG_EP0_INDEX + indexEP] &
                      ~VPD_CP00_PG_EPx_L3L2REFR[indexL3L2REFR]));
            l_descFunctional = false;
        }
    }
    else
    if (i_desc->getAttr<ATTR_TYPE>() == TYPE_CORE)
    {
        ATTR_CHIP_UNIT_type indexEC =
            i_desc->getAttr<ATTR_CHIP_UNIT>();
        // Check all bits in ECxx entry
        if (i_pgData[VPD_CP00_PG_EC00_INDEX + indexEC] !=
            VPD_CP00_PG_ECxx_GOOD)
        {
            HWAS_INF("pDesc %.8X - CORE/EC%2.2d pgData[%d]: "
                     "actual 0x%04X, expected 0x%04X - bad",
                     i_desc->getAttr<ATTR_HUID>(), indexEC,
                     VPD_CP00_PG_EC00_INDEX + indexEC,
                     i_pgData[VPD_CP00_PG_EC00_INDEX + indexEC],
                     VPD_CP00_PG_ECxx_GOOD);
            l_descFunctional = false;
        }
    }
    else
    if (i_desc->getAttr<ATTR_TYPE>() == TYPE_MCBIST)
    {
        ATTR_CHIP_UNIT_type indexMCBIST =
            i_desc->getAttr<ATTR_CHIP_UNIT>();
        // 2 MCS chiplets per MCBIST / MCU
        size_t indexMCS = indexMCBIST * 2;
        // Check MCS01 bit in N3 entry if first MCBIST / MCU
        if ((0 == indexMCBIST) &&
            ((i_pgData[VPD_CP00_PG_N3_INDEX] &
              VPD_CP00_PG_N3_MCS01) != 0))
        {
            HWAS_INF("pDesc %.8X - MCBIST%d pgData[%d]: "
                     "actual 0x%04X, expected 0x%04X - bad",
                     i_desc->getAttr<ATTR_HUID>(), indexMCBIST,
                     VPD_CP00_PG_N3_INDEX,
                     i_pgData[VPD_CP00_PG_N3_INDEX],
                     (i_pgData[VPD_CP00_PG_N3_INDEX] &
                      ~VPD_CP00_PG_N3_MCS01));
            l_descFunctional = false;
        }
        else
        // Check MCS23 bit in N1 entry if second MCBIST / MCU
        if ((1 == indexMCBIST) &&
            ((i_pgData[VPD_CP00_PG_N1_INDEX] &
              VPD_CP00_PG_N1_MCS23) != 0))
        {
            HWAS_INF("pDesc %.8X - MCBIST%d pgData[%d]: "
                     "actual 0x%04X, expected 0x%04X - bad",
                     i_desc->getAttr<ATTR_HUID>(), indexMCBIST,
                     VPD_CP00_PG_N1_INDEX,
                     i_pgData[VPD_CP00_PG_N1_INDEX],
                     (i_pgData[VPD_CP00_PG_N1_INDEX] &
                      ~VPD_CP00_PG_N1_MCS23));
            l_descFunctional = false;
        }
        else
        // Check bits in MCxx entry except those in partial good region
        if ((i_pgData[VPD_CP00_PG_MCxx_INDEX[indexMCS]]
             & ~VPD_CP00_PG_MCxx_PG_MASK) !=
             VPD_CP00_PG_MCxx_GOOD)
        {
            HWAS_INF("pDesc %.8X - MCBIST%d pgData[%d]: "
                     "actual 0x%04X, expected 0x%04X - bad",
                     i_desc->getAttr<ATTR_HUID>(), indexMCBIST,
                     VPD_CP00_PG_MCxx_INDEX[indexMCS],
                     i_pgData[VPD_CP00_PG_MCxx_INDEX[indexMCS]],
                     VPD_CP00_PG_MCxx_GOOD);
            l_descFunctional = false;
        }
    }
    else
    if (i_desc->getAttr<ATTR_TYPE>() == TYPE_MCS)
    {
        ATTR_CHIP_UNIT_type indexMCS =
            i_desc->getAttr<ATTR_CHIP_UNIT>();
        // Check MCS01 bit in N3 entry if first or second MCS
        if (((0 == indexMCS) || (1 == indexMCS)) &&
            ((i_pgData[VPD_CP00_PG_N3_INDEX] &
              VPD_CP00_PG_N3_MCS01) != 0))
        {
            HWAS_INF("pDesc %.8X - MCS%d pgData[%d]: "
                     "actual 0x%04X, expected 0x%04X - bad",
                     i_desc->getAttr<ATTR_HUID>(), indexMCS,
                     VPD_CP00_PG_N3_INDEX,
                     i_pgData[VPD_CP00_PG_N3_INDEX],
                     (i_pgData[VPD_CP00_PG_N3_INDEX] &
                      ~VPD_CP00_PG_N3_MCS01));
            l_descFunctional = false;
        }
        else
        // Check MCS23 bit in N1 entry if third or fourth MCS
        if (((2 == indexMCS) || (3 == indexMCS)) &&
            ((i_pgData[VPD_CP00_PG_N1_INDEX] &
              VPD_CP00_PG_N1_MCS23) != 0))
        {
            HWAS_INF("pDesc %.8X - MCS%d pgData[%d]: "
                     "actual 0x%04X, expected 0x%04X - bad",
                     i_desc->getAttr<ATTR_HUID>(), indexMCS,
                     VPD_CP00_PG_N1_INDEX,
                     i_pgData[VPD_CP00_PG_N1_INDEX],
                     (i_pgData[VPD_CP00_PG_N1_INDEX] &
                      ~VPD_CP00_PG_N1_MCS23));
            l_descFunctional = false;
        }
        else
        // Check bits in MCxx entry including specific IOM bit,
        // but not other bits in partial good region
        if ((i_pgData[VPD_CP00_PG_MCxx_INDEX[indexMCS]]
             & ~(VPD_CP00_PG_MCxx_PG_MASK
                 & ~VPD_CP00_PG_MCxx_IOMyy[indexMCS])) !=
             VPD_CP00_PG_MCxx_GOOD)
        {
            HWAS_INF("pDesc %.8X - MCS%d pgData[%d]: "
                     "actual 0x%04X, expected 0x%04X - bad",
                     i_desc->getAttr<ATTR_HUID>(), indexMCS,
                     VPD_CP00_PG_MCxx_INDEX[indexMCS],
                     i_pgData[VPD_CP00_PG_MCxx_INDEX[indexMCS]],
                     (i_pgData[VPD_CP00_PG_MCxx_INDEX[indexMCS]] &
                      ~VPD_CP00_PG_MCxx_IOMyy[indexMCS]));
            l_descFunctional = false;
        }
    }
    else
    if (i_desc->getAttr<ATTR_TYPE>() == TYPE_MCA)
    {
        ATTR_CHIP_UNIT_type indexMCA =
            i_desc->getAttr<ATTR_CHIP_UNIT>();
        // 2 MCA chiplets per MCS
        size_t indexMCS = indexMCA / 2;
        // Check IOM bit in MCxx entry
        if ((i_pgData[VPD_CP00_PG_MCxx_INDEX[indexMCS]]
             & VPD_CP00_PG_MCxx_IOMyy[indexMCS]) != 0)
        {
            HWAS_INF("pDesc %.8X - MCA%d pgData[%d]: "
                     "actual 0x%04X, expected 0x%04X - bad",
                     i_desc->getAttr<ATTR_HUID>(), indexMCA,
                     VPD_CP00_PG_MCxx_INDEX[indexMCS],
                     i_pgData[VPD_CP00_PG_MCxx_INDEX[indexMCS]],
                     (i_pgData[VPD_CP00_PG_MCxx_INDEX[indexMCS]] &
                      ~VPD_CP00_PG_MCxx_IOMyy[indexMCS]));
            l_descFunctional = false;
        }
    }
    else
    if (i_desc->getAttr<ATTR_TYPE>() == TYPE_NV)
    {
        // Check NPU bit in N3 entry
        if ((i_pgData[VPD_CP00_PG_N3_INDEX] &
             VPD_CP00_PG_N3_NPU) != 0)
        {
            HWAS_INF("pDesc %.8X - NV pgData[%d]: "
                     "actual 0x%04X, expected 0x%04X - bad",
                     i_desc->getAttr<ATTR_HUID>(),
                     VPD_CP00_PG_N3_INDEX,
                     i_pgData[VPD_CP00_PG_N3_INDEX],
                     (i_pgData[VPD_CP00_PG_N3_INDEX] &
                      ~VPD_CP00_PG_N3_NPU));
            l_descFunctional = false;
        }
    }
    else
    if (i_desc->getAttr<ATTR_TYPE>() == TYPE_PERV)
    {
        // Loop through PG entries from PRV entry to last used entry
        for (uint8_t l_pgDataIndex =
               VPD_CP00_PG_PERVASIVE_INDEX;
             l_pgDataIndex <= VPD_CP00_PG_MAX_USED_INDEX;
             ++l_pgDataIndex)
        {
            // Skip reserved entries between EP5 entry and EC00 entry
            if ((l_pgDataIndex > VPD_CP00_PG_EP5_INDEX) &&
                (l_pgDataIndex < VPD_CP00_PG_EC00_INDEX))
            {
                continue;
            }

