summaryrefslogtreecommitdiffstats
path: root/src/usr/hwas/common/hwas.C
blob: f48b80e943aefff36e42371155b796ec7c243b24 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401
3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435
3436
3437
3438
3439
3440
3441
3442
3443
3444
3445
3446
3447
3448
3449
3450
3451
3452
3453
3454
3455
3456
3457
3458
3459
3460
3461
3462
3463
3464
3465
3466
3467
3468
3469
3470
3471
3472
3473
3474
3475
3476
3477
3478
3479
3480
3481
3482
3483
3484
3485
3486
3487
3488
3489
3490
3491
3492
3493
3494
3495
3496
3497
3498
3499
3500
3501
3502
3503
3504
3505
3506
3507
3508
3509
3510
3511
3512
3513
3514
3515
3516
3517
3518
3519
3520
3521
3522
3523
3524
3525
3526
3527
3528
3529
3530
3531
3532
3533
3534
3535
3536
3537
3538
3539
3540
3541
3542
3543
3544
3545
3546
3547
3548
3549
3550
3551
3552
3553
3554
3555
3556
3557
3558
3559
3560
3561
3562
3563
3564
3565
3566
3567
3568
3569
3570
3571
3572
3573
3574
3575
3576
3577
3578
3579
3580
3581
3582
3583
3584
3585
3586
3587
3588
3589
3590
3591
3592
3593
3594
3595
3596
3597
3598
3599
3600
3601
3602
3603
3604
3605
3606
3607
3608
3609
3610
3611
3612
3613
3614
3615
3616
3617
3618
3619
3620
3621
3622
3623
3624
3625
3626
3627
3628
3629
3630
3631
3632
3633
3634
3635
3636
3637
3638
3639
3640
3641
3642
3643
3644
3645
3646
3647
3648
3649
3650
3651
3652
3653
3654
3655
3656
3657
3658
3659
3660
3661
3662
3663
3664
3665
3666
3667
3668
3669
3670
3671
3672
3673
3674
3675
3676
3677
3678
3679
3680
3681
3682
3683
3684
3685
3686
3687
3688
3689
3690
3691
3692
3693
3694
3695
3696
3697
3698
3699
3700
3701
3702
3703
3704
3705
3706
3707
3708
3709
3710
3711
3712
3713
3714
3715
3716
3717
3718
3719
3720
3721
3722
3723
3724
3725
3726
3727
3728
3729
3730
3731
3732
3733
3734
3735
3736
3737
3738
3739
3740
3741
3742
3743
3744
3745
3746
3747
3748
3749
3750
3751
3752
3753
3754
3755
3756
3757
3758
3759
3760
3761
3762
3763
3764
3765
3766
3767
3768
3769
3770
3771
3772
3773
3774
3775
3776
3777
3778
3779
3780
3781
3782
3783
3784
3785
3786
3787
3788
3789
3790
3791
3792
3793
3794
3795
3796
3797
3798
3799
3800
3801
3802
3803
3804
3805
3806
3807
3808
3809
3810
3811
3812
3813
3814
3815
3816
3817
3818
3819
3820
3821
3822
3823
3824
3825
3826
3827
3828
3829
3830
3831
3832
3833
3834
3835
3836
3837
3838
3839
3840
3841
3842
3843
3844
3845
3846
3847
3848
3849
3850
3851
3852
3853
3854
3855
3856
3857
3858
3859
3860
3861
3862
3863
3864
3865
3866
3867
3868
3869
3870
3871
3872
3873
3874
3875
3876
3877
3878
3879
3880
3881
3882
3883
3884
3885
3886
3887
3888
3889
3890
3891
3892
3893
3894
3895
3896
3897
3898
3899
3900
3901
3902
3903
3904
3905
3906
3907
3908
3909
3910
3911
3912
3913
3914
3915
3916
3917
3918
3919
3920
3921
3922
3923
3924
3925
3926
3927
3928
3929
3930
3931
3932
3933
3934
3935
3936
3937
3938
3939
3940
3941
3942
3943
3944
3945
3946
3947
3948
3949
3950
3951
3952
3953
3954
3955
3956
3957
3958
3959
3960
3961
3962
3963
3964
3965
3966
3967
3968
3969
3970
3971
3972
3973
3974
3975
3976
3977
3978
3979
3980
3981
3982
3983
3984
3985
3986
3987
3988
3989
3990
3991
3992
3993
3994
3995
3996
3997
3998
3999
4000
4001
4002
4003
4004
4005
4006
4007
4008
4009
4010
4011
4012
4013
4014
4015
4016
4017
4018
4019
4020
4021
4022
4023
4024
4025
4026
4027
4028
4029
4030
4031
4032
4033
4034
4035
4036
4037
4038
4039
4040
4041
4042
4043
4044
4045
4046
4047
4048
4049
4050
4051
4052
4053
4054
4055
4056
4057
4058
4059
4060
4061
4062
4063
4064
4065
4066
4067
4068
4069
4070
4071
4072
4073
4074
4075
4076
4077
4078
4079
4080
4081
4082
4083
4084
4085
4086
4087
4088
4089
4090
4091
4092
4093
4094
4095
4096
4097
4098
4099
4100
4101
4102
4103
4104
4105
4106
4107
4108
4109
4110
4111
4112
4113
4114
4115
4116
4117
4118
4119
4120
4121
4122
4123
4124
4125
4126
4127
4128
4129
4130
4131
4132
4133
4134
4135
4136
4137
4138
4139
4140
4141
4142
4143
4144
4145
4146
4147
4148
4149
4150
4151
4152
4153
4154
4155
4156
4157
4158
4159
4160
4161
4162
4163
4164
4165
4166
4167
4168
4169
4170
4171
4172
4173
4174
4175
4176
4177
4178
4179
4180
4181
4182
4183
4184
4185
4186
4187
4188
4189
4190
4191
4192
4193
4194
4195
4196
4197
4198
4199
4200
4201
4202
4203
4204
4205
4206
4207
4208
4209
4210
4211
4212
4213
4214
4215
4216
4217
4218
4219
4220
4221
4222
4223
4224
4225
4226
4227
4228
4229
4230
4231
4232
4233
4234
4235
4236
4237
4238
4239
4240
4241
4242
4243
4244
4245
4246
4247
4248
4249
4250
4251
4252
4253
4254
4255
/* IBM_PROLOG_BEGIN_TAG                                                   */
/* This is an automatically generated prolog.                             */
/*                                                                        */
/* $Source: src/usr/hwas/common/hwas.C $                                  */
/*                                                                        */
/* OpenPOWER HostBoot Project                                             */
/*                                                                        */
/* Contributors Listed Below - COPYRIGHT 2012,2019                        */
/* [+] Google Inc.                                                        */
/* [+] International Business Machines Corp.                              */
/*                                                                        */
/*                                                                        */
/* Licensed under the Apache License, Version 2.0 (the "License");        */
/* you may not use this file except in compliance with the License.       */
/* You may obtain a copy of the License at                                */
/*                                                                        */
/*     http://www.apache.org/licenses/LICENSE-2.0                         */
/*                                                                        */
/* Unless required by applicable law or agreed to in writing, software    */
/* distributed under the License is distributed on an "AS IS" BASIS,      */
/* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or        */
/* implied. See the License for the specific language governing           */
/* permissions and limitations under the License.                         */
/*                                                                        */
/* IBM_PROLOG_END_TAG                                                     */
/**
 *  @file hwas.C
 *
 *  HardWare Availability Service functions.
 *  See hwas.H for doxygen documentation tags.
 *
 */


/******************************************************************************/
// Includes
/******************************************************************************/
#include <stdint.h>
#include <algorithm>
#include <map>
#include <stdio.h> // sprintf

#ifdef __HOSTBOOT_MODULE
#include <config.h>
#include <initservice/initserviceif.H>
#endif

#include <targeting/common/commontargeting.H>
#include <targeting/common/utilFilter.H>
#include <targeting/common/util.H>

#include <hwas/common/hwas.H>
#include <hwas/common/hwasCommon.H>
#include <hwas/common/hwasError.H>
#include <hwas/common/pgLogic.H>

#include <hwas/common/deconfigGard.H>
#include <hwas/common/hwas_reasoncodes.H>

namespace HWAS
{

using namespace TARGETING;
using namespace HWAS::COMMON;

// trace setup; used by HWAS_DBG and HWAS_ERR macros
HWAS_TD_t g_trac_dbg_hwas   = NULL; // debug - fast
HWAS_TD_t g_trac_imp_hwas   = NULL; // important - slow

#ifdef __HOSTBOOT_MODULE
TRAC_INIT(&g_trac_dbg_hwas, "HWAS",     KILOBYTE );
TRAC_INIT(&g_trac_imp_hwas, "HWAS_I",   KILOBYTE );
#else
TRAC_INIT(&g_trac_dbg_hwas, "HWAS",     1024 );
TRAC_INIT(&g_trac_imp_hwas, "HWAS_I",   1024 );
#endif

// SORT functions that we'll use for PR keyword processing
bool compareProcGroup(procRestrict_t t1, procRestrict_t t2)
{
    if (t1.group == t2.group)
    {
        return (t1.target->getAttr<ATTR_HUID>() <
                    t2.target->getAttr<ATTR_HUID>());
    }
    return (t1.group < t2.group);
}

bool compareAffinity(const TargetInfo t1, const TargetInfo t2)
{
        return t1.affinityPath < t2.affinityPath;
}

/*
 * @brief  This function takes in proc target and returns group/chip id
 *         in the following bit format: GGGG CCC
 *         where G = Group Id and C = Chip Id
 *
 * @param[in] i_proc: proc target
 * @retval: chip info including group and chip id
 */
uint64_t getGroupChipIdInfo (TargetHandle_t i_proc)
{
    auto l_grp_id  = i_proc->getAttr<ATTR_FABRIC_GROUP_ID>();
    auto l_chip_id = i_proc->getAttr<ATTR_FABRIC_CHIP_ID>();

    //Chip ID is three bits long, therefore, shift group id
    //by 3 and OR it with chip id
    return ((l_grp_id << 3) | l_chip_id);
}

/*
 * @brief  This function takes in the value of ATTR_PROC_MEM_TO_USE
 *         and extract out group and chip id
 *         in the following bit format: GGGG CCC
 *         where G = Group Id and C = Chip Id
 *
 * @param[in] i_proc_mem_to_use: Value of ATTR_PROC_MEM_TO_USE
 * @param[out] o_grp_id: groupd id
 * @param[out] o_chip_id: chip id
 */
void parseProcMemToUseIntoGrpChipId (uint8_t   i_proc_mem_to_use,
                                     uint8_t & o_grp_id,
                                     uint8_t & o_chip_id)
{
    o_grp_id  = (i_proc_mem_to_use >> 3) & 0x0F;
    o_chip_id = i_proc_mem_to_use & 0x07;
}

/**
 * @brief       simple helper fn to get and set hwas state to poweredOn,
 *                  present, functional
 *
 * @param[in]   i_target        pointer to target that we're looking at
 * @param[in]   i_present       boolean indicating present or not
 * @param[in]   i_functional    boolean indicating functional or not
 * @param[in]   i_errlEid       erreid that caused change to non-funcational;
 *                              0 if not associated with an error or if
 *                              functional is true
 *
 * @return      none
 *
 */
void enableHwasState(Target *i_target,
        bool i_present, bool i_functional,
        uint32_t i_errlEid)
{
    HwasState hwasState = i_target->getAttr<ATTR_HWAS_STATE>();

    if (i_functional == false)
    {   // record the EID as a reason that we're marking non-functional
        hwasState.deconfiguredByEid = i_errlEid;
    }
    hwasState.poweredOn     = true;
    hwasState.present       = i_present;
    hwasState.functional    = i_functional;
    i_target->setAttr<ATTR_HWAS_STATE>( hwasState );
}

/**
 * @brief disable obuses in wrap config.
 *        Due to fabric limitations, we can only have 2 parallel OBUS
 *        connections at a time in wrap config.So, deconfigure appropriate
 *        OBUSes using the following rule. If the value of
 *        MFG_WRAP_TEST_ABUS_LINKS_SET_ENABLE (on the system target) does
 *        not match with the value of MFG_WRAP_TEST_ABUS_LINKS_SET (on the
 *        OBUS target), then deconfigure the OBUSes.
 * @return errlHndl_t
 *
 */
errlHndl_t disableOBUSes()
{
    errlHndl_t l_err = nullptr;

    do
    {
        //get system target and figure out which links to enable
        Target* pSys;
        targetService().getTopLevelTarget(pSys);
        auto l_links_set_enable =
            pSys->getAttr<ATTR_MFG_WRAP_TEST_ABUS_LINKS_SET_ENABLE>();

        //get all OBUS chiplets
        TargetHandleList l_obusList;
        getAllChiplets(l_obusList, TYPE_OBUS);
        for (const auto & l_obus : l_obusList)
        {
            //It fails to compile if you compare two different enum types
            //That's why, typecasting here. The underlying enum value
            //should be the same.
            ATTR_MFG_WRAP_TEST_ABUS_LINKS_SET_ENABLE_type l_link_set =
                (ATTR_MFG_WRAP_TEST_ABUS_LINKS_SET_ENABLE_type)
                l_obus->getAttr<ATTR_MFG_WRAP_TEST_ABUS_LINKS_SET>();

            if (l_links_set_enable != l_link_set)
            {
                //deconfigure
                l_err = HWAS::theDeconfigGard().deconfigureTarget(
                     *l_obus,
                      HWAS::DeconfigGard::DECONFIGURED_BY_NO_MATCHING_LINK_SET);
                if (l_err)
                {
                    HWAS_ERR("disableOBUSes: Unable to deconfigure %x OBUS",
                            get_huid(l_obus));
                    break;
                }
            }
        }

        if (l_err)
        {
            break;
        }

        //Sanity Check to make sure each proc only has a max of 2 OBUSes
        //only if MFG_WRAP_TEST_ABUS_LINKS_SET_ENABLE was overidden
        //because that means we are trying to run in wrap mode.
        //Otherwise, it will be defaulted to SET_NONE
        if (l_links_set_enable)
        {
            TargetHandleList l_procList;
            getAllChips(l_procList, TYPE_PROC);
            for (const auto & l_proc : l_procList)
            {
                getChildChiplets(l_obusList, l_proc, TYPE_OBUS, true);
                if (l_obusList.size() > 2)
                {
                    HWAS_ERR("disableOBUSes: Only 2 BUSes should be functional"
                            " under %x, found %d",
                            get_huid(l_proc), l_obusList.size());
                    /*@
                     * @errortype
                     * @severity           ERRL_SEV_UNRECOVERABLE
                     * @moduleid           MOD_DISABLE_OBUS
                     * @reasoncode         RC_ONLY_TWO_OBUS_SHOULD_BE_CONFIGURED
                     * @devdesc            Due to fabric limitations, only 2
                     *                     OBUSes should be configured, we found
                     *                     too many
                     * @custdesc           A problem occurred during the IPL of
                     *                     the system: Found too many obus links
                     * @userdata1          HUID of proc
                     * @userdata2          number of functional OBUSes
                     */
                    l_err = hwasError(ERRL_SEV_UNRECOVERABLE,
                                       MOD_DISABLE_OBUS,
                                       RC_ONLY_TWO_OBUS_SHOULD_BE_CONFIGURED,
                                       get_huid(l_proc), l_obusList.size());
                    break;
                }
            }
        }
    } while (0);
    return l_err;
}

errlHndl_t update_proc_mem_to_use (const Target* i_node)
{
    errlHndl_t l_errl {nullptr};
    TargetHandle_t l_masterProcTarget {nullptr};

    do
    {
        //Get master proc
        l_errl =
            targetService().queryMasterProcChipTargetHandle(l_masterProcTarget,
                    i_node);
        if (l_errl)
        {
            HWAS_ERR("update_proc_mem_to_use: unable to get master proc");
            break;
        }


        //Check if this processor has missing memory
        //If yes, then get the HRMOR of the proc we want to use the mem of
        uint8_t l_proc_mem_to_use = l_masterProcTarget->getAttr
                                    <ATTR_PROC_MEM_TO_USE>();
        uint8_t l_proc_mem_to_use_save = l_proc_mem_to_use;
        bool l_found_missing_mem = false;
        l_errl = check_for_missing_memory(i_node, l_proc_mem_to_use,
                                          l_found_missing_mem);
        if (l_errl)
        {
            HWAS_ERR("update_proc_mem_to_use: unable to check for missing mem");
            break;
        }

        //We found missing memory behind master proc, but
        //check_for_missing_memory didn't update proc_mem_to_use
        //probably because there are no other procs with memory,
        //create an error.
        if (l_found_missing_mem && (l_proc_mem_to_use==l_proc_mem_to_use_save))
        {
            HWAS_ERR("update_proc_mem_to_use: ATTR_PROC_MEM_TO_USE didn't get"
            " updated even though we were missing mem behind master proc");

            /*@
             * @errortype
             * @severity           ERRL_SEV_UNRECOVERABLE
             * @moduleid           MOD_UPDATE_PROC_MEM_TO_USE
             * @reasoncode         RC_NO_UPDATE_WHEN_MEM_MISSING
             * @devdesc            No procs found with valid memory
             * @custdesc           A problem occurred during the IPL of
             *                     the system: No memory found
             * @userdata1          Saved value of ATTR_PROC_MEM_TO_USE
             * @userdata2          Updated value of ATTR_PROC_MEM_TO_USE
             */
            l_errl = hwasError(ERRL_SEV_UNRECOVERABLE,
                               MOD_UPDATE_PROC_MEM_TO_USE,
                               RC_NO_UPDATE_WHEN_MEM_MISSING,
                               l_proc_mem_to_use_save,
                               l_proc_mem_to_use);

            hwasErrorAddProcedureCallout(l_errl,
                    EPUB_PRC_FIND_DECONFIGURED_PART,
                    SRCI_PRIORITY_HIGH);
            break;

        }

        //set PROC_MEM_TO_USE to the group/chip id of the proc we want to
        //use the mem of
        //get all procs behind the input node
        TargetHandleList l_procs;
        getChildAffinityTargetsByState( l_procs,
                                        i_node,
                                        CLASS_CHIP,
                                        TYPE_PROC,
                                        UTIL_FILTER_ALL);
        for (auto & l_proc : l_procs)
        {
            l_proc->setAttr<ATTR_PROC_MEM_TO_USE>(l_proc_mem_to_use);
        }

    } while (0);

    return l_errl;
}

errlHndl_t check_for_missing_memory (const Target* i_node,
                                     uint8_t & io_proc_mem_to_use,
                                     bool   & o_found_missing_mem)
{

    errlHndl_t l_errl {nullptr};
    o_found_missing_mem = true;

    do
    {
        /////////////////////////////////////////////////////////////
        //Step 1 -- Figure out the lowest group/chip id proc that has
        //          memory
        /////////////////////////////////////////////////////////////
        //get all procs behind the input node
        TargetHandleList l_procs;
        getChildAffinityTargetsByState( l_procs,
                                        i_node,
                                        CLASS_CHIP,
                                        TYPE_PROC,
                                        UTIL_FILTER_FUNCTIONAL);

        //sort based on group/chip id. So, we can deterministically
        //pick the processor with memory. This will also help guarantee
        //that we will attempt to use master (or altmaster) proc's memory
        //first before using slave proc's memory.
        std::sort(l_procs.begin(), l_procs.end(),
                [] (TargetHandle_t a, TargetHandle_t b)
                {
                    return getGroupChipIdInfo(a) < getGroupChipIdInfo(b);
                });

        uint8_t l_temp_proc_mem_to_use = io_proc_mem_to_use;

        //find a processor that has dimms
        for (auto & l_proc : l_procs)
        {
            TargetHandleList l_funcDimms;
            getChildAffinityTargetsByState( l_funcDimms,
                                            l_proc,
                                            CLASS_LOGICAL_CARD,
                                            TYPE_DIMM,
                                            UTIL_FILTER_FUNCTIONAL);

            //Pick the first proc we find with dimms
            if (l_funcDimms.size() > 0)
            {
                l_temp_proc_mem_to_use = getGroupChipIdInfo(l_proc);
                break;
            }

        }

        /////////////////////////////////////////////////////////////
        //Step 2 -- Get the proc we are currently using the memory of
        //          and check if it has memory
        /////////////////////////////////////////////////////////////
        //get the proc pointed by PROC_MEM_TO_USE and check
        //if there is memory behind that proc. We rely on the current
        //value of PROC_MEM_TO_USE, so, we don't change our answer
        //unnecessarily (in cases when both master proc and altmaster
        //have memory)
        uint8_t l_grp  = 0;
        uint8_t l_chip = 0;
        parseProcMemToUseIntoGrpChipId(io_proc_mem_to_use, l_grp, l_chip);
        PredicateAttrVal<ATTR_FABRIC_GROUP_ID> l_predGrp (l_grp);
        PredicateAttrVal<ATTR_FABRIC_CHIP_ID> l_predChip (l_chip);
        PredicateCTM l_predProc (CLASS_CHIP, TYPE_PROC);
        PredicateIsFunctional l_isFunctional;
        PredicatePostfixExpr l_procCheckExpr;

        l_procCheckExpr.push(&l_predProc).push(&l_isFunctional).
            push(&l_predGrp).push(&l_predChip).And().And().And();

