summaryrefslogtreecommitdiffstats
path: root/src/kernel/misc.C
blob: 157d9ba22c9d8f3d62998c659a8352d44e26dfb0 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
/* IBM_PROLOG_BEGIN_TAG                                                   */
/* This is an automatically generated prolog.                             */
/*                                                                        */
/* $Source: src/kernel/misc.C $                                           */
/*                                                                        */
/* OpenPOWER HostBoot Project                                             */
/*                                                                        */
/* Contributors Listed Below - COPYRIGHT 2011,2019                        */
/* [+] International Business Machines Corp.                              */
/*                                                                        */
/*                                                                        */
/* Licensed under the Apache License, Version 2.0 (the "License");        */
/* you may not use this file except in compliance with the License.       */
/* You may obtain a copy of the License at                                */
/*                                                                        */
/*     http://www.apache.org/licenses/LICENSE-2.0                         */
/*                                                                        */
/* Unless required by applicable law or agreed to in writing, software    */
/* distributed under the License is distributed on an "AS IS" BASIS,      */
/* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or        */
/* implied. See the License for the specific language governing           */
/* permissions and limitations under the License.                         */
/*                                                                        */
/* IBM_PROLOG_END_TAG                                                     */
#include <kernel/misc.H>
#include <kernel/cpumgr.H>
#include <kernel/cpuid.H>
#include <kernel/console.H>
#include <kernel/barrier.H>
#include <kernel/scheduler.H>
#include <assert.h>
#include <kernel/terminate.H>
#include <kernel/hbterminatetypes.H>
#include <sys/mm.h>
#include <errno.h>
#include <kernel/pagemgr.H>
#include <kernel/vmmmgr.H>              // INITIAL_MEM_SIZE
#include <kernel/memstate.H>
#include <kernel/intmsghandler.H>
#include <kernel/hbdescriptor.H>
#include <kernel/ipc.H>
#include <kernel/timemgr.H>
#include <util/singleton.H>
#include <kernel/doorbell.H>
#include <arch/pvrformat.H>

extern "C"
    void kernel_shutdown(size_t, uint64_t, uint64_t, uint64_t,
                         uint64_t, uint64_t, uint64_t) NO_RETURN;

extern HB_Descriptor kernel_hbDescriptor;

KernelIpc::start_payload_data_area_t KernelIpc::start_payload_data_area;

namespace KernelMisc
{

    uint64_t g_payload_base  = 0;
    uint64_t g_payload_entry = 0;
    uint64_t g_payload_data  = 0;
    uint64_t g_masterHBInstance = 0xfffffffffffffffful;
    uint32_t g_error_data    = 0;

    void shutdown()
    {
        // Update scratch SPR for shutdown status.
        cpu_t* c = CpuManager::getCurrentCPU();
        register uint64_t status = CpuManager::getShutdownStatus();

        if (c->master)
        {
            // If good shutdown requested print out status
            if(status == SHUTDOWN_STATUS_GOOD)
            {
                printk("Shutdown Requested. Status = 0x%lx\n", status);
            }
            // Shtudown was called due to error.. print out plid of the
            // errorlog that caused the failure
            else
            {
                printk("Shutdown Requested. PLID = %lx (due to failure)\n",
                       status);
            }

            // Call to set the Core Scratch Reg 0 with the status
            updateScratchReg(MMIO_SCRATCH_PROGRESS_CODE, status);

        }

        // If the Shutdown was called with a status of GOOD then
        // perform a regular shutdown, otherwise assume we have an
        // error with a status value of the plid and perform a TI.
        if(status == SHUTDOWN_STATUS_GOOD)
        {

            // See magic_instruction_callback() in
            // src/build/debug/simics-debug-framework.py
            // for exactly how this is handled.
            MAGIC_INSTRUCTION(MAGIC_SHUTDOWN);

            // Check for a valid payload address.
            if ((0 == g_payload_base) && (0 == g_payload_entry))
            {
                // We really don't know what we're suppose to do now, so just
                // sleep all the processors.