            // Skip OB1 and OB2 entries on NIMBUS (region doesn't exist)
            if ((i_desc->getAttr<ATTR_MODEL>() ==
                 MODEL_NIMBUS) &&
                (l_pgDataIndex > VPD_CP00_PG_OB0_INDEX) &&
                (l_pgDataIndex < VPD_CP00_PG_OB3_INDEX))
            {
                continue;
            }

            // Check PERV bit in the entry
            if ((i_pgData[l_pgDataIndex]
                 & VPD_CP00_PG_xxx_PERV) != 0)
            {
                HWAS_INF("pDesc %.8X - PERV pgData[%d]: "
                         "actual 0x%04X, expected 0x%04X - bad",
                         i_desc->getAttr<ATTR_HUID>(),
                         l_pgDataIndex,
                         i_pgData[l_pgDataIndex],
                         (i_pgData[l_pgDataIndex] &
                          ~VPD_CP00_PG_xxx_PERV));
                l_descFunctional = false;
                break;
            }
        }
    }

    return l_descFunctional;
} // isDescFunctional



errlHndl_t restrictECunits(
    std::vector <procRestrict_t> &i_procList,
    const bool i_present,
    const uint32_t i_deconfigReason)
{
    HWAS_INF("restrictECunits entry, %d elements", i_procList.size());
    errlHndl_t errl = NULL;

    // sort by group so PROC# are in the right groupings.
    std::sort(i_procList.begin(), i_procList.end(),
                compareProcGroup);

    // loop thru procs to handle restrict
    const uint32_t l_ProcCount = i_procList.size();
    for (uint32_t procIdx = 0;
            procIdx < l_ProcCount;
            // the increment will happen in the loop to handle
            //  groups covering more than 1 proc target
        )
    {
        // determine the number of procs we should enable
        uint8_t procs = i_procList[procIdx].procs;
        uint32_t maxECs = i_procList[procIdx].maxECs;

        // this procs number, used to determine groupings
        uint32_t thisGroup = i_procList[procIdx].group;

        HWAS_INF("procRestrictList[%d] - maxECs %d, procs %d, group %d",
                procIdx, maxECs, procs, thisGroup);

        // exs, ecs, and iters for each proc in this vpd set
        TargetHandleList pEXList[procs];
        TargetHandleList::const_iterator pEX_it[procs];
        TargetHandleList pECList[procs][NUM_EX_PER_CHIP];
        TargetHandleList::const_iterator pEC_it[procs][NUM_EX_PER_CHIP];

        // find the proc's that we think are in this group
        uint32_t currentPairedECs = 0;
        uint32_t currentSingleECs = 0;
        for (uint32_t i = 0; i < procs; ) // increment in loop
        {
            TargetHandle_t pProc = i_procList[procIdx].target;

            // if this proc is past the last of the proc count
            //  OR is NOT in the same group
            if ((procIdx >= l_ProcCount) ||
                (thisGroup != i_procList[procIdx].group))
            {
                HWAS_DBG("procRestrictList[%d] - group %d not in group %d",
                        i, i_procList[procIdx].group, thisGroup);

                // change this to be how many we actually have here
                procs = i;

                // we're done - break so that we use procIdx as the
                //  start index next time
                break;
            }

            // get this proc's (CHILD) functional EX units
            getChildChiplets(pEXList[i], pProc, TYPE_EX, true);

            if (!pEXList[i].empty())
            {
                // sort the list by ATTR_HUID to ensure that we
                //  start at the same place each time
                std::sort(pEXList[i].begin(), pEXList[i].end(),
                          compareTargetHuid);

                // keep a pointer into that list
                pEX_it[i] = pEXList[i].begin();

                for (uint32_t j = 0;
                     (j < NUM_EX_PER_CHIP) && (pEX_it[i] != pEXList[i].end());
                     j++)
                {
                    TargetHandle_t pEX = *(pEX_it[i]);

                    // get this EX's (CHILD) functional EC/core units
                    getChildChiplets(pECList[i][j], pEX,
                                     TYPE_CORE, true);

                    if (!pECList[i][j].empty())
                    {
                        // sort the list by ATTR_HUID to ensure that we
                        //  start at the same place each time
                        std::sort(pECList[i][j].begin(), pECList[i][j].end(),
                                  compareTargetHuid);

                        // keep a pointer into that list
                        pEC_it[i][j] = pECList[i][j].begin();

                        // keep local count of current functional EC units
                        if (pECList[i][j].size() == 2)
                        {
                            // track ECs that can make a fused-core pair
                            currentPairedECs += pECList[i][j].size();
                        }
                        else
                        {
                            // track ECs without a pair for a fused-core
                            currentSingleECs += pECList[i][j].size();
                        }
                    }

                    // go to next EX
                    (pEX_it[i])++;
                } // for j < NUM_EX_PER_CHIP

                // go to next proc
                i++;
            }
            else
            {
                // this one is bad, stay on this i but lower the end count
                procs--;
            }

            // advance the outer loop as well since we're doing these
            //  procs together
            ++procIdx;
        } // for i < procs

        if ((currentPairedECs + currentSingleECs) <= maxECs)
        {
            // we don't need to restrict - we're done with this group.
            HWAS_DBG("currentECs %d <= maxECs %d -- done",
                    (currentPairedECs + currentSingleECs), maxECs);
            continue;
        }

        HWAS_DBG("currentECs %d > maxECs %d -- restricting!",
                (currentPairedECs + currentSingleECs), maxECs);

        // now need to find EC units that stay functional, going
        //  across the list of units for each proc and EX we have,
        //  until we get to the max or run out of ECs, giving
        //  preference to paired ECs and if we are in fused mode
        //  excluding single, non-paired ECs.