        TargetHandleList l_procMemUsedCurrently;
        targetService().getAssociated(l_procMemUsedCurrently,
                                      i_node,
                                      TargetService::CHILD_BY_AFFINITY,
                                      TargetService::IMMEDIATE,
                                      &l_procCheckExpr);

        HWAS_INF("check_for_missing_memory: looking for a proc with "
                "grp=0x%x chip=0x%x, found %d procs",
                l_grp, l_chip, l_procMemUsedCurrently.size());

        if (l_procMemUsedCurrently.size() >= 1)
        {
            //found proc
            //Check if proc whose memory we are currently using has dimms
            TargetHandleList l_funcDimms;
            getChildAffinityTargetsByState( l_funcDimms,
                                            l_procMemUsedCurrently[0],
                                            CLASS_LOGICAL_CARD,
                                            TYPE_DIMM,
                                            UTIL_FILTER_FUNCTIONAL);
            if (l_funcDimms.size() > 0)
            {
                //we found dimms behind the proc we are currently using
                o_found_missing_mem = false;
            }
        }


        /////////////////////////////////////////////////////////////
        //Step 3-- If proc picked in Step1 has lower group/chip id
        //          than current proc_mem_to_use value or
        //          there is no memory behind the currently used proc,
        //          then we update the proc_mem_to_use
        //NOTE: This ensures that if someone replaces the dimm on a lowered
        //      number proc, then we can fall back to that lowered number
        //      proc. Also, it makes sure that we are updating only when
        //      current proc_mem_to_use doesn't have memory or it's not
        //      pointing  to a valid proc.
        /////////////////////////////////////////////////////////////
        if ((l_temp_proc_mem_to_use < io_proc_mem_to_use)
                || (o_found_missing_mem))
        {
            HWAS_INF("check_for_missing_memory: found a need to switch"
                    " PROC_MEM_TO_USE from 0x%x to 0x%x",
                    io_proc_mem_to_use, l_temp_proc_mem_to_use);
            io_proc_mem_to_use = l_temp_proc_mem_to_use;
        }
        else
        {
            HWAS_INF("check_for_missing_memory: kept PROC_MEM_TO_USE same"
                    " 0x%x", io_proc_mem_to_use);
        }


    } while (0);

    return l_errl;
}

errlHndl_t check_current_proc_mem_to_use_is_still_valid (bool o_match)
{
    errlHndl_t l_err {nullptr};
    o_match = true;
    do
    {
        //Get the master proc to get the current value of PROC_MEM_TO_USE
        TargetHandle_t l_mProc;
        l_err = targetService().queryMasterProcChipTargetHandle(l_mProc);
        if (l_err)
        {
            HWAS_ERR("ERROR: getting master proc");
            break;
        }

        auto l_proc_mem_to_use = l_mProc->getAttr<ATTR_PROC_MEM_TO_USE>();

        //Get the node target to pass to check_for_missing_memory
        TargetHandleList l_nodes;
        getEncResources(l_nodes, TYPE_NODE, UTIL_FILTER_FUNCTIONAL);
        HWAS_ASSERT((l_nodes.size() == 1), "Only expecting 1 functional node");

        auto l_curr_proc_mem_to_use = l_proc_mem_to_use;
        bool l_found_missing_mem {false};
        l_err = HWAS::check_for_missing_memory(l_nodes[0],
                                               l_proc_mem_to_use,
                                               l_found_missing_mem);
        if (l_err)
        {
            HWAS_ERR("ERROR: check_for_missing_memory");
            break;
        }

        HWAS_INF("PROC_MEM_TO_USE currentVal=0x%x reComputedVal=0x%x",
                l_curr_proc_mem_to_use, l_proc_mem_to_use);

        if (l_curr_proc_mem_to_use != l_proc_mem_to_use)
        {
            HWAS_INF("check_current_proc_mem_to_use_is_still_valid: "
                "currentVal and reComputerVal don't match");
            o_match = false;
        }
    } while (0);

    return l_err;
}

/**
 * @brief Do presence detect on only MUX targets and enable HWAS state
 *
 * @param[in] i_sysTarget the top level target (CLASS_SYS)
 * @return    errlHndl_t  return nullptr if no error,
 *                        else return a handle to an error entry
 *
 */
errlHndl_t discoverMuxTargetsAndEnable(const Target &i_sysTarget)
{
    HWAS_DBG(ENTER_MRK"discoverMuxTargetsAndEnable");

    errlHndl_t l_err{nullptr};

    do
    {
        // Only get MUX targets
        const PredicateCTM l_muxPred(CLASS_CHIP, TYPE_I2C_MUX);
        TARGETING::PredicatePostfixExpr l_muxPredExpr;
        l_muxPredExpr.push(&l_muxPred);
        TargetHandleList l_pMuxCheckPres;
        targetService().getAssociated( l_pMuxCheckPres, (&i_sysTarget),
            TargetService::CHILD, TargetService::ALL, &l_muxPredExpr);

        // Do the presence detect on only MUX targets
        l_err = platPresenceDetect(l_pMuxCheckPres);

        // If an issue with platPresenceDetect, then exit, returning
        // error back to caller
        if (nullptr != l_err)
        {
            break;
        }

        // Enable the HWAS State for the MUXes
        const bool l_present(true);
        const bool l_functional(true);
        const uint32_t l_errlEid(0);
        for (TargetHandle_t pTarget : l_pMuxCheckPres)
        {
            // set HWAS state to show MUX is present and functional
            enableHwasState(pTarget, l_present, l_functional, l_errlEid);
        }
    } while (0);

    HWAS_DBG(EXIT_MRK"discoverMuxTargetsAndEnable exit with %s",
             (nullptr == l_err ? "no error" : "error"));

    return l_err;
}

errlHndl_t discoverTargets()
{
    HWAS_DBG("discoverTargets entry");
    errlHndl_t errl = NULL;

    //  loop through all the targets and set HWAS_STATE to a known default
    for (TargetIterator target = targetService().begin();
            target != targetService().end();
            ++target)
    {
        // TODO:RTC:151617 Need to find a better way
        // to initialize the target
        TARGETING::ATTR_INIT_TO_AVAILABLE_type initToAvailable = false;
        if(   (target->tryGetAttr<TARGETING::ATTR_INIT_TO_AVAILABLE>(
                   initToAvailable))
           && (initToAvailable))
        {
            HwasState hwasState          = target->getAttr<ATTR_HWAS_STATE>();
            hwasState.deconfiguredByEid  = 0;
            hwasState.poweredOn          = true;
            hwasState.present            = true;
            hwasState.functional         = true;
            hwasState.dumpfunctional     = false;
            target->setAttr<ATTR_HWAS_STATE>(hwasState);
        }
        else
        {
            HwasState hwasState          = target->getAttr<ATTR_HWAS_STATE>();
            hwasState.deconfiguredByEid  = 0;
            hwasState.poweredOn          = false;
            hwasState.present            = false;
            hwasState.functional         = false;
            hwasState.dumpfunctional     = false;
            target->setAttr<ATTR_HWAS_STATE>(hwasState);
        }
    }

    // Assumptions and actions:
    // CLASS_SYS (exactly 1) - mark as present
    // CLASS_ENC, TYPE_PROC, TYPE_MCS, TYPE_MEMBUF, TYPE_DIMM
    //     (ALL require hardware query) - call platPresenceDetect
    //  \->children: CLASS_* (NONE require hardware query) - mark as present
    do
    {
        // find CLASS_SYS (the top level target)
        Target* pSys;
        targetService().getTopLevelTarget(pSys);

        HWAS_ASSERT(pSys,
                "HWAS discoverTargets: no CLASS_SYS TopLevelTarget found");

        // mark this as present
        enableHwasState(pSys, true, true, 0);
        HWAS_DBG("pSys %.8X - marked present",
            pSys->getAttr<ATTR_HUID>());

        // Certain targets have dependencies on the MUX, so it is best to
        // presence detect and enable the MUX before moving on to these targets.
        // Please take this into consideration if code needs to be rearranged
        // in the future.
        errl = discoverMuxTargetsAndEnable(*pSys);

        if (errl != NULL)
        {
            break; // break out of the do/while so that we can return
        }

        PredicateCTM predEnc(CLASS_ENC);
        PredicateCTM predChip(CLASS_CHIP);
        PredicateCTM predDimm(CLASS_LOGICAL_CARD, TYPE_DIMM);
        PredicateCTM predMcs(CLASS_UNIT, TYPE_MCS);
        // We can ignore chips of TYPE_I2C_MUX because they
        // were already detected above in discoverMuxTargetsAndEnable
        PredicateCTM predMux(CLASS_CHIP, TYPE_I2C_MUX);
        PredicatePostfixExpr checkExpr;
        checkExpr.push(&predChip).push(&predDimm).Or().push(&predEnc).Or().
                  push(&predMcs).Or().push(&predMux).Not().And();

        TargetHandleList pCheckPres;
        targetService().getAssociated( pCheckPres, pSys,
            TargetService::CHILD, TargetService::ALL, &checkExpr );

        // pass this list to the hwas platform-specific api where
        // pCheckPres will be modified to only have present targets
        HWAS_DBG("pCheckPres size: %d", pCheckPres.size());
        errl = platPresenceDetect(pCheckPres);
        HWAS_DBG("pCheckPres size: %d", pCheckPres.size());

        if (errl != NULL)
        {
            break; // break out of the do/while so that we can return
        }

        // for each, read their ID/EC level. if that works,
        //  mark them and their descendants as present
        //  read the partialGood vector to determine if any are not functional
        //  and read and store values from the PR keyword

        // list of procs and data that we'll need to look at when potentially
        //  reducing the list of valid ECs later
        procRestrict_t l_procEntry;
        std::vector <procRestrict_t> l_procRestrictList;

        // sort the list by ATTR_HUID to ensure that we
        //  start at the same place each time
        std::sort(pCheckPres.begin(), pCheckPres.end(),
                compareTargetHuid);

        for (TargetHandleList::const_iterator pTarget_it = pCheckPres.begin();
                pTarget_it != pCheckPres.end();
                ++pTarget_it
            )
        {
            TargetHandle_t pTarget = *pTarget_it;

            // if CLASS_ENC is still in this list, mark as present
            if (pTarget->getAttr<ATTR_CLASS>() == CLASS_ENC)
            {
                enableHwasState(pTarget, true, true, 0);
                HWAS_DBG("pTarget %.8X - CLASS_ENC marked present",
                    pTarget->getAttr<ATTR_HUID>());

                // on to the next target
                continue;
            }

            bool chipPresent = true;
            bool chipFunctional = true;
            bool createInfoLog = false;
            uint32_t errlEid = 0;
            uint16_t pgData[VPD_CP00_PG_DATA_ENTRIES];
            bzero(pgData, sizeof(pgData));

            // Cache the target type
            auto l_targetType = pTarget->getAttr<ATTR_TYPE>();

            // This error is created preemptively to capture any targets that
            // were deemed non-functional for partial good reasons. If there are
            // no issues, then this error log is deleted.
            /*@
             * @errortype
             * @severity        ERRL_SEV_INFORMATIONAL
             * @moduleid        MOD_DISCOVER_TARGETS
             * @reasoncode      RC_PARTIAL_GOOD_INFORMATION
             * @devdesc         Partial Good (PG) issues are present within the
             *                  system and this error log contains information
             *                  about which targets, procs, and entries in the
             *                  PG vector are problematic.
             * @custdesc        An issue occured during IPL of the system:
             *                  Internal Firmware Error
             * @userdata1       None
             * @userdata2       None
             */
            errlHndl_t infoErrl = hwasError(ERRL_SEV_INFORMATIONAL,
                                            MOD_DISCOVER_TARGETS,
                                            RC_PARTIAL_GOOD_INFORMATION);

            if( (pTarget->getAttr<ATTR_CLASS>() == CLASS_CHIP) &&
                (l_targetType != TYPE_TPM) &&
                (l_targetType != TYPE_SP) &&
                (l_targetType != TYPE_BMC) &&
                (l_targetType != TYPE_I2C_MUX))
            {
                // read Chip ID/EC data from these physical chips
                errl = platReadIDEC(pTarget);

                if (errl)
                {   // read of ID/EC failed even tho we THOUGHT we were present.
                    HWAS_INF("pTarget %.8X - read IDEC failed (eid 0x%X) - bad",
                        errl->eid(), pTarget->getAttr<ATTR_HUID>());
                    // chip NOT present and NOT functional, so that FSP doesn't
                    // include this for HB to process
                    chipPresent = false;
                    chipFunctional = false;
                    errlEid = errl->eid();

                    // commit the error but keep going
                    errlCommit(errl, HWAS_COMP_ID);
                    // errl is now NULL
                }
                else if (l_targetType == TYPE_PROC)
                {
                    // read partialGood vector from these as well.
                    errl = platReadPartialGood(pTarget, pgData);

                    if (errl)
                    {   // read of PG failed even tho we were present..
                        HWAS_INF("pTarget %.8X - read PG failed (eid 0x%X)- bad",
                            errl->eid(), pTarget->getAttr<ATTR_HUID>());
                        chipFunctional = false;
                        errlEid = errl->eid();

                        // commit the error but keep going
                        errlCommit(errl, HWAS_COMP_ID);
                        // errl is now NULL
                    }
                    else
                    {
                        // look at the 'nest' logic to override the
                        //  functionality of this proc
                        chipFunctional =
                            isChipFunctional(pTarget,
                                             pgData);

                        if(!chipFunctional)
                        {
                            // Add this proc to the informational error log.
                            platHwasErrorAddHWCallout(infoErrl,
                                                      pTarget,
                                                      SRCI_PRIORITY_HIGH,
                                                      NO_DECONFIG,
                                                      GARD_NULL);

                            createInfoLog = true;
                        }


                        // Fill in a dummy restrict list
                        l_procEntry.target = pTarget;
                        // every proc is uniquely counted
                        l_procEntry.group = pTarget->getAttr<ATTR_HUID>();
                        // just 1 proc per group
                        l_procEntry.procs = 1;
                        // indicates we should use all available ECs
                        l_procEntry.maxECs = UINT32_MAX;
                        l_procRestrictList.push_back(l_procEntry);
                    }
                } // TYPE_PROC
            } // CLASS_CHIP

            HWAS_DBG("pTarget %.8X - detected present, %sfunctional",
                pTarget->getAttr<ATTR_HUID>(),
                chipFunctional ? "" : "NOT ");

            // Now determine if the descendants of this target are
            // present and/or functional
            checkPartialGoodForDescendants(pTarget,
                                           pgData,
                                           chipFunctional,
                                           errlEid,
                                           infoErrl,
                                           createInfoLog);

            // set HWAS state to show CHIP is present, functional per above
            enableHwasState(pTarget, chipPresent, chipFunctional, errlEid);

            // If there were partial good issues with the chip or its
            // descendents then create an info error log. Otherwise, delete
            // and move on.
            if (createInfoLog)
            {
                TargetHandle_t l_masterProc = nullptr;

                //Get master proc
                errl =
                    targetService()
                        .queryMasterProcChipTargetHandle(l_masterProc);
                if (errl)
                {
                    HWAS_ERR("discoverTargets: unable to get master proc");
                    errlCommit(errl, HWAS_COMP_ID);
                    errlCommit(infoErrl, HWAS_COMP_ID);
                    break;
                }

                auto l_model = l_masterProc->getAttr<ATTR_MODEL>();

                // Setup model dependent all good data
                uint16_t l_modelPgData[MODEL_PG_DATA_ENTRIES] = {0};

                l_modelPgData[0] = (MODEL_NIMBUS == l_model)
                    ? (VPD_CP00_PG_XBUS_GOOD_NIMBUS
                            | VPD_CP00_PG_XBUS_IOX[0])
                    : VPD_CP00_PG_XBUS_GOOD_CUMULUS;

                l_modelPgData[1] = (TARGETING::MODEL_NIMBUS == l_model)
                    ? VPD_CP00_PG_RESERVED_GOOD
                    : VPD_CP00_PG_OBUS_GOOD;

                hwasErrorAddPartialGoodFFDC(infoErrl, l_modelPgData, pgData);
                errlCommit(infoErrl, HWAS_COMP_ID);
            }
            else
            {
                delete infoErrl;
                infoErrl = nullptr;
            }

        } // for pTarget_it

        // Check for non-present Procs and if found, trigger
        // DeconfigGard::_invokeDeconfigureAssocProc() to run by setting
        // setXAOBusEndpointDeconfigured to true
        PredicateCTM predProc(CLASS_CHIP, TYPE_PROC);
        TargetHandleList l_procs;
        targetService().getAssociated(l_procs,
                                      pSys,
                                      TargetService::CHILD,
                                      TargetService::ALL,
                                      &predProc);

        for (TargetHandleList::const_iterator
             l_procsIter = l_procs.begin();
             l_procsIter != l_procs.end();
             ++l_procsIter)
        {
            if ( !(*l_procsIter)->getAttr<ATTR_HWAS_STATE>().present )
            {
                HWAS_INF("discoverTargets: Proc %.8X not present",
                    (*l_procsIter)->getAttr<ATTR_HUID>());
                HWAS::theDeconfigGard().setXAOBusEndpointDeconfigured(true);
            }
        }

        //Check all of the slave processor's EC levels to ensure they match master
        //processor's EC level.
        //function will return error log pointing to all error logs created
        //by this function as this function could detect multiple procs w/
        //bad ECs and will make a log for each
        errl = validateProcessorEcLevels();
        if (errl)
        {
            HWAS_ERR("discoverTargets: validateProcessorEcLevels failed");
            break;
        }

        // Potentially reduce the number of ec/core units that are present
        //  based on fused mode
        //  marking bad units as present=false;
        //  deconfigReason = 0 because present is false so this is not a
        //   deconfigured event.
        errl = restrictECunits(l_procRestrictList, false, 0);
        if (errl)
        {
            HWAS_ERR("discoverTargets: restrictECunits failed");
            break;
        }

        // Mark any MCA units that are present but have a disabled port
        //  as non-functional
        errl = markDisabledMcas();
        if (errl)
        {
            HWAS_ERR("discoverTargets: markDisabledMcas failed");
            break;
        }

        // call invokePresentByAssoc() to obtain functional MCSs, MEMBUFs, and
        // DIMMs for non-direct memory or MCSs, MCAs, and DIMMs for direct
        // memory. Call algorithm function presentByAssoc() to determine
        // targets that need to be deconfigured
        invokePresentByAssoc();

#ifdef __HOSTBOOT_MODULE
        if (INITSERVICE::isSMPWrapConfig())
        {
            //Due to fabric limitations, we can only have 2 parallel OBUS
            //connections at a time in wrap config. So, deconfigure appropriate
            //OBUSes using the following rule. If the value of
            //MFG_WRAP_TEST_ABUS_LINKS_SET_ENABLE (on the system target) does
            //not match with the value of MFG_WRAP_TEST_ABUS_LINKS_SET (on the
            //OBUS target), then deconfigure the OBUSes.
            errl = disableOBUSes();
            if (errl)
            {
                HWAS_ERR ("discoverTargets:: disableOBUSes failed");
                break;
            }
        }
#endif
    } while (0);



    if (errl)
    {
        HWAS_INF("discoverTargets failed (plid 0x%X)", errl->plid());
    }
    else
    {
        HWAS_INF("discoverTargets completed successfully");
    }
    return errl;
} // discoverTargets


bool isChipFunctional(const TARGETING::TargetHandle_t &i_target,
                      const uint16_t i_pgData[])
{
    bool l_chipFunctional = true;

    ATTR_MODEL_type l_model = i_target->getAttr<ATTR_MODEL>();
    uint16_t l_xbus = (l_model == MODEL_NIMBUS) ?
      VPD_CP00_PG_XBUS_GOOD_NIMBUS : VPD_CP00_PG_XBUS_GOOD_CUMULUS;