                if (c->master)
                {
                    printk("No payload... nap'ing all threads.\n");
                    // Let Simics know that we booted successfully
                    MAGIC_INST_PRINT_ISTEP(0xFF,0xFF);
                }

                // Clear LPCR values that wakes up from nap.  LPCR[49, 50, 51]
                setLPCR(getLPCR() & (~0x0000000000007000));

                while(1)
                {
                    nap();
                }
            }
            else
            {
                //All variants of P9 need to apply URMOR hack
                uint64_t l_urmor_hack = 0x0;
                PVR_t l_pvr(getPVR());
                if((l_pvr.chipFamily == PVR_t::P9_ALL)
                   ||((l_pvr.chipFamily == PVR_t::P9_AXONE)))
                {
                    l_urmor_hack = 1;
                }

                static Barrier* l_barrier = new Barrier(CpuManager::getCpuCount());
                static uint64_t l_lowestPIR = 0xfffffffffffffffful;

                if (c->master)
                {
                    printk("Preparing to enter payload...%lx:%lx\n",
                           g_payload_base, g_payload_entry);
                }

                // Need to identify the thread with the lowest PIR because it needs
                // to be the last one to jump to PHYP.
                uint64_t l_pir = getPIR();
                do
                {
                    uint64_t currentPIR = l_lowestPIR;
                    if (l_pir > currentPIR)
                    {
                        break;
                    }

                    if (__sync_bool_compare_and_swap(&l_lowestPIR,
                                                     currentPIR, l_pir))
                    {
                        break;
                    }

                } while(1);

                l_barrier->wait();

                // only set this to valid PIR if local master
                // otherwise leave as default;
                uint64_t local_master_pir = 0xfffffffffffffffful;

                // Find the start_payload_data_area on the master node
                // Use IPC address of master node to find the necessary
                // Address
                uint64_t master_node_IPC =
                  reinterpret_cast<uint64_t>(
                  KernelIpc::ipc_data_area.remote_ipc_data_addr[
                                                    g_masterHBInstance]);

                uint64_t l_localAddrIPC =
                  reinterpret_cast<uint64_t>(& KernelIpc::ipc_data_area);

                uint64_t dest_hrmor = master_node_IPC - l_localAddrIPC;

                uint64_t start_payload_data_area_address =
                    reinterpret_cast<uint64_t>
                    (&KernelIpc::start_payload_data_area);

                start_payload_data_area_address += dest_hrmor;
                start_payload_data_area_address |= 0x8000000000000000ul;

                KernelIpc::start_payload_data_area_t * p_spda =
                    reinterpret_cast<KernelIpc::start_payload_data_area_t*>
                    (start_payload_data_area_address);

                if (c->master)
                {
                    local_master_pir = getPIR();

                    printkd("Local master pir %lx, start_data_area %lx\n",
                           local_master_pir, start_payload_data_area_address);
                    // Reset the memory state register so that the dump tools
                    // don't attempt to dump all of memory once payload runs.
                    KernelMemState::setMemScratchReg(
                            KernelMemState::MEM_CONTAINED_NR,
                            KernelMemState::NO_MEM);

                    // add this nodes cpu_count to the system cpu_count
                    __sync_add_and_fetch(&(p_spda->cpu_count),
                                         CpuManager::getCpuCount());

                    // set lowest system PIR based on local lowest PIR
                    do
                    {
                        uint64_t currentPIR = p_spda->lowest_PIR;
                        if (l_lowestPIR > currentPIR)
                        {
                            break;
                        }

                        if (__sync_bool_compare_and_swap(&p_spda->lowest_PIR,
                                                         currentPIR, l_lowestPIR))
                        {
                            break;
                        }

                    } while(1);

                }

                kernel_shutdown(p_spda->node_count,
                                g_payload_base,
                                g_payload_entry,
                                g_payload_data,
                                local_master_pir,  //master PIR if local master
                                start_payload_data_area_address,
                                l_urmor_hack);
            }
        }
        else
        {
            // Got a nonzero status value indicating we had a shutdown request
            // with a PLID and there force need to do  TI.  The plid info was
            // written to the data area earlier in CpuManager::requestShutdown