        // Use as many paired ECs as we can up to maxECs
        uint32_t pairedECs_remaining =
            (maxECs < currentPairedECs) ? maxECs : currentPairedECs;
        // If not in fused mode, use single ECs as needed to get to maxECs
        uint32_t singleECs_remaining =
            ((maxECs > currentPairedECs) && !is_fused_mode())
            ? (maxECs - currentPairedECs) : 0;
        uint32_t goodECs = 0;
        HWAS_DBG("procs %d maxECs %d", procs, maxECs);

        // Each pECList has ECs for a given EX and proc.  Check each EC list to
        //  determine if it has an EC pair or a single EC and if the remaining
        //  count indicates the given EC from that list is to stay functional.

        // Cycle through the procs
        for (uint32_t i = 0; i < procs; i++)
        {
            // Cycle through the EXs for this proc
            for (uint32_t j = 0; j < NUM_EX_PER_CHIP; j++)
            {
                // Walk through the EC list from this EX
                while (pEC_it[i][j] != pECList[i][j].end())
                {
                    // Check if EC pair for this EX
                    if ((pECList[i][j].size() == 2) &&
                        (pairedECs_remaining != 0))
                    {
                        // got a functional EC that is part of a pair
                        goodECs++;
                        pairedECs_remaining--;
                        HWAS_DBG("pEC   %.8X - is good %d!",
                                 (*(pEC_it[i][j]))->getAttr<ATTR_HUID>(),
                                 goodECs);
                    }
                    // Check if single EC for this EX
                    else if ((pECList[i][j].size() == 1) &&
                             (singleECs_remaining != 0))
                    {
                        // got a functional EC without a pair
                        goodECs++;
                        singleECs_remaining--;
                        HWAS_DBG("pEC   %.8X - is good %d!",
                                 (*(pEC_it[i][j]))->getAttr<ATTR_HUID>(),
                                 ++goodECs);
                    }
                    // Otherwise paired or single EC, but not needed for maxECs
                    else
                    {
                        // got an EC to be restricted and marked not functional
                        TargetHandle_t l_pEC = *(pEC_it[i][j]);
                        enableHwasState(l_pEC, i_present,
                                        false, i_deconfigReason);
                        HWAS_INF("pEC   %.8X - marked %spresent,"
                                 " NOT functional",
                                 l_pEC->getAttr<ATTR_HUID>(),
                                 i_present ? "" : "NOT ");
                    }

                    (pEC_it[i][j])++; // next ec in this ex's list
                } // while pEC_it[i][j] != pECList[i][j].end()
            } // for j < NUM_EX_PER_CHIP
        } // for i < procs
    } // for procIdx < l_ProcCount

    if (errl)
    {
        HWAS_INF("restrictECunits failed (plid 0x%X)", errl->plid());
    }
    else
    {
        HWAS_INF("restrictECunits completed successfully");
    }
    return errl;
} // restrictECunits


void checkCriticalResources(uint32_t & io_commonPlid,
                                  const Target * i_pTop)
{
    errlHndl_t l_errl = NULL;
    PredicatePostfixExpr l_customPredicate;
    PredicateIsFunctional l_isFunctional;

    TargetHandleList l_plist;

    // filter for targets that are deemed critical by ATTR_RESOURCE_IS_CRITICAL
    uint8_t l_critical = 1;
    PredicateAttrVal<ATTR_RESOURCE_IS_CRITICAL> l_isCritical(l_critical);

    l_customPredicate.push(&l_isFunctional).Not().push(&l_isCritical).And();

    targetService().getAssociated( l_plist, i_pTop,
          TargetService::CHILD, TargetService::ALL, &l_customPredicate);

    //if this list has ANYTHING then something critical has been deconfigured
    if(l_plist.size())
    {
        HWAS_ERR("Insufficient HW to continue IPL: (critical resource not functional)");
        /*@
         * @errortype
         * @severity          ERRL_SEV_UNRECOVERABLE
         * @moduleid          MOD_CHECK_MIN_HW
         * @reasoncode        RC_SYSAVAIL_MISSING_CRITICAL_RESOURCE
         * @devdesc           checkCriticalResources found a critical
         *                    resource to be deconfigured
         * @custdesc          A problem occurred during the IPL of the
         *                    system: A critical resource was found
         *                    to be deconfigured
         *
         * @userdata1[00:31]  Number of critical resources
         * @userdata1[32:63]  HUID of first critical resource found
         * @userdata2[00:31]  HUID of second critical resource found, if present
         * @userdata2[32:63]  HUID of third critical resource found, if present
         */

        uint64_t userdata1 = 0;
        uint64_t userdata2 = 0;
        switch(std::min(3,(int)l_plist.size()))
        {
            case 3:
                userdata2 = static_cast<uint64_t>(get_huid(l_plist[2]));

                /*fall through*/  // keep BEAM quiet
            case 2:
                userdata2 |=
                    static_cast<uint64_t>(get_huid(l_plist[1])) << 32;

                /*fall through*/  // keep BEAM quiet
            case 1:
                userdata1 =
                    (static_cast<uint64_t>(l_plist.size()) << 32) |
                     static_cast<uint64_t>(get_huid(l_plist[0]));
        }

        l_errl = hwasError(ERRL_SEV_UNRECOVERABLE,
                           MOD_CHECK_MIN_HW,
                           RC_SYSAVAIL_MISSING_CRITICAL_RESOURCE,
                           userdata1,
                           userdata2 );

        // call out the procedure to find the deconfigured part.
        hwasErrorAddProcedureCallout(l_errl,
                                     EPUB_PRC_FIND_DECONFIGURED_PART,
                                     SRCI_PRIORITY_HIGH);

        //  if we already have an error, link this one to the earlier;
        //  if not, set the common plid
        hwasErrorUpdatePlid(l_errl, io_commonPlid);
        errlCommit(l_errl, HWAS_COMP_ID);
        // errl is now NULL
    }
}




errlHndl_t checkMinimumHardware(const TARGETING::ConstTargetHandle_t i_nodeOrSys,
        bool *o_bootable)
{
    errlHndl_t l_errl = NULL;
    HWAS_INF("checkMinimumHardware entry");
    uint32_t l_commonPlid = 0;

    do
    {
        //*********************************************************************/
        //  Common present and functional hardware checks.
        //*********************************************************************/

        if(o_bootable)
        {
            *o_bootable = true;
        }
        PredicateHwas l_present;
        l_present.present(true);
        PredicateHwas l_functional;
        if(o_bootable)
        {
            l_functional.specdeconfig(false);
        }
        l_functional.functional(true);

        // top 'starting' point - use first node if no i_node given (hostboot)
        Target *pTop;
        if (i_nodeOrSys == NULL)
        {
            Target *pSys;
            targetService().getTopLevelTarget(pSys);
            PredicateCTM l_predEnc(CLASS_ENC);
            PredicatePostfixExpr l_nodeFilter;
            l_nodeFilter.push(&l_predEnc).push(&l_functional).And();
            TargetHandleList l_nodes;
            targetService().getAssociated( l_nodes, pSys,
                TargetService::CHILD, TargetService::IMMEDIATE, &l_nodeFilter );

            if (l_nodes.empty())
            { // no functional nodes, get out now
                if(o_bootable)
                {
                    *o_bootable = false;
                    break;
                }