    // Check all bits in FSI entry
    if (i_pgData[VPD_CP00_PG_FSI_INDEX] !=
        VPD_CP00_PG_FSI_GOOD)
    {
        HWAS_INF("pTarget %.8X - FSI pgData[%d]: "
                 "actual 0x%04X, expected 0x%04X - bad",
                 i_target->getAttr<ATTR_HUID>(),
                 VPD_CP00_PG_FSI_INDEX,
                 i_pgData[VPD_CP00_PG_FSI_INDEX],
                 VPD_CP00_PG_FSI_GOOD);
        l_chipFunctional = false;
    }
    else
    // Check all bits in PRV entry
    if (i_pgData[VPD_CP00_PG_PERVASIVE_INDEX] !=
        VPD_CP00_PG_PERVASIVE_GOOD)
    {
        HWAS_INF("pTarget %.8X - Pervasive pgData[%d]: "
                 "actual 0x%04X, expected 0x%04X - bad",
                 i_target->getAttr<ATTR_HUID>(),
                 VPD_CP00_PG_PERVASIVE_INDEX,
                 i_pgData[VPD_CP00_PG_PERVASIVE_INDEX],
                 VPD_CP00_PG_PERVASIVE_GOOD);
        l_chipFunctional = false;
    }
    else
    // Check all bits in N0 entry
    if (i_pgData[VPD_CP00_PG_N0_INDEX] != VPD_CP00_PG_N0_GOOD)
    {
        HWAS_INF("pTarget %.8X - N0 pgData[%d]: "
                 "actual 0x%04X, expected 0x%04X - bad",
                 i_target->getAttr<ATTR_HUID>(),
                 VPD_CP00_PG_N0_INDEX,
                 i_pgData[VPD_CP00_PG_N0_INDEX],
                 VPD_CP00_PG_N0_GOOD);
        l_chipFunctional = false;
    }
    else
    // Check bits in N1 entry except those in partial good region
    if ((i_pgData[VPD_CP00_PG_N1_INDEX] &
         ~VPD_CP00_PG_N1_PG_MASK) != VPD_CP00_PG_N1_GOOD)
    {
        HWAS_INF("pTarget %.8X - N1 pgData[%d]: "
                 "actual 0x%04X, expected 0x%04X - bad",
                 i_target->getAttr<ATTR_HUID>(),
                 VPD_CP00_PG_N1_INDEX,
                 i_pgData[VPD_CP00_PG_N1_INDEX],
                 VPD_CP00_PG_N1_GOOD);
        l_chipFunctional = false;
    }
    else
    // Check all bits in N2 entry
    if (i_pgData[VPD_CP00_PG_N2_INDEX] != VPD_CP00_PG_N2_GOOD)
    {
        HWAS_INF("pTarget %.8X - N2 pgData[%d]: "
                 "actual 0x%04X, expected 0x%04X - bad",
                 i_target->getAttr<ATTR_HUID>(),
                 VPD_CP00_PG_N2_INDEX,
                 i_pgData[VPD_CP00_PG_N2_INDEX],
                 VPD_CP00_PG_N2_GOOD);
        l_chipFunctional = false;
    }
    else
    // Check bits in N3 entry except those in partial good region
    if ((i_pgData[VPD_CP00_PG_N3_INDEX] &
         ~VPD_CP00_PG_N3_PG_MASK) != VPD_CP00_PG_N3_GOOD)
    {
        HWAS_INF("pTarget %.8X - N3 pgData[%d]: "
                 "actual 0x%04X, expected 0x%04X - bad",
                 i_target->getAttr<ATTR_HUID>(),
                 VPD_CP00_PG_N3_INDEX,
                 i_pgData[VPD_CP00_PG_N3_INDEX],
                 VPD_CP00_PG_N3_GOOD);
        l_chipFunctional = false;
    }
    else
    // Check bits in XBUS entry, ignoring individual xbus targets
    // Note that what is good is different bewteen Nimbus/Cumulus
    if (((i_pgData[VPD_CP00_PG_XBUS_INDEX] &
          ~VPD_CP00_PG_XBUS_PG_MASK) != l_xbus))
    {
        HWAS_INF("pTarget %.8X - XBUS pgData[%d]: "
                 "actual 0x%04X, expected 0x%04X - bad",
                 i_target->getAttr<ATTR_HUID>(),
                 VPD_CP00_PG_XBUS_INDEX,
                 i_pgData[VPD_CP00_PG_XBUS_INDEX],
                 l_xbus);
        l_chipFunctional = false;
    }

    return l_chipFunctional;
} // isChipFunctional

bool isDescFunctional(const TARGETING::TargetHandle_t &i_desc,
                      const uint16_t (&i_pgData)[VPD_CP00_PG_DATA_ENTRIES],
                      pgState_map &io_targetStates)
{
    bool l_functional = true, l_previouslySeen = false;

    do {

        // Look in the targetStates map to see if the target has been given a
        // state already. If it's not in the map, then continue with the
        // algorithm. Otherwise, only continue if the state was marked as
        // functional. Since the list input into isDescFunctional is sorted
        // where all of the children are first in the array, then if the current
        // target is found in io_targetStates and it's not functional that means
        // that it has no functional children and we shouldn't do any further
        // checking on it.
        auto selfState_it = io_targetStates.find(i_desc);
        if ((selfState_it != io_targetStates.end())
            && (selfState_it->second != true))
        {
            // This target has been seen, return.
            l_previouslySeen = true;
            l_functional = selfState_it->second;
            break;
        }

        // Since the target has at least one functional child (or no children),
        // next we must apply the correct partial good rules to determine
        // functionality.
        //
        // Lookup the correct partial good logic for the given target. To avoid
        // errors of omission, the lookup must return at least one pg logic
        // struct. If a target has no associated rules then an NA rule will be
        // returned that was created by the default constructor which will cause
        // the next for loop to function as a no-op.
        PARTIAL_GOOD::pgLogic_t descPgLogic;
        errlHndl_t l_returnErrl = PARTIAL_GOOD::pgTable
            .findRulesForTarget(i_desc, descPgLogic);

        if (l_returnErrl != nullptr)
        {
            errlCommit(l_returnErrl, HWAS_COMP_ID);
            break;
        }

        // Iterate through the list of partial good logic for this target. If
        // any of them fail then the target is non-functional.
        for(PARTIAL_GOOD::pgLogic_t::const_iterator pgLogic_it =
                descPgLogic.begin();
            pgLogic_it != descPgLogic.end(); ++pgLogic_it)
        {
            PARTIAL_GOOD::PartialGoodLogic pgLogic = *pgLogic_it;

            if ((i_pgData[pgLogic.iv_pgIndex]
                & pgLogic.iv_pgMask) != pgLogic.iv_agMask)
            {
                HWAS_INF("pDesc 0x%.8X - pgData[%d]: "
                         "actual 0x%04X, expected 0x%04X - bad",
                         i_desc->getAttr<ATTR_HUID>(),
                         pgLogic.iv_pgIndex,
                         i_pgData[pgLogic.iv_pgIndex] & pgLogic.iv_pgMask,
                         pgLogic.iv_agMask);
                l_functional = false;
                break;
            }

            // The final check is to see if there is any additional logic
            // that cannot be generically included in this loop. If there is
            // special logic it will be included in a function that is
            // hard-coded for that particular target and a function pointer will
            // point to it.
            //
            // Any of the structs in the vector could have a pointer to a
            // special rule so this check is included in the iteration.
            if (pgLogic.iv_specialRule != nullptr)
            {
                // This pgLogic struct has a special rule. Call it to determine
                // functionality.
                l_functional = pgLogic.iv_specialRule(i_desc, i_pgData);

                if (!l_functional)
                {
                    break;
                }
            }
        }

    } while(0);

    if (!l_previouslySeen)
    {
        // Record the result in the targetStates map for later use.
        io_targetStates[i_desc] = l_functional;
    }

    return l_functional;
}

void markChildrenNonFunctional(const TARGETING::TargetHandle_t &i_parent,
                               pgState_map &io_targetStates)
{

    // Get the state for the parent.
    auto parentState_it = io_targetStates.find(i_parent);

    if ((parentState_it != io_targetStates.end()) && !parentState_it->second)
    {
        // Parent is non-functional. So get the list of all children
        // and mark them non-functional as well.
        TargetHandleList pDescChildren;
        targetService().getAssociated(pDescChildren, i_parent,
                                      TargetService::CHILD,
                                      TargetService::IMMEDIATE);

        for(auto child : pDescChildren)
        {
            auto childState_it = io_targetStates.find(child);

            if (childState_it != io_targetStates.end())
            {
                // Ignore children that are already non-functional because the
                // first part of the partial good algorithm was done by starting
                // at the bottom of the target hierarchy and working up to the
                // top. Since this function is called while operating top-down,
                // that means if there is a child of this target that is
                // non-functional which has functional children we don't have to
                // deal with it now since it will eventually be passed into this
                // function as the parent target and its functional children
                // will be taken care of at that time.
                if (childState_it->second == true)
                {
                    // Child state is true so change it to false.
                    childState_it->second = false;

                    // Since this child's state is true it may have functional
                    // children that need to be marked non-functional. So, we
                    // should check this child's children.
                    TargetHandleList pGrandChildren;
                    targetService().getAssociated(pGrandChildren, child,
                                                 TargetService::CHILD,
                                                 TargetService::IMMEDIATE);

                    if (!pGrandChildren.empty())
                    {
                        markChildrenNonFunctional(child, io_targetStates);
                    }
                }
            }
            else
            {
                // Child is missing from the targetStates map. Insert it and
                // mark it non-functional.
                // NOTE: This won't happen during the actual PG algorithm but
                //       is left here to be used for testcases or other uses.
                io_targetStates[child] = false;

                // Since the child was missing and its state is unknown, check
                // if it has any children and make those non-functional as well.
                TargetHandleList pGrandChildren;
                targetService().getAssociated(pGrandChildren, child,
                                             TargetService::CHILD,
                                             TargetService::IMMEDIATE);

                if (!pGrandChildren.empty())
                {
                    markChildrenNonFunctional(child, io_targetStates);
                }
            }
        }
    }
}

errlHndl_t checkPartialGoodForDescendants(
        const TARGETING::TargetHandle_t &i_pTarget,
        const uint16_t (&i_pgData)[VPD_CP00_PG_DATA_ENTRIES],
        const bool i_chipFunctional,
        const uint32_t i_errlEid,
        errlHndl_t io_infoErrl,
        bool &io_createInfoLog,
        bool i_isTestcase /* = false */,
        bool* o_testResult /* = nullptr */
        )
{

    errlHndl_t errl = nullptr;

    // A map that will keep track of what has already been checked to
    // eliminate re-checking targets. It also holds functional state.
    pgState_map targetStates;

    // by default, the descendant's functionality is 'inherited'
    bool descFunctional = i_chipFunctional;

    // Get a list of this target's physical descendants
    TargetHandleList pDescList;

    targetService().getAssociated( pDescList, i_pTarget,
        TargetService::CHILD, TargetService::ALL);

    if (i_isTestcase)
    {
        // If we are running a testcase then i_pTarget is the target to be
        // checked and the children of i_pTarget should be checked along with
        // it. So, add it to the list and the algorithm will check it too.
        pDescList.push_back(i_pTarget);
    }

    if (i_chipFunctional)
    {
        // Sort the list of descendants such that the largest affinity
        // paths are first in the list and targets are grouped by
        // parent.
        std::sort(pDescList.begin(), pDescList.end(),
                  // Define a lambda comparator function for sorting
                  // criteria.
                  [](const TargetHandle_t a, const TargetHandle_t b)
                  {
                        EntityPath aPath =
                            a->getAttr<ATTR_AFFINITY_PATH>();

                        TargetHandle_t aParent =
                            getImmediateParentByAffinity(a);

                        EntityPath bPath =
                            b->getAttr<ATTR_AFFINITY_PATH>();

                        TargetHandle_t bParent =
                            getImmediateParentByAffinity(b);


                        // a goes before b if its affinity path is
                        // greater than b's and its parent pointer
                        // is different from b's.
                        bool result = false;
                        if ((aPath.size() > bPath.size())
                            || ((aPath.size() == bPath.size())
                                && (aParent > bParent)))
                        {
                            result = true;
                        }

                        return result;
                  });

        // A pointer to a descendant's parent. This will be updated as
        // the first pass of PG checking occurs.
        TargetHandle_t parent = nullptr;

        // Assume the parent has no functional children and the
        // descendant's state is false.
        bool parentState = false, descState = false;

        // =========== Partial Good Checking First Pass ===========
        // Now that the list of descendants has been sorted, we can
        // proceed with the PG algorithm in two passes. In this pass,
        // the target hierarchy is navigated from the bottom up to the
        // top.
        //
        // This pass will check all children of a parent and when it
        // encounters a new parent, it will set the previous parent's
        // state as true or false.
        //      true: the parent has at least one functional child
        //      false: the parent has no functional children.
        // By setting a parent's state false ahead of time
        // isDescFunctional is able to skip over that target since,
        // regardless of PG results, that target will still be
        // non-functional due to not having functional children.
        for (auto pDesc : pDescList)
        {
            // Check if the parent has changed during iteration. If it
            // has then all of the children of that parent have been
            // checked and we now know if it has any functional
            // children. So, add the parent to targetStates with the
            // result.
            if (getImmediateParentByAffinity(pDesc) != parent)
            {
                if (parent != nullptr)
                {
                    // Add parent's state to the targetStates map.
                    // Note: If parentState has remained non-functional then
                    //       that means that it had no functional children
                    //       which is not allowed. So, PG checks will be
                    //       skipped for it when it is passed into
                    //       isDescFunctional.
                    targetStates[parent] = parentState;

                    if (parentState == false)
                    {
                        // No functional children of this target were found.
                        // Target is considered not functional.
                        HWAS_INF("pDesc parent 0x%.8X - marked bad because "
                                 "all of its children were bad.",
                                 parent->getAttr<ATTR_HUID>());
                    }
                }
                // Update parent pointer to the new parent.
                parent = getImmediateParentByAffinity(pDesc);

                // Reset parentState to false.
                parentState = false;
            }

            descState = isDescFunctional(pDesc,
                                         i_pgData,
                                         targetStates);

            // If one descendant of the current parent is functional,
            // then the parent is functional and should be checked by
            // isDescFunctional for partial good issues.
            if (descState == true)
            {
                parentState = true;
            }
        }
    }

    // =========== Partial Good Checking Second Pass ===========
    // After the first pass completes, all targets have had PG checks
    // applied to them (if necessary) and all parents have been checked
    // to have at least one functional child. Now we iterate through the
    // list one final time in reverse and propagate all non-functional
    // parent states down to functional children, since functional
    // children must not have non-functional parents.
    //
    // As the algorithm works its way through the hierarchy in a
    // top-down fashion, the final hwasState of the current target is
    // known and can be set as it works through all of the targets this
    // time.
    //
    // NOTE: If the chip is not functional then the first pass will not execute
    //       and this iteration will serve only to mark all descendants
    //       non-functional.
    TargetHandleList::const_iterator pDescList_rbegin = pDescList.end() - 1;
    TargetHandleList::const_iterator pDescList_rend = pDescList.begin() - 1;

    for (TargetHandleList::const_iterator pDesc_it = pDescList_rbegin;
         pDesc_it != pDescList_rend; --pDesc_it)
    {
        TargetHandle_t pDesc = *pDesc_it;

        if (i_chipFunctional)
        {

            // If this descendant is non-functional then
            // propagate non-functional state down to its children.
            markChildrenNonFunctional(pDesc,
                                      targetStates);

            auto pDesc_mapIt = targetStates.find(pDesc);
            if (pDesc_mapIt != targetStates.end())
            {
                descFunctional = pDesc_mapIt->second;
            }
            else
            {
                /*@
                 * @errortype
                 * @severity        ERRL_SEV_UNRECOVERABLE
                 * @moduleid        MOD_CHECK_PG_FOR_DESC
                 * @reasoncode      RC_PARTIAL_GOOD_MISSING_TARGET
                 * @devdesc         A target was not found in the map of
                 *                  states kept by the PG checking
                 *                  algorithm. Therefore, it did not have
                 *                  PG checks run against it.
                 * @custdesc        An issue occured during IPL of the
                 *                  system: Internal Firmware Error
                 * @userdata1       huid of the target
                 */
                 errl = hwasError(ERRL_SEV_UNRECOVERABLE,
                                  MOD_CHECK_PG_FOR_DESC,
                                  RC_PARTIAL_GOOD_MISSING_TARGET,
                                  pDesc->getAttr<ATTR_HUID>());
                 break;
            }

            if(!descFunctional && !i_isTestcase)
            {
                // Add this descendant to the error log.
                hwasErrorAddTargetInfo(io_infoErrl, pDesc);
                io_createInfoLog = true;
            }
        }

        // Don't mess with the state of the system if we are doing test cases.
        if (!i_isTestcase)
        {
            if (pDesc->getAttr<ATTR_TYPE>() == TYPE_PERV)
            {
                // for sub-parts of PERV, it's always present.
                enableHwasState(pDesc, i_chipFunctional, descFunctional,
                            i_errlEid);
                HWAS_DBG("pDesc %.8X - marked %spresent, %sfunctional",
                    pDesc->getAttr<ATTR_HUID>(),
                    i_chipFunctional ? "" : "NOT",
                    descFunctional ? "" : "NOT ");
            }
            else
            {
                // for other sub-parts, if it's not functional,
                // it's not present.
                enableHwasState(pDesc, descFunctional, descFunctional,
                            i_errlEid);
                HWAS_DBG("pDesc %.8X - marked %spresent, %sfunctional",
                    pDesc->getAttr<ATTR_HUID>(),
                    descFunctional ? "" : "NOT ",
                    descFunctional ? "" : "NOT ");
            }
        }
    }

    // Before we return, if this was run in a testcase then we should set the
    // o_testResult parameter so the testcase is aware of i_pTarget's state.
    if (i_isTestcase && (o_testResult != nullptr))
    {
        *o_testResult = targetStates[i_pTarget];
    }

    return errl;

}

void forceEcExEqDeconfig(const TARGETING::TargetHandle_t i_core,
                         const bool i_present,
                         const uint32_t i_deconfigReason)
{
    TargetHandleList pECList;
    TargetHandleList pEXList;

    //Deconfig the EC
    enableHwasState(i_core, i_present, false, i_deconfigReason);
    HWAS_INF("pEC   %.8X - marked %spresent, NOT functional",
             i_core->getAttr<ATTR_HUID>(), i_present ? "" : "NOT ");

    //Get parent EX and see if any other cores, if none, deconfig
    auto exType = TARGETING::TYPE_EX;
    auto eqType = TARGETING::TYPE_EQ;

    TARGETING::Target* l_ex = getParent(i_core, exType);
    getChildChiplets(pECList, l_ex, TYPE_CORE, true);
    if(pECList.size() == 0)
    {
        enableHwasState(l_ex, i_present, false, i_deconfigReason);
        HWAS_INF("pEX   %.8X - marked %spresent, NOT functional",
                 l_ex->getAttr<ATTR_HUID>(), i_present ? "" : "NOT ");

        //Now get the parent EQ and check to see if it should be deconfigured
        TARGETING::Target* l_eq = getParent(l_ex, eqType);
        getChildChiplets(pEXList, l_eq, TYPE_EX, true);
        if(pEXList.size() == 0)
        {
            enableHwasState(l_eq, i_present, false, i_deconfigReason);
            HWAS_INF("pEQ   %.8X - marked %spresent, NOT functional",
                     l_eq->getAttr<ATTR_HUID>(), i_present ? "" : "NOT ");
        }
    }

}

errlHndl_t restrictECunits(
    std::vector <procRestrict_t> &i_procList,
    const bool i_present,
    const uint32_t i_deconfigReason)
{
    HWAS_INF("restrictECunits entry, %d elements", i_procList.size());
    errlHndl_t errl = nullptr;
    TargetHandle_t l_masterProcTarget = nullptr;

    do {

    errl = targetService().queryMasterProcChipTargetHandle(l_masterProcTarget);
    if(errl)
    {
        HWAS_ERR( "restrictECunits:: Unable to find master proc");
        break;
    }
    HWAS_DBG("master proc huid: 0x%X", TARGETING::get_huid(l_masterProcTarget));

    // sort by group so PROC# are in the right groupings.
    std::sort(i_procList.begin(), i_procList.end(),
                compareProcGroup);

    // loop thru procs to handle restrict
    const uint32_t l_ProcCount = i_procList.size();
    for (uint32_t procIdx = 0;
            procIdx < l_ProcCount;
            // the increment will happen in the loop to handle
            //  groups covering more than 1 proc target
        )
    {
        // determine the number of procs we should enable
        uint8_t procs = i_procList[procIdx].procs;
        int l_masterProc = -1;
        uint32_t maxECs = i_procList[procIdx].maxECs;

        // this procs number, used to determine groupings
        uint32_t thisGroup = i_procList[procIdx].group;

        HWAS_INF("procRestrictList[%d] - maxECs 0x%X, procs %d, group %d",
                procIdx, maxECs, procs, thisGroup);