            // First indicate to the FSP that we're done by clearing out the
            // "hostboot_done" register.  We need to do this since this is the
            // power off path.
            setHbScratchStatus(HB_SHUTDOWN);

            terminateExecuteTI();
        }
    }

    void setHbScratchStatus(enum HbRunning i_status)
    {
        if(i_status == HB_RUNNING)
        {
            const char * hostboot_string = "hostboot";
            updateScratchReg(MMIO_SCRATCH_HOSTBOOT_ACTIVE,
                        *reinterpret_cast<const uint64_t*>(hostboot_string));
        }
        else if(i_status == HB_STARTED_PAYLOAD)
        {
            updateScratchReg(MMIO_SCRATCH_HOSTBOOT_ACTIVE,0);
        }
        else if(i_status == HB_BOOTLOADER)
        {
            const char * hostboot_string = "bootload";
            updateScratchReg(MMIO_SCRATCH_HOSTBOOT_ACTIVE,
                        *reinterpret_cast<const uint64_t*>(hostboot_string));
        }
        else if(i_status == HB_START_BASE_IMAGE)
        {
            const char * hostboot_string = "starthbb";
            updateScratchReg(MMIO_SCRATCH_HOSTBOOT_ACTIVE,
                        *reinterpret_cast<const uint64_t*>(hostboot_string));
        }
        else if(i_status == HB_SHUTDOWN)
        {
            const char * hostboot_string = "shutdown";
            updateScratchReg(MMIO_SCRATCH_HOSTBOOT_ACTIVE,
                        *reinterpret_cast<const uint64_t*>(hostboot_string));
        }
    }

    void WinkleCore::masterPreWork()
    {
        printk("Winkle threads - ");

        // Save away the current timebase.  All threads are in this object
        // now so they're not going to be using the time for anything else.
        iv_timebase = getTB() + TimeManager::convertSecToTicks(1,0);

        if (true == iv_fusedCores)
        {
            uint64_t  l_numThreads = CpuManager::getThreadCount();
            cpu_t *   l_cput = CpuManager::getCurrentCPU();

            // creates cpu_t structure in advance for new threads
            // (should be next set of cpuIds past master core)
            for ( uint64_t  l_threadNum = l_numThreads;
                  (l_threadNum < (l_numThreads *2));
                   l_threadNum++ )
            {
                Singleton<CpuManager>::instance().startCPU(l_cput->cpu +
                                                           l_threadNum);
            }

            // Tell SIMICS we expect more threads (one more core)
            // to appear after doing the 'stop' instruction.
            MAGIC_INSTRUCTION(MAGIC_SIMICS_FUSEDCOREWAKE);

        } // end if fused core mode
    }

    extern "C" void kernel_execute_stop(task_t* t);

    void WinkleCore::activeMainWork()
    {
        cpu_t* cpu = CpuManager::getCurrentCPU();
        printk("%d.", static_cast<int>(cpu->cpu));

        // Return current task to run-queue so it isn't lost.
        cpu->scheduler->returnRunnable();
        TaskManager::setCurrentTask(cpu->idle_task);

        // Clear LPCR values that wakes up from winkle.  LPCR[49, 50, 51]
        // Otherwise, there may be an interrupt pending or something that
        // prevents us from fully entering winkle.
        // Turn on LPCR[17] to enable Hypervisor External Interrupts
        setLPCR((getLPCR() & (~0x0000000000007000)) | 0x0000400000000000) ;

        // Deactivate CPU from kernel.
        cpu->winkled = true;
        CpuManager::deactivateCPU(cpu);

        // Create kernel save area and store ptr in bottom of kernel stack.
        task_t* saveArea = new task_t();
        saveArea->context.msr_mask = 0x100000000000D030; //HV,EE,ME,PR,IR,DR.
        *(reinterpret_cast<task_t**>(cpu->kernel_stack_bottom)) = saveArea;