                HWAS_ERR("Insufficient HW to continue IPL: (no func nodes)");
                /*@
                 * @errortype
                 * @severity          ERRL_SEV_UNRECOVERABLE
                 * @moduleid          MOD_CHECK_MIN_HW
                 * @reasoncode        RC_SYSAVAIL_NO_NODES_FUNC
                 * @devdesc           checkMinimumHardware found no functional
                 *                    nodes on the system
                 * @custdesc          A problem occurred during the IPL of the
                 *                    system: No functional nodes were found on
                 *                    the system.
                 */
                l_errl = hwasError(ERRL_SEV_UNRECOVERABLE,
                                    MOD_CHECK_MIN_HW,
                                    RC_SYSAVAIL_NO_NODES_FUNC);

                // call out the procedure to find the deconfigured part.
                hwasErrorAddProcedureCallout(l_errl,
                                            EPUB_PRC_FIND_DECONFIGURED_PART,
                                            SRCI_PRIORITY_HIGH);

                //  if we already have an error, link this one to the earlier;
                //  if not, set the common plid
                hwasErrorUpdatePlid(l_errl, l_commonPlid);
                errlCommit(l_errl, HWAS_COMP_ID);
                // errl is now NULL
                break;
            }

            // top level has at least 1 node - and it's our node.
            pTop = l_nodes[0];

            HWAS_INF("checkMinimumHardware: i_nodeOrSys = NULL, using %.8X",
                    get_huid(pTop));
        }
        else
        {
            pTop = const_cast<Target *>(i_nodeOrSys);
            HWAS_INF("checkMinimumHardware: i_nodeOrSys %.8X",
                    get_huid(pTop));
        }

        // check for functional Master Proc on this node
        Target* l_pMasterProc = NULL;

        //Get master proc at system level or node level based on target type
        if(pTop->getAttr<ATTR_TYPE>() == TYPE_SYS)
        {
            targetService().queryMasterProcChipTargetHandle(l_pMasterProc);
        }
        else
        {
            targetService().queryMasterProcChipTargetHandle(l_pMasterProc,
                                                          pTop);
        }

        if ((l_pMasterProc == NULL) || (!l_functional(l_pMasterProc)))
        {
            HWAS_ERR("Insufficient HW to continue IPL: (no master proc)");

            if(o_bootable)
            {
                *o_bootable = false;
                break;
            }
            // determine some numbers to help figure out what's up..
            PredicateCTM l_proc(CLASS_CHIP, TYPE_PROC);
            TargetHandleList l_plist;

            PredicatePostfixExpr l_checkExprPresent;
            l_checkExprPresent.push(&l_proc).push(&l_present).And();
            targetService().getAssociated(l_plist, pTop,
                    TargetService::CHILD, TargetService::ALL,
                    &l_checkExprPresent);
            uint32_t procs_present = l_plist.size();

            PredicatePostfixExpr l_checkExprFunctional;
            l_checkExprFunctional.push(&l_proc).push(&l_functional).And();
            targetService().getAssociated(l_plist, pTop,
                    TargetService::CHILD, TargetService::ALL,
                    &l_checkExprFunctional);
            uint32_t procs_functional = l_plist.size();

            /*@
             * @errortype
             * @severity          ERRL_SEV_UNRECOVERABLE
             * @moduleid          MOD_CHECK_MIN_HW
             * @reasoncode        RC_SYSAVAIL_NO_PROCS_FUNC
             * @devdesc           checkMinimumHardware found no functional
             *                    master processor on this node
             * @custdesc          A problem occurred during the IPL of the
             *                    system: No functional master processor
             *                    was found on this node.
             * @userdata1[00:31]  HUID of node
             * @userdata2[00:31]  number of present procs
             * @userdata2[32:63]  number of present functional non-master procs
             */
            const uint64_t userdata1 =
                (static_cast<uint64_t>(get_huid(pTop)) << 32);
            const uint64_t userdata2 =
                (static_cast<uint64_t>(procs_present) << 32) | procs_functional;
            l_errl = hwasError(ERRL_SEV_UNRECOVERABLE,
                                MOD_CHECK_MIN_HW,
                                RC_SYSAVAIL_NO_PROCS_FUNC,
                                userdata1, userdata2);

            // call out the procedure to find the deconfigured part.
            hwasErrorAddProcedureCallout(l_errl,
                                        EPUB_PRC_FIND_DECONFIGURED_PART,
                                        SRCI_PRIORITY_HIGH);

            //  if we already have an error, link this one to the earlier;
            //  if not, set the common plid
            hwasErrorUpdatePlid(l_errl, l_commonPlid);
            errlCommit(l_errl, HWAS_COMP_ID);
            // errl is now NULL
        }
        else
        {
            // we have a Master Proc and it's functional
            // check for at least 1 functional ec/core on Master Proc
            TargetHandleList l_cores;
            PredicateCTM l_core(CLASS_UNIT, TYPE_CORE);
            PredicatePostfixExpr l_coresFunctional;
            l_coresFunctional.push(&l_core).push(&l_functional).And();
            targetService().getAssociated(l_cores, l_pMasterProc,
                    TargetService::CHILD, TargetService::ALL,
                    &l_coresFunctional);

            HWAS_DBG( "checkMinimumHardware: %d functional cores",
                      l_cores.size() );

            if (l_cores.empty())
            {
                HWAS_ERR("Insufficient HW to continue IPL: (no func cores)");

                if(o_bootable)
                {
                    *o_bootable = false;
                    break;
                }
                // determine some numbers to help figure out what's up..
                PredicateCTM l_ex(CLASS_UNIT, TYPE_EX);
                TargetHandleList l_plist;

                PredicatePostfixExpr l_checkExprPresent;
                l_checkExprPresent.push(&l_ex).push(&l_present).And();
                targetService().getAssociated(l_plist, l_pMasterProc,
                        TargetService::CHILD, TargetService::IMMEDIATE,
                        &l_checkExprPresent);
                uint32_t exs_present = l_plist.size();

                /*@
                 * @errortype
                 * @severity          ERRL_SEV_UNRECOVERABLE
                 * @moduleid          MOD_CHECK_MIN_HW
                 * @reasoncode        RC_SYSAVAIL_NO_CORES_FUNC
                 * @devdesc           checkMinimumHardware found no functional
                 *                    processor cores on the master proc
                 * @custdesc          A problem occurred during the IPL of the
                 *                    system: No functional processor cores
                 *                    were found on the master processor.
                 * @userdata1[00:31]  HUID of node
                 * @userdata1[32:63]  HUID of master proc
                 * @userdata2[00:31]  number of present, non-functional cores
                 */
                const uint64_t userdata1 =
                    (static_cast<uint64_t>(get_huid(pTop)) << 32) |
                    get_huid(l_pMasterProc);
                const uint64_t userdata2 =
                    (static_cast<uint64_t>(exs_present) << 32);
                l_errl = hwasError(ERRL_SEV_UNRECOVERABLE,
                                    MOD_CHECK_MIN_HW,
                                    RC_SYSAVAIL_NO_CORES_FUNC,
                                    userdata1, userdata2);

                //  call out the procedure to find the deconfigured part.
                hwasErrorAddProcedureCallout( l_errl,
                                              EPUB_PRC_FIND_DECONFIGURED_PART,
                                              SRCI_PRIORITY_HIGH );