        // exs, ecs, and iters for each proc in this vpd set
        TargetHandleList pEXList[procs];
        TargetHandleList::const_iterator pEX_it[procs];
        TargetHandleList pECList[procs][NUM_EX_PER_CHIP];
        TargetHandleList::const_iterator pEC_it[procs][NUM_EX_PER_CHIP];

        // find the proc's that we think are in this group
        uint32_t currentPairedECs = 0;
        uint32_t currentSingleECs = 0;
        for (uint32_t i = 0; i < procs; ) // increment in loop
        {
            TargetHandle_t pProc = i_procList[procIdx].target;

            // if this proc is past the last of the proc count
            //  OR is NOT in the same group
            if ((procIdx >= l_ProcCount) ||
                (thisGroup != i_procList[procIdx].group))
            {
                HWAS_DBG("procRestrictList[%d] - group %d not in group %d",
                        i, i_procList[procIdx].group, thisGroup);

                // change this to be how many we actually have here
                procs = i;

                // we're done - break so that we use procIdx as the
                //  start index next time
                break;
            }

            // is this proc the master for this node?
            if (pProc == l_masterProcTarget)
            {
                l_masterProc = i;
            }

            // get this proc's (CHILD) EX units
            // Need to get all so we init the pEC_it array
            getChildChiplets(pEXList[i], pProc, TYPE_EX, false);

            if (!pEXList[i].empty())
            {
                // sort the list by ATTR_HUID to ensure that we
                //  start at the same place each time
                std::sort(pEXList[i].begin(), pEXList[i].end(),
                          compareTargetHuid);

                // keep a pointer into that list
                pEX_it[i] = pEXList[i].begin();

                for (uint32_t j = 0;
                     (j < NUM_EX_PER_CHIP) && (pEX_it[i] != pEXList[i].end());
                     j++)
                {
                    TargetHandle_t pEX = *(pEX_it[i]);

                    // get this EX's (CHILD) functional EC/core units
                    getChildChiplets(pECList[i][j], pEX,
                                     TYPE_CORE, true);

                    // keep a pointer into that list
                    pEC_it[i][j] = pECList[i][j].begin();

                    if (!pECList[i][j].empty())
                    {
                        // sort the list by ATTR_HUID to ensure that we
                        //  start at the same place each time
                        std::sort(pECList[i][j].begin(), pECList[i][j].end(),
                                  compareTargetHuid);

                        // keep local count of current functional EC units
                        if (pECList[i][j].size() == 2)
                        {
                            // track ECs that can make a fused-core pair
                            currentPairedECs += pECList[i][j].size();
                        }
                        else
                        {
                            // track ECs without a pair for a fused-core
                            currentSingleECs += pECList[i][j].size();
                        }
                    }

                    // go to next EX
                    (pEX_it[i])++;
                } // for j < NUM_EX_PER_CHIP

                // go to next proc
                i++;
            }
            else
            {
                // this one is bad, stay on this i but lower the end count
                procs--;
            }

            // advance the outer loop as well since we're doing these
            //  procs together
            ++procIdx;
        } // for i < procs

        // adjust maxECs based on fused mode
        if( is_fused_mode() )
        {
            // only allow complete pairs
            maxECs = std::min( currentPairedECs, maxECs );
        }

        if ((currentPairedECs + currentSingleECs) <= maxECs)
        {
            // we don't need to restrict - we're done with this group.
            HWAS_INF("currentECs 0x%X <= maxECs 0x%X -- done",
                    (currentPairedECs + currentSingleECs), maxECs);
            continue;
        }

        HWAS_INF("master proc idx: %d", l_masterProc);

        HWAS_DBG("currentECs 0x%X > maxECs 0x%X -- restricting!",
                (currentPairedECs + currentSingleECs), maxECs);

        // now need to find EC units that stay functional, going
        //  across the list of units for each proc and EX we have,
        //  until we get to the max or run out of ECs, giving
        //  preference to paired ECs and if we are in fused mode
        //  excluding single, non-paired ECs.

        // Use as many paired ECs as we can up to maxECs
        uint32_t pairedECs_remaining =
            (maxECs < currentPairedECs) ? maxECs : currentPairedECs;
        // If not in fused mode, use single ECs as needed to get to maxECs
        uint32_t singleECs_remaining =
            ((maxECs > currentPairedECs) && !is_fused_mode())
            ? (maxECs - currentPairedECs) : 0;
        uint32_t goodECs = 0;
        HWAS_DBG("procs 0x%X maxECs 0x%X", procs, maxECs);

        // Keep track of when we allocate at least one core to the master chip
        // in order to avoid the situation of master not having any cores.
        bool l_allocatedToMaster = false;

        // Each pECList has ECs for a given EX and proc.  Check each EC list to
        //  determine if it has an EC pair or a single EC and if the remaining
        //  count indicates the given EC from that list is to stay functional.

        // Cycle through the first EX of each proc, then the second EX of each
        // proc and so on as we decrement remaining ECs. We put procs as the
        // inner loop and EXs as the outer to distribute the functional ECs
        // evenly between procs. After we run out of ECs, we deconfigure the
        // remaining ones.

        // Mark the ECs that have been accounted for
        uint8_t EC_checkedList[procs][NUM_EX_PER_CHIP];
        memset(EC_checkedList, 0, sizeof(EC_checkedList));

        for (uint32_t l_EX = 0; l_EX < NUM_EX_PER_CHIP; l_EX++)
        {
            for (int l_proc = 0; l_proc < procs; l_proc++)
            {
                // Save l_EX value to current EX, this is to be restored later
                uint32_t currrentEX = l_EX;

                // If core doesn't exist or already checked, find the
                // next available core on this proc in order to balance
                // the core distribution.
                uint8_t nextEXwithCore = 0;
                if ( (!pECList[l_proc][l_EX].size()) ||
                     (EC_checkedList[l_proc][l_EX]) )
                {
                    HWAS_INF("Current EX = %d, PROC %d: Need to find next "
                             "avail EX with cores.", l_EX, l_proc);
                    for (nextEXwithCore = l_EX+1;
                         nextEXwithCore < NUM_EX_PER_CHIP;
                         nextEXwithCore++)
                    {
                         if ( (pECList[l_proc][nextEXwithCore].size()) &&
                              (!(EC_checkedList[l_proc][nextEXwithCore]) ) )
                         {
                             l_EX = nextEXwithCore;
                             HWAS_INF("Next avail EX with cores = %d",
                                      nextEXwithCore);
                             break;
                         }
                    }
                    // No more core in this proc
                    if (nextEXwithCore == NUM_EX_PER_CHIP)
                    {
                        HWAS_INF("No more EX with cores in proc %d", l_proc);
                        l_EX = currrentEX;
                        continue;
                    }
                }

                // Mark this core has been checked.
                EC_checkedList[l_proc][l_EX] = 1;

                // Walk through the EC list from this EX
                while (pEC_it[l_proc][l_EX] != pECList[l_proc][l_EX].end())
                {
                    // Check if EC pair for this EX
                    if ((pECList[l_proc][l_EX].size() == 2) &&
                        (pairedECs_remaining != 0)  &&
                         (l_proc==l_masterProc || // is master or
                          l_allocatedToMaster || // was allocated to master
                          pairedECs_remaining > 2)) // save 2 cores for master
                    {
                        // got a functional EC that is part of a pair
                        goodECs++;
                        pairedECs_remaining--;
                        HWAS_DBG("pEC   0x%.8X - is good %d! (paired) pi:%d EXi:%d pairedECs_remaining %d",
                                 (*(pEC_it[l_proc][l_EX]))->getAttr<ATTR_HUID>(),
                                 goodECs, l_proc, l_EX, pairedECs_remaining);
                        if (l_proc == l_masterProc)
                        {
                            HWAS_DBG("Allocated to master");
                            l_allocatedToMaster = true;
                        }
                    }
                    // Check if single EC for this EX
                    else if ((pECList[l_proc][l_EX].size() == 1) &&
                             (singleECs_remaining != 0) &&
                              (l_proc==l_masterProc || // is master or
                               l_allocatedToMaster || // was allocated to master
                               singleECs_remaining > 1)) // save core for master

                    {
                        // got a functional EC without a pair
                        goodECs++;
                        singleECs_remaining--;
                        HWAS_DBG("pEC   0x%.8X - is good %d! (single) pi:%d EXi:%d singleECs_remaining %d",
                                 (*(pEC_it[l_proc][l_EX]))->getAttr<ATTR_HUID>(),
                                 goodECs, l_proc, l_EX, singleECs_remaining);
                        if (l_proc == l_masterProc)
                        {
                            HWAS_DBG("Allocated to master");
                            l_allocatedToMaster = true;
                        }
                    }
                    // Otherwise paired or single EC, but not needed for maxECs
                    else
                    {
                        // got an EC to be restricted and marked not functional
                        TargetHandle_t l_pEC = *(pEC_it[l_proc][l_EX]);
                        forceEcExEqDeconfig(l_pEC, i_present, i_deconfigReason);
                        HWAS_DBG("pEC   0x%.8X - deconfigured! (%s) pi:%d EXi:%d",
                            (*(pEC_it[l_proc][l_EX]))->getAttr<ATTR_HUID>(),
                            (pECList[l_proc][l_EX].size() == 1)? "single": "paired",
                            l_proc, l_EX);
                    }

                    (pEC_it[l_proc][l_EX])++; // next ec in this ex's list

                } // while pEC_it[l_proc][l_EX] != pECList[l_proc][l_EX].end()

                // Restore current EX
                l_EX = currrentEX;

            } // for l_proc < procs

        } // for l_EX < NUM_EX_PER_CHIP

    } // for procIdx < l_ProcCount

    } while(0); // do {

    if (errl)
    {
        HWAS_INF("restrictECunits failed (plid 0x%X)", errl->plid());
    }
    else
    {
        HWAS_INF("restrictECunits completed successfully");
    }
    return errl;
} // restrictECunits


void checkCriticalResources(uint32_t & io_commonPlid,
                                  const Target * i_pTop)
{
    errlHndl_t l_errl = NULL;
    PredicatePostfixExpr l_customPredicate;
    PredicateIsFunctional l_isFunctional;

    TargetHandleList l_plist;

    // filter for targets that are deemed critical by ATTR_RESOURCE_IS_CRITICAL
    uint8_t l_critical = 1;
    PredicateAttrVal<ATTR_RESOURCE_IS_CRITICAL> l_isCritical(l_critical);

    l_customPredicate.push(&l_isFunctional).Not().push(&l_isCritical).And();

    targetService().getAssociated( l_plist, i_pTop,
          TargetService::CHILD, TargetService::ALL, &l_customPredicate);

    //if this list has ANYTHING then something critical has been deconfigured
    if(l_plist.size())
    {
        HWAS_ERR("Insufficient HW to continue IPL: (critical resource not functional)");
        /*@
         * @errortype
         * @severity          ERRL_SEV_UNRECOVERABLE
         * @moduleid          MOD_CHECK_MIN_HW
         * @reasoncode        RC_SYSAVAIL_MISSING_CRITICAL_RESOURCE
         * @devdesc           checkCriticalResources found a critical
         *                    resource to be deconfigured
         * @custdesc          A problem occurred during the IPL of the
         *                    system: A critical resource was found
         *                    to be deconfigured
         *
         * @userdata1[00:31]  Number of critical resources
         * @userdata1[32:63]  HUID of first critical resource found
         * @userdata2[00:31]  HUID of second critical resource found, if present
         * @userdata2[32:63]  HUID of third critical resource found, if present
         */

        uint64_t userdata1 = 0;
        uint64_t userdata2 = 0;
        switch(std::min(3,(int)l_plist.size()))
        {
            case 3:
                userdata2 = static_cast<uint64_t>(get_huid(l_plist[2]));

                /*fall through*/  // keep BEAM quiet
            case 2:
                userdata2 |=
                    static_cast<uint64_t>(get_huid(l_plist[1])) << 32;

                /*fall through*/  // keep BEAM quiet
            case 1:
                userdata1 =
                    (static_cast<uint64_t>(l_plist.size()) << 32) |
                     static_cast<uint64_t>(get_huid(l_plist[0]));
        }

        l_errl = hwasError(ERRL_SEV_UNRECOVERABLE,
                           MOD_CHECK_MIN_HW,
                           RC_SYSAVAIL_MISSING_CRITICAL_RESOURCE,
                           userdata1,
                           userdata2 );

        // call out the procedure to find the deconfigured part.
        hwasErrorAddProcedureCallout(l_errl,
                                     EPUB_PRC_FIND_DECONFIGURED_PART,
                                     SRCI_PRIORITY_HIGH);

        //  if we already have an error, link this one to the earlier;
        //  if not, set the common plid
        hwasErrorUpdatePlid(l_errl, io_commonPlid);
        errlCommit(l_errl, HWAS_COMP_ID);
        // errl is now NULL
    }
}




errlHndl_t checkMinimumHardware(const TARGETING::ConstTargetHandle_t i_nodeOrSys,
        bool *o_bootable)
{
    errlHndl_t l_errl = NULL;
    HWAS_INF("checkMinimumHardware entry");
    uint32_t l_commonPlid = 0;

    do
    {
        //*********************************************************************/
        //  Common present and functional hardware checks.
        //*********************************************************************/

        if(o_bootable)
        {
            *o_bootable = true;
        }
        PredicateHwas l_present;
        l_present.present(true);
        PredicateHwas l_functional;
        if(o_bootable)
        {
            // Speculative deconfig sets the specdeconfig to true for the target
            // in question, so we want to filter out the targets that have been
            // speculatively deconfigured. Setting specdeconfig to false in this
            // predicate will ensure that those targets are left out of the list
            // of functional targets.
            l_functional.specdeconfig(false);
        }
        l_functional.functional(true);

        // top 'starting' point - use first node if no i_node given (hostboot)
        Target *pTop;
        if (i_nodeOrSys == NULL)
        {
            Target *pSys;
            targetService().getTopLevelTarget(pSys);
            PredicateCTM l_predEnc(CLASS_ENC);
            PredicatePostfixExpr l_nodeFilter;
            l_nodeFilter.push(&l_predEnc).push(&l_functional).And();
            TargetHandleList l_nodes;
            targetService().getAssociated( l_nodes, pSys,
                TargetService::CHILD, TargetService::IMMEDIATE, &l_nodeFilter );

            if (l_nodes.empty())
            { // no functional nodes, get out now
                if(o_bootable)
                {
                    *o_bootable = false;
                    break;
                }

                HWAS_ERR("Insufficient HW to continue IPL: (no func nodes)");
                /*@
                 * @errortype
                 * @severity          ERRL_SEV_UNRECOVERABLE
                 * @moduleid          MOD_CHECK_MIN_HW
                 * @reasoncode        RC_SYSAVAIL_NO_NODES_FUNC
                 * @devdesc           checkMinimumHardware found no functional
                 *                    nodes on the system
                 * @custdesc          A problem occurred during the IPL of the
                 *                    system: No functional nodes were found on
                 *                    the system.
                 */
                l_errl = hwasError(ERRL_SEV_UNRECOVERABLE,
                                    MOD_CHECK_MIN_HW,
                                    RC_SYSAVAIL_NO_NODES_FUNC);

                // call out the procedure to find the deconfigured part.
                hwasErrorAddProcedureCallout(l_errl,
                                            EPUB_PRC_FIND_DECONFIGURED_PART,
                                            SRCI_PRIORITY_HIGH);

                //  if we already have an error, link this one to the earlier;
                //  if not, set the common plid
                hwasErrorUpdatePlid(l_errl, l_commonPlid);
                errlCommit(l_errl, HWAS_COMP_ID);
                // errl is now NULL
                break;
            }

            // top level has at least 1 node - and it's our node.
            pTop = l_nodes[0];

            HWAS_INF("checkMinimumHardware: i_nodeOrSys = NULL, using %.8X",
                    get_huid(pTop));
        }
        else
        {
            pTop = const_cast<Target *>(i_nodeOrSys);
            HWAS_INF("checkMinimumHardware: i_nodeOrSys %.8X",
                    get_huid(pTop));
        }

        // check for functional Master Proc on this node
        Target* l_pMasterProc = NULL;

        //Get master proc at system level or node level based on target type
        if(pTop->getAttr<ATTR_TYPE>() == TYPE_SYS)
        {
            targetService().queryMasterProcChipTargetHandle(l_pMasterProc);
        }
        else
        {
            targetService().queryMasterProcChipTargetHandle(l_pMasterProc,
                                                          pTop);
        }

        if ((l_pMasterProc == NULL) || (!l_functional(l_pMasterProc)))
        {
            HWAS_ERR("Insufficient HW to continue IPL: (no master proc)");

            if(o_bootable)
            {
                *o_bootable = false;
                break;
            }
            // determine some numbers to help figure out what's up..
            PredicateCTM l_proc(CLASS_CHIP, TYPE_PROC);
            TargetHandleList l_plist;

            PredicatePostfixExpr l_checkExprPresent;
            l_checkExprPresent.push(&l_proc).push(&l_present).And();
            targetService().getAssociated(l_plist, pTop,
                    TargetService::CHILD, TargetService::ALL,
                    &l_checkExprPresent);
            uint32_t procs_present = l_plist.size();

            PredicatePostfixExpr l_checkExprFunctional;
            l_checkExprFunctional.push(&l_proc).push(&l_functional).And();
            targetService().getAssociated(l_plist, pTop,
                    TargetService::CHILD, TargetService::ALL,
                    &l_checkExprFunctional);
            uint32_t procs_functional = l_plist.size();

            /*@
             * @errortype
             * @severity          ERRL_SEV_UNRECOVERABLE
             * @moduleid          MOD_CHECK_MIN_HW
             * @reasoncode        RC_SYSAVAIL_NO_PROCS_FUNC
             * @devdesc           checkMinimumHardware found no functional
             *                    master processor on this node
             * @custdesc          A problem occurred during the IPL of the
             *                    system: No functional master processor
             *                    was found on this node.
             * @userdata1[00:31]  HUID of node
             * @userdata2[00:31]  number of present procs
             * @userdata2[32:63]  number of present functional non-master procs
             */
            const uint64_t userdata1 =
                (static_cast<uint64_t>(get_huid(pTop)) << 32);
            const uint64_t userdata2 =
                (static_cast<uint64_t>(procs_present) << 32) | procs_functional;
            l_errl = hwasError(ERRL_SEV_UNRECOVERABLE,
                                MOD_CHECK_MIN_HW,
                                RC_SYSAVAIL_NO_PROCS_FUNC,
                                userdata1, userdata2);

            // call out the procedure to find the deconfigured part.
            hwasErrorAddProcedureCallout(l_errl,
                                        EPUB_PRC_FIND_DECONFIGURED_PART,
                                        SRCI_PRIORITY_HIGH);

            //  if we already have an error, link this one to the earlier;
            //  if not, set the common plid
            hwasErrorUpdatePlid(l_errl, l_commonPlid);
            errlCommit(l_errl, HWAS_COMP_ID);
            // errl is now NULL
        }
        else
        {
            // we have a Master Proc and it's functional
            // check for at least 1 functional ec/core on Master Proc
            TargetHandleList l_cores;
            PredicateCTM l_core(CLASS_UNIT, TYPE_CORE);
            PredicatePostfixExpr l_coresFunctional;
            l_coresFunctional.push(&l_core).push(&l_functional).And();
            targetService().getAssociated(l_cores, l_pMasterProc,
                    TargetService::CHILD, TargetService::ALL,
                    &l_coresFunctional);

            HWAS_DBG( "checkMinimumHardware: %d functional cores",
                      l_cores.size() );

            if (l_cores.empty())
            {
                HWAS_ERR("Insufficient HW to continue IPL: (no func cores)");

                if(o_bootable)
                {
                    *o_bootable = false;
                    break;
                }
                // determine some numbers to help figure out what's up..
                PredicateCTM l_ex(CLASS_UNIT, TYPE_EX);
                TargetHandleList l_plist;

                PredicatePostfixExpr l_checkExprPresent;
                l_checkExprPresent.push(&l_ex).push(&l_present).And();
                targetService().getAssociated(l_plist, l_pMasterProc,
                        TargetService::CHILD, TargetService::IMMEDIATE,
                        &l_checkExprPresent);
                uint32_t exs_present = l_plist.size();

