1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
|
/* IBM_PROLOG_BEGIN_TAG */
/* This is an automatically generated prolog. */
/* */
/* $Source: src/include/usr/intr/interrupt.H $ */
/* */
/* IBM CONFIDENTIAL */
/* */
/* COPYRIGHT International Business Machines Corp. 2011,2013 */
/* */
/* p1 */
/* */
/* Object Code Only (OCO) source materials */
/* Licensed Internal Code Source Materials */
/* IBM HostBoot Licensed Internal Code */
/* */
/* The source code for this program is not published or otherwise */
/* divested of its trade secrets, irrespective of what has been */
/* deposited with the U.S. Copyright Office. */
/* */
/* Origin: 30 */
/* */
/* IBM_PROLOG_END_TAG */
#ifndef INTERRUPT_H
#define INTERRUPT_H
#include <sys/msg.h>
#include <errl/errlentry.H>
namespace TARGETING
{
class Target;
};
namespace INTR
{
/**
* cpu PIR register
*/
struct PIR_t
{
union
{
uint32_t word;
struct
{
//P8:
uint32_t reserved:19; //!< zeros
uint32_t nodeId:3; //!< node (0-3)
uint32_t chipId:3; //!< chip pos on node (0-5)
uint32_t coreId:4; //!< Core number (1-6,9-14)?
uint32_t threadId:3; //!< Thread number (0-7)
} PACKED;
};
PIR_t(uint32_t i_word = 0) : word(i_word) {}
PIR_t operator= (uint32_t i_word)
{
word = i_word;
return word;
}
bool operator< (const PIR_t& r) const
{
return word < r.word;
}
};
/**
* External Interrupt Types (XISR)
* This value is passed in message data[0] on interrupt or shutdown.
* @note The XISR is 24 bits:
* XISR[ 0: 4] NOT DEFINED
* XISR[ 5: 7] Node id
* XISR[ 8:10] chipId within Node
* XISR[11:12] Unit selection [GX='00', PHB0='01', PHB1='10', PHB2='11']
* XISR[13:19] BUID
* XISR[20:23] level
*
* extr_intr_t values are XISR right shifted, lsb = bit 23
*/
enum XISRvalue_t
{
NO_INTERRUPT = 0, //!< no interrupt present
INTERPROC_XISR = 2, //!< XISR value for IPIs
MAX_XISR = 0x00FFFFFF, //!< Max value of the XISR
SHUT_DOWN = 0x01000000, //!< INTR presenter sends this when shutting down
};
typedef uint32_t ext_intr_t;
enum ISNvalue_t
{
ISN_FSP = 0,
ISN_OCC = 1,
ISN_FSI = 2,
FSP_MAILBOX = 2,
ISN_LPC = 3,
ISN_LCL_ERR = 4,
ISN_HOST = 5,
ISN_INTERPROC = 0xF0, //"special" as it isn't part of PSIHB
//Converts to INTERPROC_XISR when registered
};
/**
* The XISR value is the logical OR of the Interrup Requestor Source
* Number (IRSN) and the Interrrupt Source Number (ISN).
* See BookIV PSI chapter. ISN is defined in the XIVR register and
* IRSN is defined in the Interupt Requester Source Compare Register
*/
struct XISR_t
{
union
{
uint32_t u32;
struct
{
uint32_t res:22; //!< Not used by Host boot
uint32_t node:3; //!< PIR node id value
uint32_t chip:3; //!< PIR chip id value
uint32_t intrproc:1; //!< '0'-> interproc interrupt else '1'
uint32_t isn:3; //!< Interrupt Source Number
} PACKED;
};
XISR_t() : u32(0) {}
};
/**
* Msg types for intrRp from usr space
*/
enum msg_intr_types_t
{
MSG_INTR_REGISTER_MSGQ = 1, //!< Register a msgQ
MSG_INTR_UNREGISTER_MSGQ, //!< Un register a msgQ
MSG_INTR_ENABLE, //!< Enable external Interrupts
MSG_INTR_DISABLE, //!< Disable external interrupts
MSG_INTR_SHUTDOWN, //!< Call to shutdown interrupt presenter
MSG_INTR_ENABLE_PSI_INTR, //!< Enable PSI interrupts
};
/**
* Register a message queue for an interrupt type
* @param[in] i_msgQ The message queue
* @param[in] i_msg_type, The message type of the message to send
* to i_msgQ when an interrupt of
* i_intr_type occurrs.
* @param[in] i_intr_type, The interrupt type to register. Done
* for all chips presently capable of generating interrupts
*
* @note the interrupt type is currently the ISN value in the PSIHB
* XIVR register
* @see ISNvalue_t for enumerations.
* The XISR value is calculated and registered for all chips
* presently capable of generaing interrupts.
*
* @note when an interrupt of type i_msg_type occurrs, the
* interrupt presenter sends a sync message with type i_msg_type to
* i_msgQ with FULL IRSN word 0 and then waits for a response.
* the full IRSN has the node/chip/ISN, not just the ISN
* @see makeXISR
*
* @note When HB is shutting down the interrupt presenter will send
* a message to all registered queues with a sync message type of
* i_msg_type, and data[0] = INTR::SHUT_DOWN. A response is expected.
*/
errlHndl_t registerMsgQ(msg_q_t i_msgQ,
uint32_t i_msg_type,
ext_intr_t i_intr_type);
/**
* Un register a message queue from the interrupt handler
* @param[in] i_type the type of interrupt (ISN value)
* @return The message queue that was unregistered with i_type
* | NULL if no queue was not found for i_type
*/
msg_q_t unRegisterMsgQ(ext_intr_t i_type);
/**
* Enable hardware to report external interrupts
* @return errlHndl_t on error.
*/
errlHndl_t enableExternalInterrupts();
/**
* Disable hardware from reporting external interrupts
* @return errlHndl_t on error.
*/
errlHndl_t disableExternalInterrupts();
/**
* Initialize the IRSCReg to enable PSI to present interrupts
* @param[in] i_target The target processor
* @return error log handle on error
*/
errlHndl_t enablePsiIntr(TARGETING::Target * i_target);
/**
* Return the interrupt presenter for requested target/thread
* @param[in] i_ex The target EX
* @param[in] i_thread Which thread on EX (0-7)
* @return 64 bit address for the interrupt present addr
*/
uint64_t getIntpAddr(const TARGETING::Target * i_ex,
uint8_t i_thread);
};
#endif
|