        // Set register to indicate we want a 'stop 15' to occur (state loss)
        uint64_t l_psscr_saved = getPSSCR();
        setPSSCR( 0x00000000003F00FF );

        // Execute winkle.
        kernel_execute_stop(saveArea);

        // Re-activate CPU in kernel and re-init VMM SPRs.
        setPSSCR(l_psscr_saved);
        delete saveArea;
        cpu->winkled = false;
        CpuManager::activateCPU(cpu);
        VmmManager::init_slb();

        if(cpu->master)
        {
            // NOTE: The cpu_t structures for theads 1:3 were created
            //       during init (CpuManager::init).
            // Start with a base PIR of thread 0 + 1 (Thread 1) as thread 0
            // doesn't need to be woken up as it is already running.
            uint64_t l_pir = getPIR() + 1;
            for(size_t i = 0; i < CpuManager::getThreadCount()-1; i++)
            {
                // NOTE: The deferred work container verifies master core
                // threads 1-3 wake up so a direct doorbell can be sent. For
                // threads on other cores send_doorbell_wakeup() is used.
                send_doorbell_restore_tb(l_pir + i, iv_timebase);
            }
        }

        // Select a new task if not the master CPU.  Master CPU will resume
        // the code that called cpu_master_winkle().
        if (!cpu->master)
        {
            cpu->scheduler->setNextRunnable();
        }
    }

    void WinkleCore::masterPostWork()
    {
        printk(" - Awake!\n");

        // Restore timebase.
        setTB(iv_timebase);

        // Restore memory state register.
        updateScratchReg(MMIO_SCRATCH_MEMORY_STATE,
                         kernel_hbDescriptor.kernelMemoryState);

        // Set scratch register to indicate Hostboot is [still] active.
        setHbScratchStatus(HB_RUNNING);

        // Restore caller of cpu_master_winkle().
        iv_caller->state = TASK_STATE_RUNNING;
        TaskManager::setCurrentTask(iv_caller);

        //Issue sbe master workaround
        InterruptMsgHdlr::issueSbeMboxWA();
    }

    void WinkleCore::nonactiveMainWork()
    {
        // Race condition that should not occur...
        //
        // Attempted to winkle the master and another thread came online in
        // the process.
        kassert(false);
    }

    void WinkleAll::masterPreWork()
    {
        printk("Winkle all - ");

        // Save away the current timebase.  All threads are in this object
        // now so they're not going to be using the time for anything else.
        iv_timebase = getTB() + TimeManager::convertSecToTicks(1,0);
    }

    void WinkleAll::activeMainWork()
    {
        cpu_t* cpu = CpuManager::getCurrentCPU();

        // Return current task to run-queue so it isn't lost.
        cpu->scheduler->returnRunnable();
        TaskManager::setCurrentTask(cpu->idle_task);

        // Clear LPCR values that wakes up from winkle.  LPCR[49, 50, 51]
        // Otherwise, there may be an interrupt pending or something that
        // prevents us from fully entering winkle.
        // Turn on LPCR[17] to enable Hypervisor External Interrupts
        setLPCR((getLPCR() & (~0x0000000000007000)) | 0x0000400000000000) ;

        // Deactivate CPU from kernel.
        cpu->winkled = true;
        CpuManager::deactivateCPU(cpu);

        // Create kernel save area and store ptr in bottom of kernel stack.
        task_t* saveArea = new task_t();
        saveArea->context.msr_mask = 0x100000000000D030; //HV,EE,ME,PR,IR,DR.
        *(reinterpret_cast<task_t**>(cpu->kernel_stack_bottom)) = saveArea;

        // Set register to indicate we want a 'stop 15' to ocur (state loss)
        uint64_t l_psscr_saved = getPSSCR();
        setPSSCR( 0x00000000003F00FF );
        // Execute winkle.
        kernel_execute_stop(saveArea);