                /*@
                 * @errortype
                 * @severity          ERRL_SEV_UNRECOVERABLE
                 * @moduleid          MOD_CHECK_MIN_HW
                 * @reasoncode        RC_SYSAVAIL_NO_CORES_FUNC
                 * @devdesc           checkMinimumHardware found no functional
                 *                    processor cores on the master proc
                 * @custdesc          A problem occurred during the IPL of the
                 *                    system: No functional processor cores
                 *                    were found on the master processor.
                 * @userdata1[00:31]  HUID of node
                 * @userdata1[32:63]  HUID of master proc
                 * @userdata2[00:31]  number of present, non-functional cores
                 */
                const uint64_t userdata1 =
                    (static_cast<uint64_t>(get_huid(pTop)) << 32) |
                    get_huid(l_pMasterProc);
                const uint64_t userdata2 =
                    (static_cast<uint64_t>(exs_present) << 32);
                l_errl = hwasError(ERRL_SEV_UNRECOVERABLE,
                                    MOD_CHECK_MIN_HW,
                                    RC_SYSAVAIL_NO_CORES_FUNC,
                                    userdata1, userdata2);

                //  call out the procedure to find the deconfigured part.
                hwasErrorAddProcedureCallout( l_errl,
                                              EPUB_PRC_FIND_DECONFIGURED_PART,
                                              SRCI_PRIORITY_HIGH );

                //  if we already have an error, link this one to the earlier;
                //  if not, set the common plid
                hwasErrorUpdatePlid( l_errl, l_commonPlid );
                errlCommit(l_errl, HWAS_COMP_ID);
                // errl is now NULL
            } // if no cores
        }

        //  check here for functional dimms
        TargetHandleList l_dimms;
        PredicateCTM l_dimm(CLASS_LOGICAL_CARD, TYPE_DIMM);
        PredicatePostfixExpr l_checkExprFunctional;
        l_checkExprFunctional.push(&l_dimm).push(&l_functional).And();
        targetService().getAssociated(l_dimms, pTop,
                TargetService::CHILD, TargetService::ALL,
                &l_checkExprFunctional);
        HWAS_DBG( "checkMinimumHardware: %d functional dimms",
                  l_dimms.size());

        if (l_dimms.empty())
        {
            HWAS_ERR( "Insufficient hardware to continue IPL (func DIMM)");

            if(o_bootable)
            {
                *o_bootable = false;
                break;
            }
            // determine some numbers to help figure out what's up..
            TargetHandleList l_plist;
            PredicatePostfixExpr l_checkExprPresent;
            l_checkExprPresent.push(&l_dimm).push(&l_present).And();
            targetService().getAssociated(l_plist, pTop,
                    TargetService::CHILD, TargetService::ALL,
                    &l_checkExprPresent);
            uint32_t dimms_present = l_plist.size();

            /*@
             * @errortype
             * @severity          ERRL_SEV_UNRECOVERABLE
             * @moduleid          MOD_CHECK_MIN_HW
             * @reasoncode        RC_SYSAVAIL_NO_MEMORY_FUNC
             * @devdesc           checkMinimumHardware found no
             *                    functional dimm cards.
             * @custdesc          A problem occurred during the IPL of the
             *                    system: Found no functional dimm cards.
             * @userdata1[00:31]  HUID of node
             * @userdata2[00:31]  number of present, non-functional dimms
             */
            const uint64_t userdata1 =
                (static_cast<uint64_t>(get_huid(pTop)) << 32);
            const uint64_t userdata2 =
                (static_cast<uint64_t>(dimms_present) << 32);
            l_errl = hwasError(ERRL_SEV_UNRECOVERABLE,
                                MOD_CHECK_MIN_HW,
                                RC_SYSAVAIL_NO_MEMORY_FUNC,
                                userdata1, userdata2);

            //  call out the procedure to find the deconfigured part.
            hwasErrorAddProcedureCallout( l_errl,
                                          EPUB_PRC_FIND_DECONFIGURED_PART,
                                          SRCI_PRIORITY_HIGH );

            //  if we already have an error, link this one to the earlier;
            //  if not, set the common plid
            hwasErrorUpdatePlid( l_errl, l_commonPlid );
            errlCommit(l_errl, HWAS_COMP_ID);
            // errl is now NULL
        } // if no dimms

        // check for functional NX chiplets
        // Take specdeconfig into account here
        TargetHandleList l_functionalNXChiplets;
        PredicateCTM l_nxChiplet(CLASS_UNIT, TYPE_NX);
        PredicatePostfixExpr l_checkExprFunctionalNxChiplets;
        l_checkExprFunctionalNxChiplets.push(&l_nxChiplet)
                                       .push(&l_functional)
                                       .And();
        targetService().getAssociated(l_functionalNXChiplets, pTop,
                        TargetService::CHILD, TargetService::ALL,
                        &l_checkExprFunctionalNxChiplets);
        HWAS_DBG( "checkMinimumHardware: %d NX chiplets",
                  l_functionalNXChiplets.size());

        if (l_functionalNXChiplets.empty())
        {
            HWAS_ERR( "Insufficient hardware to continue IPL (NX chiplets)");

            if(o_bootable)
            {
                *o_bootable = false;
                break;
            }
            TargetHandleList l_presentNXChiplets;
            getChildChiplets(l_presentNXChiplets, pTop, TYPE_NX, false);
            uint32_t nx_present = l_presentNXChiplets.size();

            /*@
             * @errortype
             * @severity           ERRL_SEV_UNRECOVERABLE
             * @moduleid           MOD_CHECK_MIN_HW
             * @reasoncode         RC_SYSAVAIL_NO_NX_FUNC
             * @devdesc            checkMinimumHardware found no
             *                     functional NX chiplets
             * @custdesc           Insufficient hardware to continue IPL
             * @userdata1[00:31]   HUID of node
             * @userdata2[00:31]   number of present nonfunctional NX chiplets
             */
            const uint64_t userdata1 =
                (static_cast<uint64_t>(get_huid(pTop)) << 32);
            const uint64_t userdata2 =
                (static_cast<uint64_t>(nx_present) << 32);
            l_errl = hwasError(ERRL_SEV_UNRECOVERABLE,
                         MOD_CHECK_MIN_HW,
                         RC_SYSAVAIL_NO_NX_FUNC,
                         userdata1, userdata2);

            //  call out the procedure to find the deconfigured part.
            hwasErrorAddProcedureCallout( l_errl,
                         EPUB_PRC_FIND_DECONFIGURED_PART,
                         SRCI_PRIORITY_HIGH );

            //  if we already have an error, link this one to the earlier;
            //  if not, set the common plid
            hwasErrorUpdatePlid( l_errl, l_commonPlid );
            errlCommit(l_errl, HWAS_COMP_ID);
        }

        //  ------------------------------------------------------------
        //  Check for Mirrored memory -
        //  If the user requests mirrored memory and we do not have it,
        //  post an errorlog but do not return a terminating error.
        //  ------------------------------------------------------------
        //  Need to read an attribute set by PHYP?


        //  check for minimum hardware that is specific to platform that we're
        //  running on (ie, hostboot or fsp in hwsv).
        //  if there is an issue, create and commit an error, and tie it to the
        //  the rest of them with the common plid.
        HWAS::checkCriticalResources(l_commonPlid, pTop);
        platCheckMinimumHardware(l_commonPlid, i_nodeOrSys, o_bootable);
    }
    while (0);

    //  ---------------------------------------------------------------
    // if the common plid got set anywhere above, we have an error.
    //  ---------------------------------------------------------------
    if ((l_commonPlid)&&(o_bootable == NULL))
    {
        /*@
         * @errortype
         * @severity          ERRL_SEV_UNRECOVERABLE
         * @moduleid          MOD_CHECK_MIN_HW
         * @reasoncode        RC_SYSAVAIL_INSUFFICIENT_HW
         * @devdesc           Insufficient hardware to continue.
         */
        l_errl  =   hwasError(  ERRL_SEV_UNRECOVERABLE,
                                MOD_CHECK_MIN_HW,
                                RC_SYSAVAIL_INSUFFICIENT_HW);
        //  call out the procedure to find the deconfigured part.
        hwasErrorAddProcedureCallout( l_errl,
                                      EPUB_PRC_FIND_DECONFIGURED_PART,
                                      SRCI_PRIORITY_HIGH );
        //  if we already have an error, link this one to the earlier;
        //  if not, set the common plid
        hwasErrorUpdatePlid( l_errl, l_commonPlid );
    }

    HWAS_INF("checkMinimumHardware exit - minimum hardware %s",
            ((l_errl != NULL)||((o_bootable!=NULL)&&(!*o_bootable))) ?
                    "NOT available" : "available");
    if((l_errl != NULL)||((o_bootable!=NULL)&&(!*o_bootable)))
    {
        // Minimum hardware not available, block speculative deconfigs
        Target *pSys;
        targetService().getTopLevelTarget(pSys);
        pSys->setAttr<ATTR_BLOCK_SPEC_DECONFIG>(1);
    }

    return  l_errl ;
} // checkMinimumHardware



/**
 * @brief Checks if both targets have the same paths up to a certain number
 *        of path elements, determined by the smaller affinity path. For Axone,
 *        if an OMIC and OMI target are given as the parameters then it will use
 *        the OMI's special OMIC_PARENT relation and compare that to the OMIC
 *        target. Otherwise, affinity path comparison between OMI and OMIC
 *        targets will always fail erroneously.
 *
 * @param[in] i_t1 TargetInfo containing the first target's affinity path
 * @param[in] i_t2 TargetInfo containing the second target's affinity path
 */
bool isSameSubPath(TargetInfo i_t1, TargetInfo i_t2)
{

    PredicateCTM isOmic(CLASS_NA, TYPE_OMIC), isOmi(CLASS_NA, TYPE_OMI);

    EntityPath l_t1Path = i_t1.affinityPath,
               l_t2Path = i_t2.affinityPath;

    // Due to the special OMIC_PARENT relation between OMI and OMIC targets
    // this function will only work correctly if we use the OMIC_PARENT path
    // instead of the OMI affinity path when comparing OMI and OMIC targets.
    if (((i_t1.pThisTarget != nullptr) && (i_t2.pThisTarget != nullptr))
       && ((isOmi(i_t1.pThisTarget) && isOmic(i_t2.pThisTarget)) ||
           (isOmi(i_t2.pThisTarget) && isOmic(i_t1.pThisTarget))))
    {
        TargetHandleList l_pOmicParent;
        if (i_t1.type == TYPE_OMI)
        {
            targetService().getAssociated(l_pOmicParent, i_t1.pThisTarget,
                                          TargetService::OMIC_PARENT,
                                          TargetService::ALL);

            l_t1Path = l_pOmicParent[0]->getAttr<ATTR_AFFINITY_PATH>();
        }
        else
        {
            targetService().getAssociated(l_pOmicParent, i_t2.pThisTarget,
                                          TargetService::OMIC_PARENT,
                                          TargetService::ALL);

            l_t2Path = l_pOmicParent[0]->getAttr<ATTR_AFFINITY_PATH>();
        }
    }

    size_t l_size = std::min(l_t1Path.size(),
                             l_t2Path.size());

    return l_t1Path.equals(l_t2Path, l_size);
}

/**
 * @brief Deconfigures a target based on type
 *
 * Called by invokePresentByAssoc() after presentByAssoc() is called
 *
 * @param[in] i_targInfo TargetInfo for the target to be deconfigured
 */
void deconfigPresentByAssoc(TargetInfo i_targInfo)
{
    TargetHandleList pChildList;

    // find all CHILD matches for this target and deconfigure them
    getChildChiplets(pChildList, i_targInfo.pThisTarget, TYPE_NA);

    for (TargetHandleList::const_iterator
            pChild_it = pChildList.begin();
            pChild_it != pChildList.end();
            ++pChild_it)
    {
        TargetHandle_t l_childTarget = *pChild_it;
        enableHwasState(l_childTarget, true, false, i_targInfo.reason);
        HWAS_INF("deconfigPresentByAssoc: Target %.8X"
                " marked present, not functional: reason %.x",
                l_childTarget->getAttr<ATTR_HUID>(), i_targInfo.reason);
    }

    // find all CHILD_BY_AFFINITY matches for this target and deconfigure them
    getChildAffinityTargets(pChildList, i_targInfo.pThisTarget,
                            CLASS_NA ,TYPE_NA);

    for (TargetHandleList::const_iterator
            pChild_it = pChildList.begin();
            pChild_it != pChildList.end();
            ++pChild_it)
    {
        TargetHandle_t l_affinityTarget = *pChild_it;
        enableHwasState(l_affinityTarget,true,false, i_targInfo.reason);
        HWAS_INF("deconfigPresentByAssoc: Target %.8X"
                " marked present, not functional: reason %.x",
                l_affinityTarget->getAttr<ATTR_HUID>(), i_targInfo.reason);
    }

    // deconfigure the target itself
    enableHwasState(i_targInfo.pThisTarget,true,false,i_targInfo.reason);
    HWAS_INF("deconfigPresentByAssoc: Target %.8X"
            " marked present, not functional, reason %.x",
            i_targInfo.pThisTarget->getAttr<ATTR_HUID>(), i_targInfo.reason);

} // deconfigPresentByAssoc

void invokePresentByAssoc()
{
    HWAS_DBG("invokePresentByAssoc enter");

    // make one list
    TargetHandleList l_funcTargetList;

    // get the functional MCBISTs (for Nimbus based systems)
    TargetHandleList l_funcMCBISTTargetList;
    getAllChiplets(l_funcMCBISTTargetList, TYPE_MCBIST, true );
    l_funcTargetList.insert(l_funcTargetList.begin(),
                            l_funcMCBISTTargetList.begin(),
                            l_funcMCBISTTargetList.end());

// If VPO, dump targets (MCBIST) for verification & debug purposes
#ifdef CONFIG_VPO_COMPILE
    HWAS_INF("invokePresentByAssoc(): MCBIST targets:");
    for (auto l_MCBIST : l_funcMCBISTTargetList)
    {
        HWAS_INF("   MCBIST: HUID %.8x", TARGETING::get_huid(l_MCBIST));
    }
#endif

    // get the functional MCSs (for Nimbus based systems)
    TargetHandleList l_funcMCSTargetList;
    getAllChiplets(l_funcMCSTargetList, TYPE_MCS, true );
    l_funcTargetList.insert(l_funcTargetList.begin(),
                               l_funcMCSTargetList.begin(),
                               l_funcMCSTargetList.end());

// If VPO, dump targets (MCS) for verification & debug purposes
#ifdef CONFIG_VPO_COMPILE
    HWAS_INF("invokePresentByAssoc(): MCS targets:");
    for (auto l_MCS : l_funcMCSTargetList)
    {
        HWAS_INF("   MCS: HUID %.8x", TARGETING::get_huid(l_MCS));
    }
#endif

    // get the functional MCs (for Cumulus based systems)
    TargetHandleList l_funcMCTargetList;
    getAllChiplets(l_funcMCTargetList, TYPE_MC, true );
    l_funcTargetList.insert(l_funcTargetList.begin(),
                            l_funcMCTargetList.begin(),
                            l_funcMCTargetList.end());

// If VPO, dump targets (MC) for verification & debug purposes
#ifdef CONFIG_VPO_COMPILE
    HWAS_INF("invokePresentByAssoc(): MC targets:");
    for (auto l_MC : l_funcMCTargetList)
    {
        HWAS_INF("   MC: HUID %.8x", TARGETING::get_huid(l_MC));
    }
#endif

    // get the functional MIs (for Cumulus based systems)
    TargetHandleList l_funcMITargetList;
    getAllChiplets(l_funcMITargetList, TYPE_MI, true );
    l_funcTargetList.insert(l_funcTargetList.begin(),
                            l_funcMITargetList.begin(),
                            l_funcMITargetList.end());

// If VPO, dump targets (MI) for verification & debug purposes
#ifdef CONFIG_VPO_COMPILE
    HWAS_INF("invokePresentByAssoc(): MI targets:");
    for (auto l_MI : l_funcMITargetList)
    {
        HWAS_INF("   MI: HUID %.8x", TARGETING::get_huid(l_MI));
    }
#endif

    // get the functional DMIs (for Cumulus based systems)
    TargetHandleList l_funcDMITargetList;
    getAllChiplets(l_funcDMITargetList, TYPE_DMI, true );
    l_funcTargetList.insert(l_funcTargetList.begin(),
                            l_funcDMITargetList.begin(),
                            l_funcDMITargetList.end());

// If VPO, dump targets (DMI) for verification & debug purposes
#ifdef CONFIG_VPO_COMPILE
    HWAS_INF("invokePresentByAssoc(): MI targets:");
    for (auto l_DMI : l_funcDMITargetList)
    {
        HWAS_INF("   DMI: HUID %.8x", TARGETING::get_huid(l_DMI));
    }
#endif

    PredicateCTM mccPred(CLASS_NA, TYPE_MCC),
                 omiPred(CLASS_NA, TYPE_OMI),
                 omicPred(CLASS_NA, TYPE_OMIC),
                 ocmbPred(CLASS_CHIP, TYPE_OCMB_CHIP),
                 memportPred(CLASS_NA, TYPE_MEM_PORT);
    PredicateHwas functionalPred;
    functionalPred.functional(true);

    Target *pSys;
    targetService().getTopLevelTarget(pSys);

    PredicatePostfixExpr l_funcAxoneMemoryUnits;
    l_funcAxoneMemoryUnits.push(&mccPred).push(&omiPred).Or()
        .push(&omicPred).Or().push(&ocmbPred).Or().push(&memportPred)
        .Or().push(&functionalPred).And();

    TargetHandleList l_funcAxoneTargetList;
    targetService().getAssociated(l_funcAxoneTargetList, pSys,
            TargetService::CHILD, TargetService::ALL, &l_funcAxoneMemoryUnits);
    l_funcTargetList.insert(l_funcTargetList.begin(),
                            l_funcAxoneTargetList.begin(),
                            l_funcAxoneTargetList.end());


    // get the functional membufs
    // note: do not expect membufs for NIMBUS and AXONE
    TargetHandleList l_funcMembufTargetList;
    getAllChips(l_funcMembufTargetList, TYPE_MEMBUF, true );
                l_funcTargetList.insert(l_funcTargetList.begin(),
                l_funcMembufTargetList.begin(),
                l_funcMembufTargetList.end());

// If VPO, dump targets (MEMBUF) for verification & debug purposes
#ifdef CONFIG_VPO_COMPILE
    HWAS_INF("invokePresentByAssoc(): MEMBUF targets:");
    for (auto l_MEMBUF : l_funcMembufTargetList)
    {
        HWAS_INF("   MEMBUF: HUID %.8x", TARGETING::get_huid(l_MEMBUF));
    }
#endif

    // get the functional mbas
    // note: do not expect mbas for NIMBUS
    TargetHandleList l_funcMBATargetList;
    getAllChiplets(l_funcMBATargetList, TYPE_MBA, true );
    l_funcTargetList.insert(l_funcTargetList.begin(),
                               l_funcMBATargetList.begin(),
                               l_funcMBATargetList.end());

// If VPO, dump targets (MBA) for verification & debug purposes
#ifdef CONFIG_VPO_COMPILE
    HWAS_INF("invokePresentByAssoc(): MBA targets:");
    for (auto l_MBA : l_funcMBATargetList)
    {
        HWAS_INF("   MBA: HUID %.8x", TARGETING::get_huid(l_MBA));
    }
#endif

    // get the functional MCAs
    // note: MCAs are expected for NIMBUS direct memory attach
    TargetHandleList l_funcMcaTargetList;
    getAllChiplets(l_funcMcaTargetList, TYPE_MCA, true );
    l_funcTargetList.insert(l_funcTargetList.begin(),
                               l_funcMcaTargetList.begin(),
                               l_funcMcaTargetList.end());

// If VPO, dump targets (MCA) for verification & debug purposes
#ifdef CONFIG_VPO_COMPILE
    HWAS_INF("invokePresentByAssocDA(): MCA targets:");
    for (auto l_MCA : l_funcMcaTargetList)
    {
        HWAS_INF("   MCA: HUID %.8x", TARGETING::get_huid(l_MCA));
    }
#endif
    // get the functional dimms
    TargetHandleList l_funcDIMMTargetList;
    getAllLogicalCards(l_funcDIMMTargetList, TYPE_DIMM, true );
    l_funcTargetList.insert(l_funcTargetList.begin(),
                               l_funcDIMMTargetList.begin(),
                               l_funcDIMMTargetList.end());


// If VPO, dump targets (DIMM) for verification & debug purposes
#ifdef CONFIG_VPO_COMPILE
    HWAS_INF("invokePresentByAssoc(): DIMM targets:");
    for (auto l_DIMM : l_funcDIMMTargetList)
    {
        HWAS_INF("   DIMM: HUID %.8x", TARGETING::get_huid(l_DIMM));
    }
#endif

    // Define vectors of TargetInfo structs to be used in presentByAssoc
    TargetInfoVector l_targInfo;
    TargetInfoVector l_targToDeconfig;