                //  if we already have an error, link this one to the earlier;
                //  if not, set the common plid
                hwasErrorUpdatePlid( l_errl, l_commonPlid );
                errlCommit(l_errl, HWAS_COMP_ID);
                // errl is now NULL
            } // if no cores
        }

        //  check here for functional dimms
        TargetHandleList l_dimms;
        PredicateCTM l_dimm(CLASS_LOGICAL_CARD, TYPE_DIMM);
        PredicatePostfixExpr l_checkExprFunctional;
        l_checkExprFunctional.push(&l_dimm).push(&l_functional).And();
        targetService().getAssociated(l_dimms, pTop,
                TargetService::CHILD, TargetService::ALL,
                &l_checkExprFunctional);
        HWAS_DBG( "checkMinimumHardware: %d functional dimms",
                  l_dimms.size());

// @todo RTC:149770 Once ZZ supports DIMMs, add DIMMs back in min hdw check.
// It works for stand alone.
#if (0)
        if (l_dimms.empty())
        {
            HWAS_ERR( "Insufficient hardware to continue IPL (func DIMM)");

            if(o_bootable)
            {
                *o_bootable = false;
                break;
            }
            // determine some numbers to help figure out what's up..
            TargetHandleList l_plist;
            PredicatePostfixExpr l_checkExprPresent;
            l_checkExprPresent.push(&l_dimm).push(&l_present).And();
            targetService().getAssociated(l_plist, pTop,
                    TargetService::CHILD, TargetService::ALL,
                    &l_checkExprPresent);
            uint32_t dimms_present = l_plist.size();

            /*@
             * @errortype
             * @severity          ERRL_SEV_UNRECOVERABLE
             * @moduleid          MOD_CHECK_MIN_HW
             * @reasoncode        RC_SYSAVAIL_NO_MEMORY_FUNC
             * @devdesc           checkMinimumHardware found no
             *                    functional dimm cards.
             * @custdesc          A problem occurred during the IPL of the
             *                    system: Found no functional dimm cards.
             * @userdata1[00:31]  HUID of node
             * @userdata2[00:31]  number of present, non-functional dimms
             */
            const uint64_t userdata1 =
                (static_cast<uint64_t>(get_huid(pTop)) << 32);
            const uint64_t userdata2 =
                (static_cast<uint64_t>(dimms_present) << 32);
            l_errl = hwasError(ERRL_SEV_UNRECOVERABLE,
                                MOD_CHECK_MIN_HW,
                                RC_SYSAVAIL_NO_MEMORY_FUNC,
                                userdata1, userdata2);

            //  call out the procedure to find the deconfigured part.
            hwasErrorAddProcedureCallout( l_errl,
                                          EPUB_PRC_FIND_DECONFIGURED_PART,
                                          SRCI_PRIORITY_HIGH );

            //  if we already have an error, link this one to the earlier;
            //  if not, set the common plid
            hwasErrorUpdatePlid( l_errl, l_commonPlid );
            errlCommit(l_errl, HWAS_COMP_ID);
            // errl is now NULL
        } // if no dimms
#endif
        // There needs to be either functional MCS/MCAs (NIMBUS) or MCS/MBAs
        // (CUMULUS). Check for MCAs first.
        PredicateCTM l_mca(CLASS_UNIT, TYPE_MCA);

        TargetHandleList l_presMcaTargetList;
        PredicatePostfixExpr l_checkExprPresMca;
        l_checkExprPresMca.push(&l_mca).push(&l_present).And();
        targetService().getAssociated( l_presMcaTargetList, pTop,
                TargetService::CHILD, TargetService::ALL,
                &l_checkExprPresMca);
        // If any MCAs are present, then some must be functional
        if (!l_presMcaTargetList.empty())
        {
            TargetHandleList l_funcMcaTargetList;
            PredicatePostfixExpr l_checkExprPresMca;
            l_checkExprPresMca.push(&l_mca).push(&l_functional).And();
            targetService().getAssociated( l_funcMcaTargetList, pTop,
                TargetService::CHILD, TargetService::ALL,
                &l_checkExprPresMca);

            HWAS_DBG( "checkMinimumHardware: %d functional MCAs",
                l_funcMcaTargetList.size());

            if (l_funcMcaTargetList.empty())
            {
                 HWAS_ERR( "Insufficient hardware to continue IPL"
                           " (func membufs)");
                if(o_bootable)
                {
                    *o_bootable = false;
                    break;
                }
                uint32_t mca_present = l_presMcaTargetList.size();

                /*@
                 * @errortype
                 * @severity           ERRL_SEV_UNRECOVERABLE
                 * @moduleid           MOD_CHECK_MIN_HW
                 * @reasoncode         RC_SYSAVAIL_NO_MCAS_FUNC
                 * @devdesc            checkMinimumHardware found no
                 *                     functional membufs
                 * @custdesc           A problem occurred during the IPL of the
                 *                     system: Found no functional dimm cards.
                 * @userdata1[00:31]   HUID of node
                 * @userdata2[00:31]   number of present nonfunctional membufs
                 */
                const uint64_t userdata1 =
                    (static_cast<uint64_t>(get_huid(pTop)) << 32);
                const uint64_t userdata2 =
                    (static_cast<uint64_t>(mca_present) << 32);
                l_errl = hwasError(ERRL_SEV_UNRECOVERABLE,
                             MOD_CHECK_MIN_HW,
                             RC_SYSAVAIL_NO_MCAS_FUNC,
                             userdata1, userdata2);

                //  call out the procedure to find the deconfigured part.
                hwasErrorAddProcedureCallout( l_errl,
                             EPUB_PRC_FIND_DECONFIGURED_PART,
                             SRCI_PRIORITY_HIGH );

                //  if we already have an error, link this one to the earlier;
                //  if not, set the common plid
                hwasErrorUpdatePlid( l_errl, l_commonPlid );
                errlCommit(l_errl, HWAS_COMP_ID);
                // errl is now NULL
            }
        }
        else  // there were no MCAa. There must be functional membufs
        {
            PredicateCTM l_membuf(CLASS_CHIP, TYPE_MEMBUF);

            TargetHandleList l_funcMembufTargetList;
            PredicatePostfixExpr l_checkExprFunctionalMembufs;
            l_checkExprFunctionalMembufs.push(&l_membuf).
                                                      push(&l_functional).And();
            targetService().getAssociated( l_funcMembufTargetList, pTop,
                TargetService::CHILD, TargetService::ALL,
                &l_checkExprFunctionalMembufs);

            HWAS_DBG( "checkMinimumHardware: %d functional membufs",
                l_funcMembufTargetList.size());

            if (l_funcMembufTargetList.empty())
            {
                 HWAS_ERR( "Insufficient hardware to continue IPL"
                           " (func membufs)");
                if(o_bootable)
                {
                    *o_bootable = false;
                    break;
                }
                TargetHandleList l_presentMembufTargetList;
                PredicatePostfixExpr l_checkExprPresentMembufs;
                l_checkExprPresentMembufs.push(&l_membuf).
                                                      push(&l_present).And();
                targetService().getAssociated( l_presentMembufTargetList, pTop,
                TargetService::CHILD, TargetService::ALL,
                &l_checkExprPresentMembufs);
                uint32_t membufs_present = l_presentMembufTargetList.size();