        // Re-activate CPU in kernel and re-init VMM SPRs.
        setPSSCR(l_psscr_saved);
        delete saveArea;
        cpu->winkled = false;
        CpuManager::activateCPU(cpu);
        VmmManager::init_slb();

        // Wake up all the other threads.
        if(__sync_bool_compare_and_swap(&iv_firstThread, 0, 1))
        {
            for(uint64_t i = 0; i < KERNEL_MAX_SUPPORTED_CPUS_PER_NODE *
                                    KERNEL_MAX_SUPPORTED_NODES; i++)
            {
                cpu_t* slave = CpuManager::getCpu(i);
                if ((NULL != slave) && (slave != cpu))
                {
                    uint64_t l_pir = slave->cpu;
                    printkd("Sending dbell to wakeup cpu:%d", (int)l_pir);
                    doorbell_send(l_pir);
                }
            }
        };

        // Sync timebase.
        if (getTB() < iv_timebase)
        {
            setTB(iv_timebase);
        }

        // Select a new task if not the master CPU.  Master CPU will resume
        // the code that called cpu_master_winkle().
        if (!cpu->master)
        {
            cpu->scheduler->setNextRunnable();
        }
    }

    void WinkleAll::masterPostWork()
    {
        printk("Awake!\n");

        // Restore memory state register.
        updateScratchReg(MMIO_SCRATCH_MEMORY_STATE,
                         kernel_hbDescriptor.kernelMemoryState);

        // Set scratch register to indicate Hostboot is [still] active.
        setHbScratchStatus(HB_RUNNING);

        // Restore caller of cpu_all_winkle().
        iv_caller->state = TASK_STATE_RUNNING;
        TaskManager::setCurrentTask(iv_caller);
    }

    void WinkleAll::nonactiveMainWork()
    {
        // Race condition that should not occur...
        //
        // Attempted to winkle the threads and another thread came online in
        // the process.
        kassert(false);
    }

    int expand_full_cache(uint64_t i_expandSize)
    {
        static bool executed = false;

        if (executed) // Why are we being called a second time?
        {
            return -EFAULT;
        }

        uint8_t* startAddr = nullptr;
        uint8_t* endAddr = nullptr;

        switch(CpuID::getCpuType())
        {
            case CORE_POWER8_MURANO:
            case CORE_POWER8_VENICE:
            case CORE_POWER8_NAPLES:
            case CORE_POWER9_NIMBUS:
            case CORE_POWER9_CUMULUS:
            case CORE_POWER9_AXONE:
                startAddr = reinterpret_cast<uint8_t*>
                                         (VmmManager::INITIAL_MEM_SIZE);
                endAddr = reinterpret_cast<uint8_t*>(i_expandSize);
                break;

            default:
                kassert(false);
                break;
        }

        if (startAddr != nullptr)
        {
            populate_cache_lines(
                reinterpret_cast<uint64_t*>(startAddr),
                reinterpret_cast<uint64_t*>(endAddr));
            // Increment the start address by a page size to make a gap
            // in memory that Hostboot will later populate with
            // the OCC Bootloader image.
            // see src/usr/isteps/pm/occCheckstop.C::loadOCCImageDuringIpl()
            startAddr += PAGESIZE;
            size_t pages = (reinterpret_cast<uint64_t>(endAddr) -
                            reinterpret_cast<uint64_t>(startAddr)) / PAGESIZE;

            PageManager::addMemory(reinterpret_cast<uint64_t>(startAddr),
                                   pages);
        }

        executed = true;

        KernelMemState::setMemScratchReg(KernelMemState::MEM_CONTAINED_L3,
                                         (i_expandSize == VMM_BASE_BLOCK_SIZE)
                                         ? KernelMemState::FULL_CACHE
                                         : KernelMemState::REDUCED_CACHE);

        return 0;
    }

    void populate_cache_lines(uint64_t* i_start, uint64_t* i_end)
    {
        size_t cache_line_size = getCacheLineWords();