    // Iterate through targets and populate l_targInfo vector
    for (TargetHandleList::const_iterator
            l_targIter = l_funcTargetList.begin();
            l_targIter != l_funcTargetList.end();
            ++l_targIter)
    {
        TargetHandle_t pTarg = *l_targIter;
        TargetInfo l_TargetInfo;
        l_TargetInfo.pThisTarget    = pTarg;
        l_TargetInfo.affinityPath   = pTarg->getAttr<ATTR_AFFINITY_PATH>();
        l_TargetInfo.type           = pTarg->getAttr<ATTR_TYPE>();
        l_targInfo.push_back(l_TargetInfo);
    }

    // Call presentByAssoc to take the functional targets in l_targInfo
    // and determine which ones need to be deconfigured
    presentByAssoc(l_targInfo, l_targToDeconfig);

    // Deconfigure targets in l_targToDeconfig
    for (TargetInfoVector::const_iterator
         l_targIter = l_targToDeconfig.begin();
         l_targIter != l_targToDeconfig.end();
         ++l_targIter)
    {
        deconfigPresentByAssoc(*l_targIter);
    }
} // invokePresentByAssoc

void presentByAssoc(TargetInfoVector& io_funcTargets,
                    TargetInfoVector& o_targToDeconfig)
{
    HWAS_DBG("presentByAssoc entry");

    // Sort entire vector by affinity path. This provides the algorithm with
    // an ordered vector of targets, making it easy to check if:
    // for NIMBUS direct attach memory -
    //   MCS has child MCA
    //   MCA has child DIMM and parent MCS
    //   DIMM has parent MCA.
    // for CUMULUS non direct attach memory -
    //   MC has child MI
    //   MI has parent MC and child DMI
    //   DMI has parent MI and child MEMBUF
    //   MEMBUF has parent DMI and child MBA
    //   MBA has parent MEMBUF and child DIMM
    //   DIMM has parent MBA.
    // for AXONE
    //   MC has child MI and child OMIC
    //   MI has parent MC and child MCC
    //   OMIC has parent MC and child OMI
    //   MCC has parent MC and child OMI
    //   OMI has parent MCC and OMIC and child OCMB
    //   OCMB has parent OMI and child MEM_PORT
    //   MEM_PORT has parent OCMB and child DIMM
    //   DIMM has parent MEM_PORT
    std::sort(io_funcTargets.begin(), io_funcTargets.end(),
              compareAffinity);

    // Keep track of the most recently seen MCBIST, MCS & MCA for NIMBUS
    //  MC, MI, DMI, MEMBUF and MBA for CUMULUS. This allows the
    // algorithm to quickly check if targets share a MCS or MEMBUF and used
    // for backtracking after deleting a target from the vector
    size_t l_MCBISTIndex = __INT_MAX__;
    size_t l_MCSIndex = __INT_MAX__;
    size_t l_MCAIndex = __INT_MAX__;
    size_t l_MCIndex = __INT_MAX__;
    size_t l_MIIndex = __INT_MAX__;
    size_t l_DMIIndex = __INT_MAX__;
    size_t l_MCCIndex = __INT_MAX__;
    size_t l_MEMBUFIndex = __INT_MAX__;
    size_t l_MEMPORTIndex = __INT_MAX__;
    size_t l_MBAIndex = __INT_MAX__;
    size_t l_OMIIndex = __INT_MAX__;
    size_t l_OCMBIndex = __INT_MAX__;
    size_t i = 0;

    // Perform presentByAssoc algorithm
    while ( i < io_funcTargets.size() )
    {
        // INIT STEPS:
        // Reset iterator, check if the next taget in
        // the vector is valid or even needed

        // Get iterator to erase elements from vector when needed
        std::vector<TargetInfo>::iterator it = io_funcTargets.begin();
        std::advance(it,i);
        TargetInfo& l_curTargetInfo = *it;

        // Check if there is a next target and set it
        // Don't need to check next target with a DIMM
        TargetInfo* l_nextTargetInfo = NULL;
        if ( ((i + 1) < io_funcTargets.size()) &&
             (l_curTargetInfo.type != TYPE_DIMM) )
        {
            l_nextTargetInfo = &(*(it + 1));
        }

        switch (l_curTargetInfo.type)
        {
        case TYPE_MCBIST:    //NIMBUS
        {
            // No Child MCSs
            // If next is not a MCS sharing the same MCAs, deconfig MCBIST
            if ( (l_nextTargetInfo == NULL) ||
                (l_nextTargetInfo->type != TYPE_MCS) ||
                !isSameSubPath(l_curTargetInfo, *l_nextTargetInfo) )
            {
                // Disable MCBIST - NO_CHILD_MCS
                l_curTargetInfo.reason =
                DeconfigGard::DECONFIGURED_BY_NO_CHILD_MCS;
                // Add target to Deconfig vector to be deconfigured later
                o_targToDeconfig.push_back(l_curTargetInfo);
                // Remove target from funcTargets
                io_funcTargets.erase(it);

                //Just erased current MCBIST, MCA/MCS index invalid
                l_MCAIndex = __INT_MAX__;
                l_MCSIndex = __INT_MAX__;
            }
            // Update MCBIST Index
            else
            {
                l_MCBISTIndex = i;
                l_MCAIndex = __INT_MAX__; //New MCBIST, MCA index invalid
                l_MCSIndex = __INT_MAX__; //New MCBIST, MCS index invalid
                i++;
                continue;
            }
            break;
        }// MCBIST

        case TYPE_MCS:    //NIMBUS
        {
            // No Child MCAs
            // If next is not an MCA sharing the same MCS, deconfig MCS
            if ( (l_nextTargetInfo == NULL) ||
                 (l_nextTargetInfo->type != TYPE_MCA) ||
                 !isSameSubPath(l_curTargetInfo, *l_nextTargetInfo) )
            {
                // Disable MCS - NO_CHILD_MCA
                l_curTargetInfo.reason =
                        DeconfigGard::DECONFIGURED_BY_NO_CHILD_MCA;

            }
            // No Parent MCBIST
            // If MCS doesn't share the same MCBIST as MCSIndex, deconfig MCS
            else if ( (l_MCBISTIndex == __INT_MAX__) ||
                !isSameSubPath(l_curTargetInfo, io_funcTargets[l_MCBISTIndex]))
            {
                // Disable MCS - NO_PARENT_MCBIST
                l_curTargetInfo.reason =
                DeconfigGard::DECONFIGURED_BY_NO_PARENT_MCBIST;
            }
            // Update MCS Index
            else
            {
                l_MCSIndex = i;
                l_MCAIndex = __INT_MAX__; //New MCS, MCA index invalid
                i++;
                continue;
            }
            // Add target to Deconfig vector to be deconfigured later
            o_targToDeconfig.push_back(l_curTargetInfo);
            // Remove target from funcTargets
            io_funcTargets.erase(it);

            // Backtrack to last MCBIST
            if ( l_MCBISTIndex != __INT_MAX__ )
            {
                i = l_MCBISTIndex;
                l_MCAIndex = __INT_MAX__; //New MCBIST, MCA index invalid
                l_MCSIndex = __INT_MAX__; //New MCBIST, MCS index invalid
            }
            // Backtrack to beginning if no MCS has been seen yet
            else
            {
                i = 0;
            }
            break;
        } // MCS

        case TYPE_MC:    //CUMULUS and AXONE
        {

            // No child MIs and (Axone) no child OMICs

            // (Axone) Since OMIC targets are always sorted after the DIMMs
            //         of the current MC, we need to look for them instead
            //         of following the main algorithm's procedure of
            //         checking the next target in the vector.
            std::vector<TargetInfo>::iterator searchIt = it;
            if (searchIt != io_funcTargets.end())
            {
                std::advance(searchIt, 1);
            }

            while (searchIt != io_funcTargets.end())
            {
                TargetInfo& searchTargetInfo = *searchIt;

                // Stop searching for an OMIC if we encounter another MC
                // target since that would mean we have finished searching
                // all descendants of the current target. If we find an OMIC
                // target then stop also, since only one child is required.
                if ((searchTargetInfo.type == TYPE_MC)
                    || ((searchTargetInfo.type == TYPE_OMIC) &&
                        isSameSubPath(l_curTargetInfo, searchTargetInfo)))
                {
                    break;
                }

                std::advance(searchIt, 1);
            }

            // If next is not a MI sharing the same MC, deconfig MC
            // (Axone) And if we encountered another MC or reached the end of
            //         the vector then there are no child OMIC targets for this
            //         MC and it should be deconfigured.
            // Note: LHS (Non-Axone) && RHS (Axone)
            //       For Non-Axone, RHS is always true and for Axone LHS is
            //       always true.
            if (((l_nextTargetInfo == NULL)
                    || (l_nextTargetInfo->type != TYPE_MI)
                    || !isSameSubPath(l_curTargetInfo, *l_nextTargetInfo))
                && ((searchIt == io_funcTargets.end())
                    || ((*searchIt).type == TYPE_MC)))
            {
                // Disable MC - NO_CHILD_MI
                l_curTargetInfo.reason =
                DeconfigGard::DECONFIGURED_BY_NO_CHILD_MI;

                // Add target to Deconfig vector to be deconfigured later
                o_targToDeconfig.push_back(l_curTargetInfo);
                // Remove target from funcTargets
                io_funcTargets.erase(it);

                //Just erased current MC, so MI/DMI index invalid
                l_MIIndex = __INT_MAX__;
                l_DMIIndex = __INT_MAX__;
                l_MCCIndex = __INT_MAX__;
            }
            else
            {
                // Update MC Index
                l_MCIndex = i;
                l_MIIndex = __INT_MAX__; //New MC,so MI index invalid
                l_DMIIndex = __INT_MAX__; //New MC,so DMI index invalid
                l_MCCIndex = __INT_MAX__; //New MC,so MCC index invalid
                i++;
                continue;
            }

            break;
        }// MC

        case TYPE_MI:    //CUMULUS and AXONE
        {
            // No Child DMIs (for CUMULUS) or MCCs (for AXONE)
            // If next is not a DMI/MCC sharing the same MI, deconfig MI
            if ( (l_nextTargetInfo == NULL)
                || ((l_nextTargetInfo->type != TYPE_DMI) &&
                   (l_nextTargetInfo->type != TYPE_MCC))
                || !isSameSubPath(l_curTargetInfo, *l_nextTargetInfo))
            {
                // Disable MI - NO_CHILD_DMI_OR_MCC
                l_curTargetInfo.reason =
                        DeconfigGard::DECONFIGURED_BY_NO_CHILD_DMI;

            }
            // No Parent MC
            // If MI doesn't share the same MC as MIIndex, deconfig MI
            else if ( (l_MCIndex == __INT_MAX__) ||
                !isSameSubPath(l_curTargetInfo, io_funcTargets[l_MCIndex]))
            {
                // Disable MI - NO_PARENT_MC
                l_curTargetInfo.reason =
                DeconfigGard::DECONFIGURED_BY_NO_PARENT_MC;
            }
            // Update MI Index
            else
            {
                l_MIIndex = i;
                l_DMIIndex = __INT_MAX__; //New MI, so DMI index invalid
                l_MCCIndex = __INT_MAX__; //New MI, so MCC index invalid
                i++;
                continue;
            }
            // Add target to Deconfig vector to be deconfigured later
            o_targToDeconfig.push_back(l_curTargetInfo);
            // Remove target from funcTargets
            io_funcTargets.erase(it);

            // Backtrack to last MC
            if ( l_MCIndex != __INT_MAX__ )
            {
                i = l_MCIndex;
                l_MIIndex = __INT_MAX__; //New MC, MI index invalid
                l_DMIIndex = __INT_MAX__; //New MC, DMI index invalid
                l_MCCIndex = __INT_MAX__; //New MC, MCC index invalid
            }
            // Backtrack to beginning if no MC has been seen yet
            else
            {
                i = 0;
            }
            break;
        } // MI

        case TYPE_OMIC:
        {
            // No Child OMIs
            // Since OMIC targets are sorted after all of the rest of the
            // targets in the same subpath, we must do a backward search for
            // the correct OMI child. The l_OMIIndex is unreliable because it
            // may be pointing at an OMI that isn't this OMICs child.
            std::vector<TargetInfo>::iterator searchIt = it;
            if (searchIt != io_funcTargets.begin())
            {
                std::advance(searchIt, -1);
            }

            while (searchIt != io_funcTargets.begin())
            {
                TargetInfo& searchTargetInfo = *searchIt;

                // Stop the search if we encounter an MC because, based on the
                // sorting of the vector, there are no more OMIs to check for
                // this subpath. Also, if a child of the OMIC is found stop.
                if ((searchTargetInfo.type == TYPE_MC)
                    || ((searchTargetInfo.type == TYPE_OMI) &&
                        isSameSubPath(l_curTargetInfo, searchTargetInfo)))
                {
                    break;
                }

                std::advance(searchIt, -1);
            }

            // We encountered an MC target indicating that no OMIs were seen in
            // the vector that are children of this OMIC or we backtracked all
            // the way to the beginning and didn't find any children.
            if (searchIt == io_funcTargets.begin()
                || ((*searchIt).type == TYPE_MC))
            {
                // Disable OMIC - NO_CHILD_OMI
                l_curTargetInfo.reason =
                        DeconfigGard::DECONFIGURED_BY_NO_CHILD_OMI;
            }
            // No Parent MC
            // If OMIC doesn't share the same MC as MCIndex, deconfig OMIC
            else if ( (l_MCIndex == __INT_MAX__) ||
                !isSameSubPath(l_curTargetInfo, io_funcTargets[l_MCIndex]))
            {
                // Disable OMIC - NO_PARENT_MC
                l_curTargetInfo.reason =
                DeconfigGard::DECONFIGURED_BY_NO_PARENT_MC;
            }
            else
            {
                // Advance to the next target in the vector.
                i++;
                continue;
            }

            // Add target to Deconfig vector to be deconfigured later
            o_targToDeconfig.push_back(l_curTargetInfo);
            // Remove target from funcTargets
            io_funcTargets.erase(it);

            //Backtrack to last MC
            if ( l_MCIndex != __INT_MAX__ )
            {
                i = l_MCIndex;
            }
            // Backtrack to beginning if no MC has been seen yet
            else
            {
                i = 0;
            }
            break;
        }

        case TYPE_DMI:    //CUMULUS
        {
            // No Child MEMBUFs
            // If next is not a MEMBUF sharing the same DMI, deconfig DMI
            if ( (l_nextTargetInfo == NULL) ||
                 ( l_nextTargetInfo->type != TYPE_MEMBUF) ||
                 !isSameSubPath(l_curTargetInfo, *l_nextTargetInfo) )
            {
                // Disable DMI - NO_CHILD_MEMBUF
                l_curTargetInfo.reason =
                        DeconfigGard::DECONFIGURED_BY_NO_CHILD_MEMBUF;

            }
            // No Parent MI
            // If DMI doesn't share the same MI as DMIIndex, deconfig DMI
            else if ( (l_MIIndex == __INT_MAX__) ||
                !isSameSubPath(l_curTargetInfo, io_funcTargets[l_MIIndex]))
            {
                // Disable DMI - NO_PARENT_MI
                l_curTargetInfo.reason =
                DeconfigGard::DECONFIGURED_BY_NO_PARENT_MI;
            }
            // Update DMI Index
            else
            {
                l_DMIIndex = i;
                i++;
                continue;
            }
            // Add target to Deconfig vector to be deconfigured later
            o_targToDeconfig.push_back(l_curTargetInfo);
            // Remove target from funcTargets
            io_funcTargets.erase(it);

            // Backtrack to last MI
            if ( l_MIIndex != __INT_MAX__ )
            {
                i = l_MIIndex;
                l_DMIIndex = __INT_MAX__; //New MI, DMI index invalid
            }
            //Backtrack to last MC, if no MI has been seen yet
            else if ( l_MCIndex != __INT_MAX__ )
            {
                i = l_MCIndex;
                l_DMIIndex = __INT_MAX__; //New MC, DMI index invalid
            }
            // Backtrack to beginning if no MI has been seen yet
            else
            {
                i = 0;
            }
            break;
        } // DMI

        case TYPE_MCC:      // AXONE
        {
            // No Child OMIs
            // If next is not a OMI sharing the same MCC, deconfig MCC
            if ( (l_nextTargetInfo == NULL) ||
                 ( l_nextTargetInfo->type != TYPE_OMI) ||
                 !isSameSubPath(l_curTargetInfo, *l_nextTargetInfo) )
            {
                // Disable MCC - NO_CHILD_OMI
                l_curTargetInfo.reason =
                        DeconfigGard::DECONFIGURED_BY_NO_CHILD_OMI;

            }
            // No Parent MI
            // If MCC doesn't share the same MI as MCCIndex, deconfig MCC
            else if ( (l_MIIndex == __INT_MAX__) ||
                !isSameSubPath(l_curTargetInfo, io_funcTargets[l_MIIndex]))
            {
                // Disable MCC - NO_PARENT_MI
                l_curTargetInfo.reason =
                DeconfigGard::DECONFIGURED_BY_NO_PARENT_MI;
            }
            // Update MCC Index
            else
            {
                l_MCCIndex = i;
                i++;
                continue;
            }
            // Add target to Deconfig vector to be deconfigured later
            o_targToDeconfig.push_back(l_curTargetInfo);
            // Remove target from funcTargets
            io_funcTargets.erase(it);

            // Backtrack to last MI
            if ( l_MIIndex != __INT_MAX__ )
            {
                i = l_MIIndex;
                l_MCCIndex = __INT_MAX__; //New MI, MCC index invalid
            }
            //Backtrack to last MC, if no MI has been seen yet
            else if ( l_MCIndex != __INT_MAX__ )
            {
                i = l_MCIndex;
                l_MCCIndex = __INT_MAX__; //New MC, MCC index invalid
            }
            // Backtrack to beginning if no MC has been seen yet
            else
            {
                i = 0;
            }
            break;
        } // MCC

        case TYPE_OMI:      // AXONE
        {
            // No Child OCMBs
            // If next is not a OCMB sharing the same OMI, deconfig OMI
            if ( (l_nextTargetInfo == NULL) ||
                 ( l_nextTargetInfo->type != TYPE_OCMB_CHIP) ||
                 !isSameSubPath(l_curTargetInfo, *l_nextTargetInfo) )
            {
                // Disable OMI - NO_CHILD_OCMB_CHIP
                l_curTargetInfo.reason =
                        DeconfigGard::DECONFIGURED_BY_NO_CHILD_OCMB_CHIP;

            }
            // No Parent MCC
            // If OMI doesn't share the same MCC as MCCIndex, deconfig OMI
            else if ( (l_MCCIndex == __INT_MAX__) ||
                !isSameSubPath(l_curTargetInfo, io_funcTargets[l_MCCIndex]))
            {
                // Disable OMI - NO_PARENT_MCC
                l_curTargetInfo.reason =
                DeconfigGard::DECONFIGURED_BY_NO_PARENT_MCC;
            }
            // No Parent OMIC
            // If OMI doesn't share the same OMIC as OMICIndex, deconfig OMI
            else
            {
                // Since OMIC targets are always sorted after the DIMMs of
                // the current MC, we need to look for them instead of
                // following the main algorithm's procedure of checking the
                // next target in the vector.
                std::vector<TargetInfo>::iterator searchIt = it;
                if (searchIt != io_funcTargets.end())
                {
                    std::advance(searchIt, 1);
                }

                while (searchIt != io_funcTargets.end())
                {
                    TargetInfo& searchTargetInfo = *searchIt;

                    // Stop the search when we encounter an MC since that means
                    // no parent OMICs were seen at the end of this sorted
                    // subpath and also stop searching when we found the OMIC
                    // parent.
                    if ((searchTargetInfo.type == TYPE_MC)
                        || ((searchTargetInfo.type == TYPE_OMIC) &&
                            isSameSubPath(l_curTargetInfo, searchTargetInfo)))
                    {
                        break;
                    }

                    std::advance(searchIt, 1);
                }

                // Either an MC was encountered or the end of the vector was
                // reached meaning that no parent OMIC was found. Deconfigure
                // this OMI.
                if (searchIt == io_funcTargets.end()
                    || ((*searchIt).type == TYPE_MC))
                {
                    // Disable OMI - NO_PARENT_OMIC
                    l_curTargetInfo.reason =
                    DeconfigGard::DECONFIGURED_BY_NO_PARENT_OMIC;
                }
                // Update OMI Index
                else
                {
                    l_OMIIndex = i;
                    i++;
                    continue;
                }

            }

            // Add target to Deconfig vector to be deconfigured later
            o_targToDeconfig.push_back(l_curTargetInfo);
            // Remove target from funcTargets
            io_funcTargets.erase(it);