                /*@
                 * @errortype
                 * @severity           ERRL_SEV_UNRECOVERABLE
                 * @moduleid           MOD_CHECK_MIN_HW
                 * @reasoncode         RC_SYSAVAIL_NO_MEMBUFS_FUNC
                 * @devdesc            checkMinimumHardware found no
                 *                     functional membufs
                 * @custdesc           A problem occurred during the IPL of the
                 *                     system: Found no functional dimm cards.
                 * @userdata1[00:31]   HUID of node
                 * @userdata2[00:31]   number of present nonfunctional membufs
                 */
                const uint64_t userdata1 =
                    (static_cast<uint64_t>(get_huid(pTop)) << 32);
                const uint64_t userdata2 =
                    (static_cast<uint64_t>(membufs_present) << 32);
                l_errl = hwasError(ERRL_SEV_UNRECOVERABLE,
                             MOD_CHECK_MIN_HW,
                             RC_SYSAVAIL_NO_MEMBUFS_FUNC,
                             userdata1, userdata2);

                //  call out the procedure to find the deconfigured part.
                hwasErrorAddProcedureCallout( l_errl,
                             EPUB_PRC_FIND_DECONFIGURED_PART,
                             SRCI_PRIORITY_HIGH );

                //  if we already have an error, link this one to the earlier;
                //  if not, set the common plid
                hwasErrorUpdatePlid( l_errl, l_commonPlid );
                errlCommit(l_errl, HWAS_COMP_ID);
                // errl is now NULL
            }
        }
        //  ------------------------------------------------------------
        //  Check for Mirrored memory -
        //  If the user requests mirrored memory and we do not have it,
        //  post an errorlog but do not return a terminating error.
        //  ------------------------------------------------------------
        //  Need to read an attribute set by PHYP?


        //  check for minimum hardware that is specific to platform that we're
        //  running on (ie, hostboot or fsp in hwsv).
        //  if there is an issue, create and commit an error, and tie it to the
        //  the rest of them with the common plid.
        HWAS::checkCriticalResources(l_commonPlid, pTop);
        platCheckMinimumHardware(l_commonPlid, i_nodeOrSys, o_bootable);
    }
    while (0);

    //  ---------------------------------------------------------------
    // if the common plid got set anywhere above, we have an error.
    //  ---------------------------------------------------------------
    if ((l_commonPlid)&&(o_bootable == NULL))
    {
        /*@
         * @errortype
         * @severity          ERRL_SEV_UNRECOVERABLE
         * @moduleid          MOD_CHECK_MIN_HW
         * @reasoncode        RC_SYSAVAIL_INSUFFICIENT_HW
         * @devdesc           Insufficient hardware to continue.
         */
        l_errl  =   hwasError(  ERRL_SEV_UNRECOVERABLE,
                                MOD_CHECK_MIN_HW,
                                RC_SYSAVAIL_INSUFFICIENT_HW);
        //  call out the procedure to find the deconfigured part.
        hwasErrorAddProcedureCallout( l_errl,
                                      EPUB_PRC_FIND_DECONFIGURED_PART,
                                      SRCI_PRIORITY_HIGH );
        //  if we already have an error, link this one to the earlier;
        //  if not, set the common plid
        hwasErrorUpdatePlid( l_errl, l_commonPlid );
    }

    HWAS_INF("checkMinimumHardware exit - minimum hardware %s",
            ((l_errl != NULL)||((o_bootable!=NULL)&&(!*o_bootable))) ?
                    "NOT available" : "available");
    return  l_errl ;
} // checkMinimumHardware



/**
 * @brief Checks if both targets have the same paths up to a certain number
 *        of path elements, determined by the smaller affinity path.
 *
 * @param[in] i_t1 TargetInfo containing the first target's affinity path
 * @param[in] i_t2 TargetInfo containing the second target's affinity path
 */
bool isSameSubPath(TargetInfo i_t1, TargetInfo i_t2)
{
    size_t l_size = std::min(i_t1.affinityPath.size(),
                             i_t2.affinityPath.size());
    return i_t1.affinityPath.equals(i_t2.affinityPath, l_size);
}

/**
 * @brief Deconfigures a target based on type
 *
 * Called by invokePresentByAssoc() after presentByAssoc() is called
 *
 * @param[in] i_targInfo TargetInfo for the target to be deconfigured
 */
void deconfigPresentByAssoc(TargetInfo i_targInfo)
{
    TargetHandleList pChildList;

    // find all CHILD matches for this target and deconfigure them
    getChildChiplets(pChildList, i_targInfo.pThisTarget, TYPE_NA);

    for (TargetHandleList::const_iterator
            pChild_it = pChildList.begin();
            pChild_it != pChildList.end();
            ++pChild_it)
    {
        TargetHandle_t l_childTarget = *pChild_it;
        enableHwasState(l_childTarget, true, false, i_targInfo.reason);
        HWAS_INF("deconfigPresentByAssoc: Target %.8X"
                " marked present, not functional: reason %.x",
                l_childTarget->getAttr<ATTR_HUID>(), i_targInfo.reason);
    }

    // find all CHILD_BY_AFFINITY matches for this target and deconfigure them
    getChildAffinityTargets(pChildList, i_targInfo.pThisTarget,
                            CLASS_NA ,TYPE_NA);

    for (TargetHandleList::const_iterator
            pChild_it = pChildList.begin();
            pChild_it != pChildList.end();
            ++pChild_it)
    {
        TargetHandle_t l_affinityTarget = *pChild_it;
        enableHwasState(l_affinityTarget,true,false, i_targInfo.reason);
        HWAS_INF("deconfigPresentByAssoc: Target %.8X"
                " marked present, not functional: reason %.x",
                l_affinityTarget->getAttr<ATTR_HUID>(), i_targInfo.reason);
    }

    // deconfigure the target itself
    enableHwasState(i_targInfo.pThisTarget,true,false,i_targInfo.reason);
    HWAS_INF("deconfigPresentByAssoc: Target %.8X"
            " marked present, not functional, reason %.x",
            i_targInfo.pThisTarget->getAttr<ATTR_HUID>(), i_targInfo.reason);

} // deconfigPresentByAssoc

void invokePresentByAssoc()
{
    HWAS_DBG("invokePresentByAssoc enter");

    // make one list
    TargetHandleList l_funcTargetList;

    // get the functional MCSs
    TargetHandleList l_funcMCSTargetList;
    getAllChiplets(l_funcMCSTargetList, TYPE_MCS, true );
    l_funcTargetList.insert(l_funcTargetList.begin(),
                               l_funcMCSTargetList.begin(),
                               l_funcMCSTargetList.end());

// If VPO, dump targets (MCS) for verification & debug purposes
#ifdef CONFIG_VPO_COMPILE
    HWAS_INF("invokePresentByAssoc(): MCS targets:");
    for (TargetHandleList::const_iterator
            l_MCS_Itr = l_funcMCSTargetList.begin();
            l_MCS_Itr != l_funcMCSTargetList.end();
            l_MCS_Itr++)
    {
        HWAS_INF("   MCS: HUID %.8x", TARGETING::get_huid(*l_MCS_Itr));
    }
#endif

    // get the functional membufs
    // note: do not expect membufs for NIMBUS direct memory attach
    TargetHandleList l_funcMembufTargetList;
    getAllChips(l_funcMembufTargetList, TYPE_MEMBUF, true );
    l_funcTargetList.insert(l_funcTargetList.begin(),
                               l_funcMembufTargetList.begin(),
                               l_funcMembufTargetList.end());