        // Assert start/end address is divisible by Cache Line Words
        kassert(reinterpret_cast<uint64_t>(i_start)%cache_line_size == 0);
        kassert(reinterpret_cast<uint64_t>(i_end)%cache_line_size == 0);
        while(i_start != i_end)
        {
            dcbz(i_start);
            i_start += cache_line_size;
        }
    }

    void updateScratchReg(MMIO_Scratch_Register scratch_addr,
                          uint64_t data)
    {

        uint64_t l_scratch_addr = static_cast<uint64_t>(scratch_addr);

        switch(CpuID::getCpuType())
        {
          case CORE_POWER8_MURANO:
          case CORE_POWER8_VENICE:
          case CORE_POWER8_NAPLES:
              l_scratch_addr = l_scratch_addr + 0x40;
              break;
          case CORE_POWER9_NIMBUS:
          case CORE_POWER9_CUMULUS:
          case CORE_POWER9_AXONE:
          case CORE_UNKNOWN:
          default:
              // See EX07.EC.CC.PCC0.COMMON.SPR_COMMON.SCOMC in scomdef for
              // info on this offset - MODE_CX_SCOMC: 0000xxx = SCRATCH xx SPR
              // It's 0 for P9 so just pass through scratch reg offset
              break;
        }
        writeScratchReg(l_scratch_addr, data);
    };

    /**
     *  @brief Collect the backtrace for the given task and print an
     */
    void printkBacktrace(task_t* i_task)
    {
        uint64_t* l_frame = nullptr;
        uint32_t l_tid = 0;
        bool l_kernelSpace = true;
        if( i_task == nullptr ) //user-space
        {
            l_kernelSpace = false;
            printk("U:");
            l_frame = static_cast<uint64_t*>(framePointer());
            l_tid = task_gettid();
        }
        else //kernel-space
        {
            printk("K:");
            l_frame = reinterpret_cast<uint64_t*>( i_task->context.gprs[1] );
            l_tid = i_task->tid;
        }

        printk("Backtrace for %d:\n  ", l_tid );
        printkd("frame=%p\n",l_frame);isync();
        while (l_frame != NULL)
        {
            printkd("\nf=%p\n",l_frame); isync();
            if( l_kernelSpace )
            {
                uint64_t* frame_p = reinterpret_cast<uint64_t*>
                  (VmmManager::findPhysicalAddress( reinterpret_cast<uint64_t>
                                                    (l_frame) ));
                printkd("frame_p=%p\n",frame_p); isync();
                l_frame = frame_p;
            }
            if( (0 != *l_frame) && (0 != l_frame[2]) )
            {
                printk( "<-0x%lX", l_frame[2] );
            }

            l_frame = reinterpret_cast<uint64_t*>(*l_frame);
        }

        if (i_task)
        {
            printk("\n  GPRs for %d:\n", l_tid);

            for (int i = 0; i < 16; ++i)
            {
                printk("    r%-2d = 0x%016lx    r%-2d = 0x%016lx\n",
                       i,
                       i_task->context.gprs[i],
                       i + 16,
                       i_task->context.gprs[i + 16]);
            }
        }

        printk("\n");
    }
};

namespace KernelMemState
{
    void setMemScratchReg(MemLocation i_location,
                          MemSize i_size)
    {
        MemState_t l_MemData;

        l_MemData.location = i_location;
        l_MemData.hrmor = getHRMOR();
        l_MemData.size = i_size;
        kassert( i_size < KernelMemState::MAX_MEMORY );

        isync();
        kernel_hbDescriptor.kernelMemoryState = l_MemData.fullData;
        KernelMisc::updateScratchReg(MMIO_SCRATCH_MEMORY_STATE,
                                     l_MemData.fullData);
        lwsync();

    }
};

const char* ProcessorCoreTypeStrings[]
{
    "Murano",
    "Venice",
    "Naples",
    "Nimbus",
    "Cumulus",
    "Axone",
    "Unknown"
};


OpenPOWER on IntegriCloud