            // Backtrack to last MCC
            if ( l_MCCIndex != __INT_MAX__ )
            {
                i = l_MCCIndex;
                l_OMIIndex = __INT_MAX__; //New MCC, OMI index invalid
            }
            // Backtrack to last MI, if no MCC has been seen yet
            else if ( l_MIIndex != __INT_MAX__ )
            {
                i = l_MIIndex;
                l_OMIIndex = __INT_MAX__; //New MI, OMI index invalid
            }
            // Backtrack to last MC, if no MI has been seen yet
            else if ( l_MCIndex != __INT_MAX__ )
            {
                i = l_MCIndex;
                l_OMIIndex = __INT_MAX__; //New MC, OMI index invalid
            }
            // Backtrack to beginning if no MC has been seen yet
            else
            {
                i = 0;
            }
            break;
        } // OMI

        case TYPE_OCMB_CHIP:      // AXONE
        {
            // No Child MEMPORTs
            // If next is not a MEMPORT sharing the same OCMB, deconfig OCMB
            if ( (l_nextTargetInfo == NULL) ||
                 (l_nextTargetInfo->type != TYPE_MEM_PORT) ||
                 !isSameSubPath(l_curTargetInfo, *l_nextTargetInfo))
            {
                // Disable OCMB - NO_CHILD_MEM_PORT
                l_curTargetInfo.reason =
                        DeconfigGard::DECONFIGURED_BY_NO_CHILD_MEM_PORT;

            }
            // No Parent OMI
            // If OCMB doesn't share the same OMI as OCMBIndex, deconfig OCMB
            else if ( (l_OMIIndex == __INT_MAX__) ||
                !isSameSubPath(l_curTargetInfo, io_funcTargets[l_OMIIndex]))
            {
                // Disable OCMB - NO_PARENT_OMI
                l_curTargetInfo.reason =
                DeconfigGard::DECONFIGURED_BY_NO_PARENT_OMI;
            }
            // Update OCMB Index
            else
            {
                l_OCMBIndex = i;
                i++;
                continue;
            }
            // Add target to Deconfig vector to be deconfigured later
            o_targToDeconfig.push_back(l_curTargetInfo);
            // Remove target from funcTargets
            io_funcTargets.erase(it);

            // Backtrack to last OMI
            if ( l_OMIIndex != __INT_MAX__ )
            {
                i = l_OMIIndex;
                l_OCMBIndex = __INT_MAX__; //New OMI, OCMB index invalid
            }
            // Backtrack to last MCC, if no OMI has been seen yet
            else if ( l_MCCIndex != __INT_MAX__ )
            {
                i = l_MCCIndex;
                l_OCMBIndex = __INT_MAX__; //New MCC, OCMB index invalid
            }
            //Backtrack to last MI, if no MCC has been seen yet
            else if ( l_MIIndex != __INT_MAX__ )
            {
                i = l_MIIndex;
                l_OCMBIndex = __INT_MAX__; //New MI, OCMB index invalid
            }
            //Backtrack to last MC, if no MI has been seen yet
            else if ( l_MCIndex != __INT_MAX__ )
            {
                i = l_MCIndex;
                l_OCMBIndex = __INT_MAX__; //New MC, OCMB index invalid
            }
            // Backtrack to beginning if no MC has been seen yet
            else
            {
                i = 0;
            }
            break;
        } // OCMB

        case TYPE_MEM_PORT:      // AXONE
        {
            // No Child DIMMs
            // If next is not a DIMM sharing the same MEMPORT, deconfig MEMPORT
            if ( (l_nextTargetInfo == NULL) ||
                 (l_nextTargetInfo->type != TYPE_DIMM) ||
                 !isSameSubPath(l_curTargetInfo, *l_nextTargetInfo))
            {
                // Disable MEMPORT - NO_CHILD_DIMM
                l_curTargetInfo.reason =
                        DeconfigGard::DECONFIGURED_BY_NO_CHILD_DIMM;

            }
            // No Parent OCMB
            // If MEMPORT doesn't share the same OCMB as MEMPORTIndex,
            // deconfig MEMPORT
            else if ( (l_OCMBIndex == __INT_MAX__) ||
                !isSameSubPath(l_curTargetInfo, io_funcTargets[l_OCMBIndex]))
            {
                // Disable MEMPORT - NO_PARENT_OCMB_CHIP
                l_curTargetInfo.reason =
                DeconfigGard::DECONFIGURED_BY_NO_PARENT_OCMB_CHIP;
            }
            // Update MEMPORT Index
            else
            {
                l_MEMPORTIndex = i;
                i++;
                continue;
            }
            // Add target to Deconfig vector to be deconfigured later
            o_targToDeconfig.push_back(l_curTargetInfo);
            // Remove target from funcTargets
            io_funcTargets.erase(it);

            // Backtrack to last OCMB
            if ( l_OCMBIndex != __INT_MAX__ )
            {
                i = l_OCMBIndex;
                l_MEMPORTIndex = __INT_MAX__; //New OCMB, MEMPORT index invalid
            }
            // Backtrack to last OMI, if no OCMB has been seen yet
            else if ( l_OMIIndex != __INT_MAX__ )
            {
                i = l_OMIIndex;
                l_MEMPORTIndex = __INT_MAX__; //New OMI, MEMPORT index invalid
            }
            // Backtrack to last MCC, if no OMI has been seen yet
            else if ( l_MCCIndex != __INT_MAX__ )
            {
                i = l_MCCIndex;
                l_MEMPORTIndex = __INT_MAX__; //New MCC, MEMPORT index invalid
            }
            //Backtrack to last MI, if no MCC has been seen yet
            else if ( l_MIIndex != __INT_MAX__ )
            {
                i = l_MIIndex;
                l_MEMPORTIndex = __INT_MAX__; //New MI, MEMPORT index invalid
            }
            //Backtrack to last MC, if no MI has been seen yet
            else if ( l_MCIndex != __INT_MAX__ )
            {
                i = l_MCIndex;
                l_MEMPORTIndex = __INT_MAX__; //New MC, MEMPORT index invalid
            }
            // Backtrack to beginning if no MC has been seen yet
            else
            {
                i = 0;
            }
            break;
        } // MEMPORT

        case TYPE_MEMBUF:   // CUMULUS
        {
            // No Child MBAs
            // If next is not a MBA sharing the same MEMBUF, deconfig MEMBUF
            if ( (l_nextTargetInfo == NULL) ||
                 (l_nextTargetInfo->type != TYPE_MBA) ||
                 !isSameSubPath(l_curTargetInfo, *l_nextTargetInfo) )
            {
                // Disable MEMBUF - NO_CHILD_MBA
                l_curTargetInfo.reason =
                        DeconfigGard::DECONFIGURED_BY_NO_CHILD_MBA;
            }
            // No Parent DMI (CUMULUS)
            // If MEMBUF doesn't share the same same DMI as DMIIndex
            // (for CUMULUS), deconfig MEMBUF
            else if ((l_DMIIndex == __INT_MAX__) ||
                       !isSameSubPath(l_curTargetInfo,
                           io_funcTargets[l_DMIIndex]))
            {
                // Disable MEMBUF - NO_PARENT_MCS_OR_DMI
                l_curTargetInfo.reason =
                        DeconfigGard::DECONFIGURED_BY_NO_PARENT_DMI;
            }
            // Update MEMBUF Index
            else
            {
                l_MEMBUFIndex = i;
                i++;
                continue;
            }

            // Add target to deconfig vector to be deconfigured later
            o_targToDeconfig.push_back(l_curTargetInfo);
            // Remove target from funcTargets
            io_funcTargets.erase(it);

            //Backtrack to last DMI (CUMULUS), if no MEMBUF has been seen yet
            if ( l_DMIIndex != __INT_MAX__ )
            {
                i = l_DMIIndex;
            }
            //Backtrack to last MI (CUMULUS), if no DMI has been seen yet
            else if ( l_MIIndex != __INT_MAX__ )
            {
                i = l_MIIndex;
            }
            //Backtrack to last MC (CUMULUS), if no MI has been seen yet
            else if ( l_MCIndex != __INT_MAX__ )
            {
                i = l_MCIndex;
            }
            // Backtrack to beginning if no MCS (NIMBUS) or DMI (CUMULUS)
            // has been seen yet
            else
            {
                i = 0;
            }
            break;
        } // MEMBUF

        case TYPE_MBA:   //CUMULUS
        {
            // No Child DIMMs
            // If next is not a DIMM sharing the same MBA, deconfig MBA
            if ( (l_nextTargetInfo == NULL) ||
                 (l_nextTargetInfo->type != TYPE_DIMM) ||
                 !isSameSubPath(l_curTargetInfo, *l_nextTargetInfo) )
            {
                // Disable MBA - NO_CHILD_DIMM
                l_curTargetInfo.reason =
                        DeconfigGard::DECONFIGURED_BY_NO_CHILD_DIMM;
            }
            // No Parent MEMBUF
            // If MBA doesn't share the same MEMBUF as MEMBUFIndex, deconfig MBA
            else if ( (l_MEMBUFIndex == __INT_MAX__) ||
                    !isSameSubPath(l_curTargetInfo,
                        io_funcTargets[l_MEMBUFIndex]))
            {
                // Disable MBA - NO_PARENT_MEMBUF
                l_curTargetInfo.reason =
                        DeconfigGard::DECONFIGURED_BY_NO_PARENT_MEMBUF;
            }
            // Update MBA Index
            else
            {
                l_MBAIndex = i;
                i++;
                continue;
            }

            // Add target to deconfig vector to be deconfigured later
            o_targToDeconfig.push_back(l_curTargetInfo);
            // Remove target from funcTargets
            io_funcTargets.erase(it);

            // Backtrack to last MEMBUF
            if ( l_MEMBUFIndex != __INT_MAX__ )
            {
                i = l_MEMBUFIndex;
            }
            //Backtrack to last DMI (CUMULUS), if no MEMBUF has been seen yet
            else if ( l_DMIIndex != __INT_MAX__ )
            {
                i = l_DMIIndex;
            }
            //Backtrack to last MI (CUMULUS), if no DMI has been seen yet
            else if ( l_MIIndex != __INT_MAX__ )
            {
                i = l_MIIndex;
            }
            //Backtrack to last MC (CUMULUS), if no MI has been seen yet
            else if ( l_MCIndex != __INT_MAX__ )
            {
                i = l_MCIndex;
            }
            // Backtrack to beginning
            else
            {
                i = 0;
            }
            break;
        } // MBA

        case TYPE_MCA:
        {
            // No Child DIMMs
            // If next is not a DIMM sharing the same MCA, deconfig MCS
            if ( (l_nextTargetInfo == NULL) ||
                 (l_nextTargetInfo->type != TYPE_DIMM) ||
                 !isSameSubPath(l_curTargetInfo, *l_nextTargetInfo) )
            {
                // Disable MCS - NO_CHILD_DIMM
                l_curTargetInfo.reason =
                        DeconfigGard::DECONFIGURED_BY_NO_CHILD_DIMM;
            }
            // No Parent MCS
            // If MCA doesn't share the same MCS as MCSIndex, deconfig MCA
            else
            if ( (l_MCSIndex == __INT_MAX__) ||
                    !isSameSubPath(l_curTargetInfo, io_funcTargets[l_MCSIndex]))
            {
                // Disable MCA - NO_PARENT_MCS
                l_curTargetInfo.reason =
                        DeconfigGard::DECONFIGURED_BY_NO_PARENT_MCS;
            }
            // Update MCA Index
            else
            {
                l_MCAIndex = i;
                i++;
                continue;
            }

            // Add target to deconfig vector to be deconfigured later
            o_targToDeconfig.push_back(l_curTargetInfo);
            // Remove target from funcTargets
            io_funcTargets.erase(it);
            l_MCAIndex = __INT_MAX__; //MCA removed, MCA index invalid
            // Backtrack to last MCS
            if ( l_MCSIndex != __INT_MAX__ )
            {
                i = l_MCSIndex;
            }
            // Backtrack to last MCBIST
            else if ( l_MCBISTIndex != __INT_MAX__ )
            {
                i = l_MCBISTIndex;
            }
            // Backtrack to beginning if no MCBIST has been seen yet
            else
            {
                i = 0;
            }
            break;
        } // MCS

        case TYPE_DIMM:
        {
            // No Parent MBA or MCA or MEMPORT
            // If DIMM does not share the same MBA as MBAIndex,
            // or if DIMM does not share the same MCA as MCAIndex,
            // or if DIMM does not share the same MEMPORT as MEMPORTIndex,
            // deconfig DIMM
            if ( ((l_MBAIndex == __INT_MAX__) ||
                 !isSameSubPath(l_curTargetInfo, io_funcTargets[l_MBAIndex])) &&
                 ((l_MCAIndex == __INT_MAX__) ||
                 !isSameSubPath(l_curTargetInfo, io_funcTargets[l_MCAIndex])) &&
                 ((l_MEMPORTIndex == __INT_MAX__) ||
                 !isSameSubPath(l_curTargetInfo,
                     io_funcTargets[l_MEMPORTIndex])))
            {
                // Disable DIMM
                l_curTargetInfo.reason =
                DeconfigGard::DECONFIGURED_BY_NO_PARENT_MBA_OR_MCA;

                // Add target to deconfig vector to be deconfigured later
                o_targToDeconfig.push_back(l_curTargetInfo);
                // Remove target from funcTargets
                io_funcTargets.erase(it);

                // Backtrack to last MEMPORT (AXONE)
                if ( l_MEMPORTIndex != __INT_MAX__ )
                {
                    i = l_MEMPORTIndex;
                }
                // Backtrack to last OCMB (AXONE) if no MEMPORT has been
                // seen yet
                else if ( l_OCMBIndex != __INT_MAX__ )
                {
                    i = l_OCMBIndex;
                }
                // Backtrack to last OMI (AXONE) if no OCMB has been seen yet
                else if ( l_OMIIndex != __INT_MAX__ )
                {
                    i = l_OMIIndex;
                }
                // Backtrack to last MCC (AXONE) if no OMI has been seen yet
                else if ( l_MCCIndex != __INT_MAX__ )
                {
                    i = l_MCCIndex;
                }
                // Backtrack to last MBA (CUMULUS)
                else if ( l_MBAIndex != __INT_MAX__ )
                {
                    i = l_MBAIndex;
                }
                // Backtrack to last MCA (NIMBUS)
                else if ( l_MCAIndex != __INT_MAX__)
                {
                    i = l_MCAIndex;
                }
                // Backtrack to last MCS (NIMBUS) if no MCA has been seen yet
                else if ( l_MCSIndex != __INT_MAX__)
                {
                    i = l_MCSIndex;
                }
                // Backtrack to last MCBIST (NIMBUS) if no MCS has been seen yet
                else if ( l_MCBISTIndex != __INT_MAX__)
                {
                    i = l_MCBISTIndex;
                }
                // Backtrack to last MEMBUF (CUMULUS) if no MBA has been
                // seen yet
                else if ( l_MEMBUFIndex != __INT_MAX__)
                {
                    i = l_MEMBUFIndex;
                }
                // Backtrack to last DMI (CUMULUS),if no MEMBUF has been
                // seen yet
                else if ( l_DMIIndex != __INT_MAX__ )
                {
                    i = l_DMIIndex;
                }
                // Backtrack to last MI (CUMULUS and AXONE), if no DMI has been
                // seen yet
                else if ( l_MIIndex != __INT_MAX__ )
                {
                    i = l_MIIndex;
                }
                // Backtrack to last MC (CUMULUS and AXONE), if no MI has been
                // seen yet
                else if ( l_MCIndex != __INT_MAX__ )
                {
                    i = l_MCIndex;
                }
                // Backtrack to beginning if no MCS has been seen yet
                else
                {
                    i = 0;
                }
            }
            else
            {
                i++;
            }
            break;
        } // DIMM
        default:
            // no action
            break;
        } // switch
    } // while
} // presentByAssoc

void setChipletGardsOnProc(TARGETING::Target * i_procTarget)
{
    TARGETING::TargetHandleList l_targetList;

    TARGETING::ATTR_EQ_GARD_type l_eqGard = 0xFF;
    TARGETING::ATTR_EC_GARD_type l_ecGard = 0xFFFFFFFF;

    TARGETING::PredicateCTM l_eqs(TARGETING::CLASS_UNIT,
                                  TARGETING::TYPE_EQ);

    TARGETING::PredicateCTM l_ecs(TARGETING::CLASS_UNIT,
                                  TARGETING::TYPE_CORE);

    TARGETING::PredicateIsFunctional l_isFunctional;
    TARGETING::PredicatePostfixExpr l_funcChipletFilter;

    l_funcChipletFilter.push(&l_eqs).push(&l_ecs).Or().
                        push(&l_isFunctional).And();

    TARGETING::targetService().getAssociated(l_targetList,
                                            i_procTarget,
                                            TARGETING::TargetService::CHILD,
                                            TARGETING::TargetService::ALL,
                                            &l_funcChipletFilter);

    for(auto & l_targ : l_targetList)
    {
        TARGETING::ATTR_CHIP_UNIT_type l_chipUnit =
        l_targ->getAttr<TARGETING::ATTR_CHIP_UNIT>();
        if((l_targ)->getAttr<TARGETING::ATTR_TYPE>() == TARGETING::TYPE_EQ)
        {
            l_eqGard &= ~(0x80 >> l_chipUnit );
        }
        else
        {
            l_ecGard &= ~(0x80000000 >> l_chipUnit );
        }
    }
    HWAS_INF("EQ Gard Bit:0x%x EC Gard Bit:0x%08x on proc with HUID: 0x%lx ",
                l_eqGard,l_ecGard, i_procTarget->getAttr<TARGETING::ATTR_HUID>());
    i_procTarget->setAttr<TARGETING::ATTR_EQ_GARD>(l_eqGard);
    i_procTarget->setAttr<TARGETING::ATTR_EC_GARD>(l_ecGard);
}//setChipletGardsOnProc

bool mixedECsAllowed(TARGETING::ATTR_MODEL_type i_model,
                     TARGETING::ATTR_EC_type i_baseEC,
                     TARGETING::ATTR_EC_type i_compareEC)
{
    bool l_mixOk = false;

#ifdef __HOSTBOOT_MODULE  //Only check risk level in HB, HWSV always allow
    //get risk level (used to know if in compat mode)
    Target* pSys;
    targetService().getTopLevelTarget(pSys);
    auto l_risk = pSys->getAttr<ATTR_RISK_LEVEL>();
#endif

    if(TARGETING::MODEL_NIMBUS == i_model)
    {
        //For P9N  -- DD2.2 and DD2.3 can be run in mixed compat mode
        //Compat mode risk levels 0-3 (4+ are native).  Only pass when
        //actually running compat mode
        if ((i_baseEC != i_compareEC) &&
#ifdef __HOSTBOOT_MODULE  //Only check risk level in HB, HWSV always allow
            (l_risk < TARGETING::UTIL::P9N23_P9C13_NATIVE_MODE_MINIMUM) &&
#endif
            ((i_baseEC == 0x22) || (i_baseEC == 0x23)) &&
            ((i_compareEC == 0x22) || (i_compareEC == 0x23)))
        {
            l_mixOk = true;
        }
    }
    else if (TARGETING::MODEL_CUMULUS == i_model)
    {
        //For P9C  -- DD1.2 and DD1.3 can be run in mixed compat mode
        //Compat mode risk levels 0-3 (4+ are native).  Only pass when
        //actually running compat mode
        if ((i_baseEC != i_compareEC) &&
#ifdef __HOSTBOOT_MODULE  //Only check risk level in HB, HWSV always allow
            (l_risk < TARGETING::UTIL::P9N23_P9C13_NATIVE_MODE_MINIMUM) &&
#endif
            ((i_baseEC == 0x12) || (i_baseEC == 0x13)) &&
            ((i_compareEC == 0x12) || (i_compareEC == 0x13)))
        {
            l_mixOk = true;
        }
    }
    //else no other compat mode chips

    return l_mixOk;
}

/**
 * @brief Upgrade the Compatibility Risk Level to Native Risk Level
 * @param io_risk - RISK_LEVEL that gets upgraded
 */
void upgradeRiskLevel( uint8_t & io_risk )
{
    if (io_risk <= TARGETING::UTIL::P9N22_P9C12_RUGBY_FAVOR_PERFORMANCE)
    {
        // 0,1 -> 4
        io_risk = TARGETING::UTIL::P9N23_P9C13_NATIVE_MODE_MINIMUM;
    }
    else if (io_risk == TARGETING::UTIL::P9N22_NO_RUGBY_MITIGATIONS)
    {
        // 2 -> 5
        io_risk =
            TARGETING::UTIL::P9N23_P9C13_NATIVE_SMF_RUGBY_FAVOR_PERFORMANCE;
    }
    // 3-5: stay same
}