// If VPO, dump targets (MEMBUF) for verification & debug purposes
#ifdef CONFIG_VPO_COMPILE
    HWAS_INF("invokePresentByAssoc(): MEMBUF targets:");
    for (TargetHandleList::const_iterator
            l_MEMBUF_Itr = l_funcMembufTargetList.begin();
            l_MEMBUF_Itr != l_funcMembufTargetList.end();
            l_MEMBUF_Itr++)
    {
        HWAS_INF("   MEMBUF: HUID %.8x", TARGETING::get_huid(*l_MEMBUF_Itr));
    }
#endif

    // get the functional mbas
    // note: do not expect mbas for NIMBUS direct memory attach
    TargetHandleList l_funcMBATargetList;
    getAllChiplets(l_funcMBATargetList, TYPE_MBA, true );
    l_funcTargetList.insert(l_funcTargetList.begin(),
                               l_funcMBATargetList.begin(),
                               l_funcMBATargetList.end());

// If VPO, dump targets (MBA) for verification & debug purposes
#ifdef CONFIG_VPO_COMPILE
    HWAS_INF("invokePresentByAssoc(): MBA targets:");
    for (TargetHandleList::const_iterator
            l_MBA_Itr = l_funcMBATargetList.begin();
            l_MBA_Itr != l_funcMBATargetList.end();
            l_MBA_Itr++)
    {
        HWAS_INF("   MBA: HUID %.8x", TARGETING::get_huid(*l_MBA_Itr));
    }
#endif

    // get the functional MCAs
    // note: MCAs are expected for NIMBUS direct memory attach
    TargetHandleList l_funcMcaTargetList;
    getAllChiplets(l_funcMcaTargetList, TYPE_MCA, true );
    l_funcTargetList.insert(l_funcTargetList.begin(),
                               l_funcMcaTargetList.begin(),
                               l_funcMcaTargetList.end());

// If VPO, dump targets (MCA) for verification & debug purposes
#ifdef CONFIG_VPO_COMPILE
    HWAS_INF("invokePresentByAssocDA(): MCA targets:");
    for (TargetHandleList::const_iterator
            l_MCA_Itr = l_funcMcaTargetList.begin();
            l_MCA_Itr != l_funcMcaTargetList.end();
            l_MCA_Itr++)
    {
        HWAS_INF("   MCA: HUID %.8x", TARGETING::get_huid(*l_MCA_Itr));
    }
#endif
    // get the functional dimms
    TargetHandleList l_funcDIMMTargetList;
    getAllLogicalCards(l_funcDIMMTargetList, TYPE_DIMM, true );
    l_funcTargetList.insert(l_funcTargetList.begin(),
                               l_funcDIMMTargetList.begin(),
                               l_funcDIMMTargetList.end());


// If VPO, dump targets (DIMM) for verification & debug purposes
#ifdef CONFIG_VPO_COMPILE
    HWAS_INF("invokePresentByAssoc(): DIMM targets:");
    for (TargetHandleList::const_iterator
            l_DIMM_Itr = l_funcDIMMTargetList.begin();
            l_DIMM_Itr != l_funcDIMMTargetList.end();
            l_DIMM_Itr++)
    {
        HWAS_INF("   DIMM: HUID %.8x", TARGETING::get_huid(*l_DIMM_Itr));
    }
#endif

    // Define vectors of TargetInfo structs to be used in presentByAssoc
    TargetInfoVector l_targInfo;
    TargetInfoVector l_targToDeconfig;

    // Iterate through targets and populate l_targInfo vector
    for (TargetHandleList::const_iterator
            l_targIter = l_funcTargetList.begin();
            l_targIter != l_funcTargetList.end();
            ++l_targIter)
    {
        TargetHandle_t pTarg = *l_targIter;
        TargetInfo l_TargetInfo;
        l_TargetInfo.pThisTarget    = pTarg;
        l_TargetInfo.affinityPath   = pTarg->getAttr<ATTR_AFFINITY_PATH>();
        l_TargetInfo.type           = pTarg->getAttr<ATTR_TYPE>();
        l_targInfo.push_back(l_TargetInfo);
    }

    // Call presentByAssoc to take the functional targets in l_targInfo
    // and determine which ones need to be deconfigured
    presentByAssoc(l_targInfo, l_targToDeconfig);

    // Deconfigure targets in l_targToDeconfig
    for (TargetInfoVector::const_iterator
         l_targIter = l_targToDeconfig.begin();
         l_targIter != l_targToDeconfig.end();
         ++l_targIter)
    {
        deconfigPresentByAssoc(*l_targIter);
    }
} // invokePresentByAssoc

void presentByAssoc(TargetInfoVector& io_funcTargets,
                    TargetInfoVector& o_targToDeconfig)
{
    HWAS_DBG("presentByAssoc entry");

    // Sort entire vector by affinity path. This provides the algorithm with
    // an ordered vector of targets, making it easy to check if:
    // for direct attach memory -
    //   MCS has child MCA
    //   MCA has child DIMM and parent MCS
    //   DIMM has parent MCA.
    // for non direct attach memory -
    //   MCS has child MEMBUF
    //   MEMBUF has parent MCS and child MBA
    //   MBA has child DIMM and parnent MEMBUF
    //   DIMM has parent MBA.
    std::sort(io_funcTargets.begin(), io_funcTargets.end(),
              compareAffinity);

    // Keep track of the most recently seen MCS MEMBUF and MBA. This allows the
    // algorithm to quickly check if targets share a MCS or MEMBUF and used
    // for backtracking after deleting a target from the vector
    size_t l_MCSIndex = __INT_MAX__;
    size_t l_MEMBUFIndex = __INT_MAX__;
    size_t l_MBAIndex = __INT_MAX__;
    size_t l_MCAIndex = __INT_MAX__;
    size_t i = 0;

    // Perform presentByAssoc algorithm
    while ( i < io_funcTargets.size() )
    {
        // INIT STEPS:
        // Reset iterator, check if the next taget in
        // the vector is valid or even needed

        // Get iterator to erase elements from vector when needed
        std::vector<TargetInfo>::iterator it = io_funcTargets.begin();
        std::advance(it,i);
        TargetInfo& l_curTargetInfo = *it;

        // Check if there is a next target and set it
        // Don't need to check next target with a DIMM
        TargetInfo* l_nextTargetInfo = NULL;
        if ( ((i + 1) < io_funcTargets.size()) &&
             (l_curTargetInfo.type != TYPE_DIMM) )
        {
            l_nextTargetInfo = &(*(it + 1));
        }

        switch (l_curTargetInfo.type)
        {
        case TYPE_MCS:
        {
            // No Child MEMBUFs or MCAs
            // If next is not a MEMBUF or MCA sharing the same MCS, deconfig MCS
            if ( (l_nextTargetInfo == NULL) ||
                 ( (l_nextTargetInfo->type != TYPE_MEMBUF) &&
                   (l_nextTargetInfo->type != TYPE_MCA) ) ||
                 !isSameSubPath(l_curTargetInfo, *l_nextTargetInfo) )
            {
                // Disable MCS - NO_CHILD_MEMBUF_OR_MCA
                l_curTargetInfo.reason =
                        DeconfigGard::DECONFIGURED_BY_NO_CHILD_MEMBUF_OR_MCA;
                // Add target to Deconfig vector to be deconfigured later
                o_targToDeconfig.push_back(l_curTargetInfo);
                // Remove target from funcTargets
                io_funcTargets.erase(it);
            }
            // Update MCS Index
            else
            {
                l_MCSIndex = i;
                i++;
            }
            break;
        } // MCS

        case TYPE_MEMBUF:
        {
            // No Child MBAs
            // If next is not a MBA sharing the same MEMBUF, deconfig MEMBUF
            if ( (l_nextTargetInfo == NULL) ||
                 (l_nextTargetInfo->type != TYPE_MBA) ||
                 !isSameSubPath(l_curTargetInfo, *l_nextTargetInfo) )
            {
                // Disable MEMBUF - NO_CHILD_MBA
                l_curTargetInfo.reason =
                        DeconfigGard::DECONFIGURED_BY_NO_CHILD_MBA;
            }
            // No Parent MCS
            // If MEMBUF doesn't share the same MCS as MCSIndex, deconfig MEMBUF
            else if ( (l_MCSIndex == __INT_MAX__) ||
                    !isSameSubPath(l_curTargetInfo, io_funcTargets[l_MCSIndex]))
            {
                // Disable MEMBUF - NO_PARENT_MCS
                l_curTargetInfo.reason =
                        DeconfigGard::DECONFIGURED_BY_NO_PARENT_MCS;
            }
            // Update MEMBUF Index
            else
            {
                l_MEMBUFIndex = i;
                i++;
                continue;
            }

            // Add target to deconfig vector to be deconfigured later
            o_targToDeconfig.push_back(l_curTargetInfo);
            // Remove target from funcTargets
            io_funcTargets.erase(it);

            // Backtrack to last MCS
            if ( l_MCSIndex != __INT_MAX__ )
            {
                i = l_MCSIndex;
            }
            // Backtrack to beginning if no MCS has been seen yet
            else
            {
                i = 0;
            }
            break;
        } // MEMBUF

        case TYPE_MBA:
        {
            // No Child DIMMs
            // If next is not a DIMM sharing the same MBA, deconfig MBA
            if ( (l_nextTargetInfo == NULL) ||
                 (l_nextTargetInfo->type != TYPE_DIMM) ||
                 !isSameSubPath(l_curTargetInfo, *l_nextTargetInfo) )
            {
                // Disable MBA - NO_CHILD_DIMM
                l_curTargetInfo.reason =
                        DeconfigGard::DECONFIGURED_BY_NO_CHILD_DIMM;
            }
            // No Parent MEMBUF
            // If MBA doesn't share the same MEMBUF as MEMBUFIndex, deconfig MBA
            else if ( (l_MEMBUFIndex == __INT_MAX__) ||
                    !isSameSubPath(l_curTargetInfo, io_funcTargets[l_MEMBUFIndex]))
            {
                // Disable MBA - NO_PARENT_MEMBUF
                l_curTargetInfo.reason =
                        DeconfigGard::DECONFIGURED_BY_NO_PARENT_MEMBUF;
            }
            // Update MBA Index
            else
            {
                l_MBAIndex = i;
                i++;
                continue;
            }

            // Add target to deconfig vector to be deconfigured later
            o_targToDeconfig.push_back(l_curTargetInfo);
            // Remove target from funcTargets
            io_funcTargets.erase(it);

            // Backtrack to last MEMBUF
            if ( l_MEMBUFIndex != __INT_MAX__ )
            {
                i = l_MEMBUFIndex;
            }
            // Backtrack to last MCS if no MEMBUF has been seen yet
            else if ( l_MCSIndex != __INT_MAX__)
            {
                i = l_MCSIndex;
            }
            // Backtrack to beginning if no MCS has been seen yet
            else
            {
                i = 0;
            }
            break;
        } // MBA

        case TYPE_MCA:
        {
// @todo RTC:149770 Once ZZ supports DIMMs, add DIMMs back in min hdw check.
// It works for stand alone.
#if (0)
            // No Child DIMMs
            // If next is not a DIMM sharing the same MCA, deconfig MCS
            if ( (l_nextTargetInfo == NULL) ||
                 (l_nextTargetInfo->type != TYPE_DIMM) ||
                 !isSameSubPath(l_curTargetInfo, *l_nextTargetInfo) )
            {
                // Disable MCS - NO_CHILD_DIMM
                l_curTargetInfo.reason =
                        DeconfigGard::DECONFIGURED_BY_NO_CHILD_DIMM;
            }
            // No Parent MCS
            // If MCA doesn't share the same MCS as MCSIndex, deconfig MCA
            else
#endif // the new line can be removed
            if ( (l_MCSIndex == __INT_MAX__) ||
                    !isSameSubPath(l_curTargetInfo, io_funcTargets[l_MCSIndex]))
            {
                // Disable MCA - NO_PARENT_MCS
                l_curTargetInfo.reason =
                        DeconfigGard::DECONFIGURED_BY_NO_PARENT_MCS;
            }
            // Update MCA Index
            else
            {
                l_MCAIndex = i;
                i++;
                continue;
            }

            // Add target to deconfig vector to be deconfigured later
            o_targToDeconfig.push_back(l_curTargetInfo);
            // Remove target from funcTargets
            io_funcTargets.erase(it);

            // Backtrack to last MCS
            if ( l_MCSIndex != __INT_MAX__ )
            {
                i = l_MCSIndex;
            }
            // Backtrack to beginning if no MCS has been seen yet
            else
            {
                i = 0;
            }
            break;
        } // MCS

        case TYPE_DIMM:
        {
            // No Parent MBA or MCA
            // If DIMM does not share the same MBA as MBAIndex,
            // or if DIMM does not share the same MCA as MCAIndex,
            // deconfig DIMM
            if ( ((l_MBAIndex == __INT_MAX__) ||
                 !isSameSubPath(l_curTargetInfo, io_funcTargets[l_MBAIndex])) &&
                 ((l_MCAIndex == __INT_MAX__) ||
                 !isSameSubPath(l_curTargetInfo, io_funcTargets[l_MCAIndex])) )
            {
                // Disable DIMM
                l_curTargetInfo.reason =
                        DeconfigGard::DECONFIGURED_BY_NO_PARENT_MBA_OR_MCA;

                // Add target to deconfig vector to be deconfigured later
                o_targToDeconfig.push_back(l_curTargetInfo);
                // Remove target from funcTargets
                io_funcTargets.erase(it);

                // Backtrack to last MBA
                if ( l_MBAIndex != __INT_MAX__ )
                {
                    i = l_MBAIndex;
                }
                // Backtrack to last MCA
                else if ( l_MCAIndex != __INT_MAX__)
                {
                    i = l_MCSIndex;
                }
                // Backtrack to last MEMBUF if no MBA has been seen yet
                else if ( l_MEMBUFIndex != __INT_MAX__)
                {
                    i = l_MEMBUFIndex;
                }
                // Backtrack to last MCS if no MEMBUF has been seen yet
                else if ( l_MCSIndex != __INT_MAX__)
                {
                    i = l_MCSIndex;
                }
                // Backtrack to beginning if no MCS has been seen yet
                else
                {
                    i = 0;
                }
            }
            else
            {
                i++;
            }
            break;
        } // DIMM
        default:
            // no action
            break;
        } // switch
    } // while
} // presentByAssoc

};   // end namespace
OpenPOWER on IntegriCloud