/**
 * @brief Downgrade the Native Risk Level to Compatibility Risk Level
 * @param io_risk - RISK_LEVEL that gets downgraded
 */
void downgradeRiskLevel( uint8_t & io_risk )
{
    if (io_risk == TARGETING::UTIL::P9N23_P9C13_NATIVE_MODE_MINIMUM)
    {
        // Base level Native needs to go to base level Compatibilty
        // 4 -> 0
        io_risk = TARGETING::UTIL::P9N22_P9C12_RUGBY_FAVOR_SECURITY;
    }
    else if
    (io_risk == TARGETING::UTIL::P9N23_P9C13_NATIVE_SMF_RUGBY_FAVOR_PERFORMANCE)
    {
        // 5 -> 2
        io_risk = TARGETING::UTIL::P9N22_NO_RUGBY_MITIGATIONS;
    }
    // 0-3: stay same
}

/**
 * @brief Update ATTR_RISK_LEVEL of NIMBUS_ONLY systems to
 *        a native or compatibility level if so directed via
 *        MRW attribute setting
 *        See README file for Compatibility Truth Tables that will
 *        indicate what RISK_LEVEL should be after this function.
 * @return Error if not able to update setting, else nullptr
 */
errlHndl_t updateProcCompatibilityRiskLevel()
{
    HWAS_INF("updateProcCompatibilityRiskLevel entry");
    errlHndl_t l_err = nullptr;

    // First EC chip level on the system (first processor's checked level)
    TARGETING::ATTR_EC_type l_firstEc = 0;
    TARGETING::Target * pFirstEcChip = nullptr;
    // Last EC chip level on the system (last processor's checked level)
    TARGETING::ATTR_EC_type l_lastEc = 0;
    TARGETING::Target * pLastEcChip = nullptr;
    TARGETING::TargetHandleList l_procChips;
    bool mixedEc = false;

    do
    {
        //Get all functional chips
        getAllChips(l_procChips, TYPE_PROC);

        //Loop through all functional procs and
        //check for a mismatch of EC levels
        for(const auto & l_chip : l_procChips)
        {
            l_lastEc = l_chip->getAttr<TARGETING::ATTR_EC>();
            if (l_firstEc == 0)
            {
                // first chip, setup the last EC read to valid values
                l_firstEc = l_lastEc;
                pFirstEcChip = l_chip;
            }
            if (l_firstEc != l_lastEc)
            {
                // found a different EC level so mark ECs mixed
                mixedEc = true;
                pLastEcChip = l_chip;
                break;
            }
        }

        // Now update the RISK_LEVEL
        Target* pSys;
        targetService().getTopLevelTarget(pSys);
        auto l_risk = pSys->getAttr<TARGETING::ATTR_RISK_LEVEL>();
        auto l_original_risk = l_risk;
        auto l_risk_origin = pSys->getAttr<TARGETING::ATTR_RISK_LEVEL_ORIGIN>();
        auto l_proc_compatibility_req =
            pSys->getAttr<TARGETING::ATTR_PROC_COMPATIBILITY_REQ>();

        if (l_proc_compatibility_req ==
            TARGETING::PROC_COMPATIBILITY_REQ_FORCED_COMPATIBILITY)
        {
            // If RISK_LEVEL is a Native setting (4 or more)
            if (l_risk >= TARGETING::UTIL::P9N23_P9C13_NATIVE_MODE_MINIMUM)
            {
                // Both PROC_COMPATIBILITY_REQ and DEFAULT_MRW_RISK_LEVEL are
                // MRW attributes that should make sense
                // Error if risk is Native and set by the MRW because
                // we don't know what the MRW really wants for RISK_LEVEL.
                if (l_risk_origin == TARGETING::RISK_LEVEL_ORIGIN_MRW)
                {
                    HWAS_ERR("updateProcCompatibilityRiskLevel::Trying to "
                        "force compatibility of invalid MRW risk level %d",
                        l_risk);

                    /*
                     * @errortype
                     * @severity           ERRL_SEV_UNRECOVERABLE
                     * @moduleid           MOD_UPDATE_PROC_COMPAT_RISK_LEVEL
                     * @reasoncode         RC_FORCED_COMPAT_INVALID_LEVEL
                     * @devdesc            MRW setting of RISK_VALUE is invalid
                     *                     for FORCED_COMPATIBILITY
                     * @custdesc           Incompatible Processor Chip Levels
                     * @userdata1[00:31]   1st EC level
                     * @userdata1[32:63]   2nd EC level
                     * @userdata2[00:15]   RISK_LEVEL
                     * @userdata2[16:31]   PROC_COMPATIBILITY_REQ
                     * @userdata2[32:63]   RISK_LEVEL_ORIGIN (0=USER, 1=MRW)
                     *
                     */
                    const uint64_t userdata1 =
                        (static_cast<uint64_t>(l_firstEc) << 32) |
                        static_cast<uint64_t>(l_lastEc);

                    const uint64_t userdata2 =
                        (static_cast<uint64_t>(l_risk) << 48) |
                        (static_cast<uint64_t>(l_proc_compatibility_req) << 32) |
                        (static_cast<uint64_t>(l_risk_origin));

                    l_err = hwasError(ERRL_SEV_UNRECOVERABLE,
                                      MOD_UPDATE_PROC_COMPAT_RISK_LEVEL,
                                      RC_FORCED_COMPAT_INVALID_LEVEL,
                                      userdata1,
                                      userdata2);
                    // SW_CALLOUT - MRW setting error
                    hwasErrorAddProcedureCallout( l_err,
                        HWAS::EPUB_PRC_HB_CODE, HWAS::SRCI_PRIORITY_LOW );
                    break;
                }

                // All system types should be put in compatibility mode so
                // downgrade to force compatibility if risk is 4 or more
                downgradeRiskLevel(l_risk);
            }
        }
        else if (l_proc_compatibility_req ==
                 TARGETING::PROC_COMPATIBILITY_REQ_ALLOW_COMPATIBILITY)
        {
            // Upgrade DD2.3 system if risk is 2 or less and set by MRW
            if (!mixedEc &&
                (l_risk <= TARGETING::UTIL::P9N22_NO_RUGBY_MITIGATIONS) &&
                (l_risk_origin == TARGETING::RISK_LEVEL_ORIGIN_MRW) &&
                (l_firstEc == 0x23))
            {
                upgradeRiskLevel(l_risk);
            }
            // Downgrade Mixed or DD2.2 systems with risk = 4 or more
            else if ((mixedEc || (l_firstEc == 0x22)) &&
                (l_risk >= TARGETING::UTIL::P9N23_P9C13_NATIVE_MODE_MINIMUM))
            {
                downgradeRiskLevel(l_risk);
            }
        }
        else // TARGETING::MRW_COMPATIBILITY_RISK_FLAG_FORCE_NATIVE
        {
            // NATIVE mode does NOT allow mixed EC
            if (mixedEc)
            {
                HWAS_ERR("updateProcCompatibilityRiskLevel::Trying to "
                    "force native compatibility of mixed processor levels",
                    " (0x%02X and 0x%02X)", l_firstEc, l_lastEc );

                /*
                 * @errortype
                 * @severity           ERRL_SEV_UNRECOVERABLE
                 * @moduleid           MOD_UPDATE_PROC_COMPAT_RISK_LEVEL
                 * @reasoncode         RC_FORCED_NATIVE_INVALID_MIXED_EC
                 * @devdesc            Forced native compatibility not allowed
                 *                     for mixed EC levels
                 * @custdesc           Incompatible Processor Chip Levels
                 * @userdata1[00:31]   1st EC level
                 * @userdata1[32:63]   2nd EC level
                 * @userdata2[00:15]   RISK_LEVEL
                 * @userdata2[16:31]   PROC_COMPATIBILITY_REQ
                 * @userdata2[32:63]   RISK_LEVEL_ORIGIN (0=USER, 1=MRW)
                 *
                 */
                const uint64_t userdata1 =
                    (static_cast<uint64_t>(l_firstEc) << 32) |
                    static_cast<uint64_t>(l_lastEc);

                const uint64_t userdata2 =
                    (static_cast<uint64_t>(l_risk) << 48) |
                    (static_cast<uint64_t>(l_proc_compatibility_req) << 32) |
                    (static_cast<uint64_t>(l_risk_origin));

                l_err = hwasError(ERRL_SEV_UNRECOVERABLE,
                                  MOD_UPDATE_PROC_COMPAT_RISK_LEVEL,
                                  RC_FORCED_NATIVE_INVALID_MIXED_EC,
                                  userdata1,
                                  userdata2);
                // Callout the DD2.2 as high and DD2.3 as low
                if (l_firstEc == 0x22)
                {
                    // pFirstEcChip is DD2.2
                    platHwasErrorAddHWCallout(l_err,
                                              pFirstEcChip,
                                              HWAS::SRCI_PRIORITY_HIGH,
                                              NO_DECONFIG,
                                              GARD_NULL);
                    // pLastEcChip is DD2.3
                    platHwasErrorAddHWCallout(l_err,
                                              pLastEcChip,
                                              HWAS::SRCI_PRIORITY_LOW,
                                              NO_DECONFIG,
                                              GARD_NULL);
                }
                else
                {
                    // pFirstEcChip is DD2.3
                    platHwasErrorAddHWCallout(l_err,
                                              pFirstEcChip,
                                              HWAS::SRCI_PRIORITY_LOW,
                                              NO_DECONFIG,
                                              GARD_NULL);
                    // pLastEcChip is DD2.2
                    platHwasErrorAddHWCallout(l_err,
                                              pLastEcChip,
                                              HWAS::SRCI_PRIORITY_HIGH,
                                              NO_DECONFIG,
                                              GARD_NULL);
                }
                break;
            }

            // DD2.3 system does not support risk=3, if in NATIVE mode
            if ((l_firstEc == 0x23) &&
                (l_risk == TARGETING::UTIL::P9N22_P9N23_JAVA_PERF))
            {
                HWAS_ERR("updateProcCompatibilityRiskLevel::Trying to "
                    "force native compatibility of DD2.3 for risk level %d",
                    l_risk);

                /*
                 * @errortype
                 * @severity           ERRL_SEV_UNRECOVERABLE
                 * @moduleid           MOD_UPDATE_PROC_COMPAT_RISK_LEVEL
                 * @reasoncode         RC_FORCED_NATIVE_OF_INCOMPATIBLE_RISK
                 * @devdesc            Risk level 3 is incompatible for forced
                 *                     native setting of DD2.3
                 * @custdesc           Incompatible Processor Chip Levels
                 * @userdata1[00:31]   1st EC level
                 * @userdata1[32:63]   2nd EC level
                 * @userdata2[00:15]   RISK_LEVEL
                 * @userdata2[16:31]   PROC_COMPATIBILITY_REQ
                 * @userdata2[32:63]   RISK_LEVEL_ORIGIN (0=USER, 1=MRW)
                 *
                 */
                const uint64_t userdata1 =
                    (static_cast<uint64_t>(l_firstEc) << 32) |
                    static_cast<uint64_t>(l_lastEc);

                const uint64_t userdata2 =
                    (static_cast<uint64_t>(l_risk) << 48) |
                    (static_cast<uint64_t>(l_proc_compatibility_req) << 32) |
                    (static_cast<uint64_t>(l_risk_origin));

                l_err = hwasError(ERRL_SEV_UNRECOVERABLE,
                                  MOD_UPDATE_PROC_COMPAT_RISK_LEVEL,
                                  RC_FORCED_NATIVE_OF_INCOMPATIBLE_RISK,
                                  userdata1,
                                  userdata2);
                // SW_CALLOUT - MRW setting error (FORCED_NATIVE)
                hwasErrorAddProcedureCallout( l_err,
                                              HWAS::EPUB_PRC_HB_CODE,
                                              HWAS::SRCI_PRIORITY_LOW );
                break;
            }

            // DD2.3 system should be upgraded to native level if
            // risk is 2 or less
            if ((l_firstEc == 0x23) &&
                (l_risk <= TARGETING::UTIL::P9N22_NO_RUGBY_MITIGATIONS))
            {
                upgradeRiskLevel(l_risk);
            }

            // DD2.2 system should be downgraded to run in its
            // native mode if risk is 4 or more
            if ((l_firstEc == 0x22) &&
                (l_risk >= TARGETING::UTIL::P9N23_P9C13_NATIVE_MODE_MINIMUM))
            {
                downgradeRiskLevel(l_risk);
            }
        }

        char ecLevelStr[20];
        if (mixedEc)
        {
            sprintf(ecLevelStr,"Mixed");
        }
        else
        {
            sprintf(ecLevelStr,"0x%02X", l_firstEc);
        }
        if (l_risk != l_original_risk)
        {
            HWAS_INF("updateProcCompatibilityRiskLevel: "
                "Update RISK_LEVEL from %d to %d "
                "(EC Level: %s, RISK_ORIGIN: %s, PROC_COMPATIBILITY_REQ: %d)",
                l_original_risk, l_risk, ecLevelStr,
                l_risk_origin==TARGETING::RISK_LEVEL_ORIGIN_MRW?"MRW":"User",
                l_proc_compatibility_req);
            pSys->setAttr<TARGETING::ATTR_RISK_LEVEL>(l_risk);
        }
        else
        {
            HWAS_DBG("updateProcCompatibilityRiskLevel: "
                "Keeping RISK_LEVEL %d "
                "(EC Level: %s, RISK_ORIGIN: %s, PROC_COMPATIBILITY_REQ: %d)",
                l_risk, ecLevelStr,
                l_risk_origin==TARGETING::RISK_LEVEL_ORIGIN_MRW?"MRW":"User",
                l_proc_compatibility_req);
        }
    } while (0);

    HWAS_INF("updateProcCompatibilityRiskLevel exit");
    return l_err;
}

errlHndl_t validateProcessorEcLevels()
{
    HWAS_INF("validateProcessorEcLevels entry");
    errlHndl_t l_err = nullptr;
    uint32_t l_commonPlid = 0;
    TARGETING::ATTR_EC_type l_masterEc     = 0;
    TARGETING::ATTR_EC_type l_ecToCompare  = 0;
    TARGETING::ATTR_HUID_type l_masterHuid = 0;
    TARGETING::TargetHandleList l_procChips;
    Target* l_pMasterProc = NULL;
    TARGETING::ATTR_MODEL_type l_model;

    do
    {
        //Get all functional chips
        getAllChips(l_procChips, TYPE_PROC);

        // check for functional Master Proc on this node
        l_err = targetService().queryMasterProcChipTargetHandle(l_pMasterProc,
                                                                NULL, true);

        //queryMasterProcChipTargetHandle will check for null, make sure
        //there was no problem finding the master proc
        if(l_err)
        {
            HWAS_ERR( "validateProcessorEcLevels:: Unable to find master proc");
            //Don't commit the error just let it get returned from function
            break;
        }

        //Get master info and store it for comparing later
        l_masterEc = l_pMasterProc->getAttr<TARGETING::ATTR_EC>();
        l_masterHuid = get_huid(l_pMasterProc);
        l_model = l_pMasterProc->getAttr<TARGETING::ATTR_MODEL>();

        // Update the RISK_LEVEL attribute before checking EC level mismatch
        if(TARGETING::MODEL_NIMBUS == l_model)
        {
            l_err = updateProcCompatibilityRiskLevel();
            if (l_err)
            {
                HWAS_ERR("validateProcessorEcLevels:: Unable to update RISK_LEVEL");
                break;
            }
        }

        //Loop through all functional procs and create error logs
        //for any processors whose EC does not match the master
        for(const auto & l_chip : l_procChips)
        {
            l_ecToCompare = l_chip->getAttr<TARGETING::ATTR_EC>();
            bool l_mixOk = mixedECsAllowed(l_model,l_masterEc, l_ecToCompare);
            if((l_ecToCompare != l_masterEc) && !l_mixOk)
            {
                HWAS_ERR("validateProcessorEcLevels:: Slave Proc EC level not does not match master, "
                        "this is an unrecoverable error.. system will shut down");

                /*@
                * @errortype
                * @severity           ERRL_SEV_UNRECOVERABLE
                * @moduleid           MOD_VALIDATE_EC_LEVELS
                * @reasoncode         RC_EC_MISMATCH
                * @devdesc            Found a slave processor whose EC level
                *                     did not match the master
                * @custdesc           Incompatible Processor Chip Levels
                * @userdata1[00:31]   HUID of slave chip
                * @userdata1[32:63]   EC level of slave chip
                * @userdata2[00:31]   HUID of master chip
                * @userdata2[32:63]   EC level of master chip
                */
                const uint64_t userdata1 =
                (static_cast<uint64_t>(get_huid(l_chip)) << 32) | static_cast<uint64_t>(l_ecToCompare);
                const uint64_t userdata2 =
                (static_cast<uint64_t>(l_masterHuid) << 32) | static_cast<uint64_t>(l_masterEc);

                l_err = hwasError(ERRL_SEV_UNRECOVERABLE,
                                  MOD_VALIDATE_EC_LEVELS,
                                  RC_EC_MISMATCH,
                                  userdata1,
                                  userdata2);

                //  call out the procedure to find the deconfigured part.
                platHwasErrorAddHWCallout( l_err,
                                       l_chip,
                                       SRCI_PRIORITY_HIGH,
                                       NO_DECONFIG,
                                       GARD_NULL);
                //  if we already have an error, link this one to the earlier;
                //  if not, set the common plid
                hwasErrorUpdatePlid(l_err, l_commonPlid);
                errlCommit(l_err, HWAS_COMP_ID);
                //Do not break, we want to find all mismatches
            }
        }
    }while(0);

    if(l_commonPlid)
    {
        HWAS_ERR("validateProcessorEcLevels:: One or more slave processor's EC level did not match master, check error logs");

        /*@
        * @errortype
        * @severity           ERRL_SEV_UNRECOVERABLE
        * @moduleid           MOD_VALIDATE_EC_LEVELS
        * @reasoncode         RC_FAILED_EC_VALIDATION
        * @devdesc            Found one or more slave processor whose EC level
        *                     did not match the master
        * @custdesc           Incompatible Processor Chip Levels
        * @userdata1[00:64]   Number of Procs
        */
        const uint64_t userdata1 =
        static_cast<uint64_t>(l_procChips.size());
        const uint64_t userdata2 =
        (static_cast<uint64_t>(l_masterHuid) << 32) | static_cast<uint64_t>(l_masterEc);

        l_err = hwasError(ERRL_SEV_UNRECOVERABLE,
                            MOD_VALIDATE_EC_LEVELS,
                            RC_FAILED_EC_VALIDATION,
                            userdata1,
                            userdata2);

        //  link this error to the earlier errors;
        hwasErrorUpdatePlid(l_err, l_commonPlid);
    }

    HWAS_INF("validateProcessorEcLevels exit");
    return l_err;

} //validateProccesorEcLevels

errlHndl_t markDisabledMcas()
{
    errlHndl_t l_errl = nullptr;
    uint8_t lxData[HWAS::VPD_CRP0_LX_HDR_DATA_LENGTH];

    HWAS_INF("markDisabledMcas entry");

    do
    {
        //Get the functional MCAs
        TargetHandleList l_mcaList;
        getAllChiplets(l_mcaList, TYPE_MCA, true);

        for (auto l_mca : l_mcaList)
        {
            // fill the Lx data buffer with zeros
            memset(lxData, 0x00, VPD_CRP0_LX_HDR_DATA_LENGTH);

            //Read Lx keyword for associated proc and MCA
            l_errl = platReadLx(l_mca,
                                lxData);

            if (l_errl)
            {
                // commit the error but keep going
                errlCommit(l_errl, HWAS_COMP_ID);
            }

            if (lxData[VPD_CRP0_LX_FREQ_INDEP_INDEX
                       + VPD_CRP0_LX_PORT_DISABLED] != 0)
            {
                // Since port is disabled, MCA is not functional, but
                // it's present.
                enableHwasState(l_mca,
                                true, // present
                                false, // not functional
                                DeconfigGard::DECONFIGURED_BY_DISABLED_PORT);
                HWAS_DBG("MCA %.8X - marked present, not functional",
                         l_mca->getAttr<ATTR_HUID>());

                TargetInfo l_TargetInfo;
                l_TargetInfo.affinityPath =
                    l_mca->getAttr<ATTR_AFFINITY_PATH>();
                l_TargetInfo.pThisTarget = l_mca;
                l_TargetInfo.type = l_mca->getAttr<ATTR_TYPE>();
                l_TargetInfo.reason =
                    DeconfigGard::DECONFIGURED_BY_DISABLED_PORT;

                // Deconfigure child targets for this MCA
                deconfigPresentByAssoc(l_TargetInfo);
            }
        }

    }while(0);

    HWAS_INF("markDisabledMcas exit");
    return l_errl;

} //markDisabledMcas

};   // end namespace
OpenPOWER on IntegriCloud