1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
|
/* IBM_PROLOG_BEGIN_TAG */
/* This is an automatically generated prolog. */
/* */
/* $Source: src/include/arch/ppc.H $ */
/* */
/* IBM CONFIDENTIAL */
/* */
/* COPYRIGHT International Business Machines Corp. 2011,2013 */
/* */
/* p1 */
/* */
/* Object Code Only (OCO) source materials */
/* Licensed Internal Code Source Materials */
/* IBM HostBoot Licensed Internal Code */
/* */
/* The source code for this program is not published or otherwise */
/* divested of its trade secrets, irrespective of what has been */
/* deposited with the U.S. Copyright Office. */
/* */
/* Origin: 30 */
/* */
/* IBM_PROLOG_END_TAG */
#ifndef __KERNEL_PPCARCH_H
#define __KERNEL_PPCARCH_H
#include <kernel/types.h>
#include <builtins.h>
ALWAYS_INLINE
inline uint64_t getSRR0()
{
register uint64_t srr0 = 0;
asm volatile("mfsrr0 %0" : "=r" (srr0));
return srr0;
}
ALWAYS_INLINE
inline uint64_t getSRR1()
{
register uint64_t srr1 = 0;
asm volatile("mfsrr1 %0" : "=r" (srr1));
return srr1;
}
ALWAYS_INLINE
inline void setSRR0(uint64_t _srr0)
{
register uint64_t srr0 = _srr0;
asm volatile("mtsrr0 %0" : : "r" (srr0));
}
ALWAYS_INLINE
inline void setSRR1(uint64_t _srr1)
{
register uint64_t srr1 = _srr1;
asm volatile("mtsrr1 %0" : : "r" (srr1));
}
ALWAYS_INLINE
inline uint64_t getHSRR0()
{
register uint64_t hsrr0 = 0;
asm volatile("mfspr %0, 314" : "=r" (hsrr0));
return hsrr0;
}
ALWAYS_INLINE
inline uint64_t getHSRR1()
{
register uint64_t hsrr1 = 0;
asm volatile("mfspr %0, 315" : "=r" (hsrr1));
return hsrr1;
}
ALWAYS_INLINE
inline void setHSRR0(uint64_t _hsrr0)
{
register uint64_t hsrr0 = _hsrr0;
asm volatile("mtspr 314, %0" : : "r" (hsrr0));
}
ALWAYS_INLINE
inline void setHSRR1(uint64_t _hsrr1)
{
register uint64_t hsrr1 = _hsrr1;
asm volatile("mtspr 315, %0" : : "r" (hsrr1));
}
ALWAYS_INLINE
inline uint64_t getPVR()
{
register uint64_t pvr = 0;
asm volatile("mfspr %0, 287" : "=r" (pvr));
return pvr;
}
ALWAYS_INLINE
inline uint64_t getPIR()
{
register uint64_t pir = 0;
asm volatile("mfspr %0, 1023" : "=r" (pir));
return pir;
}
ALWAYS_INLINE
inline uint64_t getSPRG3()
{
register uint64_t sprg3 = 0;
asm volatile("mfsprg3 %0" : "=r" (sprg3));
return sprg3;
}
ALWAYS_INLINE
inline void setSPRG3(uint64_t _sprg3)
{
register uint64_t sprg3 = _sprg3;
asm volatile("mtsprg3 %0" : : "r" (sprg3));
return;
}
ALWAYS_INLINE
inline uint64_t getMSR()
{
register uint64_t msr = 0;
asm volatile("mfmsr %0" : "=r" (msr));
return msr;
}
ALWAYS_INLINE
inline void setMSR(uint64_t _msr)
{
register uint64_t msr = _msr;
asm volatile("mtmsr %0; isync" :: "r" (msr));
}
ALWAYS_INLINE
inline uint64_t getDSISR()
{
register uint64_t dsisr = 0;
asm volatile("mfspr %0, 18" : "=r" (dsisr));
return dsisr;
}
ALWAYS_INLINE
inline uint64_t getDAR()
{
register uint64_t dar = 0;
asm volatile("mfspr %0, 19" : "=r" (dar));
return dar;
}
ALWAYS_INLINE
inline uint64_t getTB()
{
register uint64_t tb = 0;
asm volatile("mfspr %0, 268" : "=r" (tb));
return tb;
}
ALWAYS_INLINE
inline void setTB(uint64_t _tb)
{
// The bottom 24 bits of the timebase can't be written so round it up.
register uint64_t tb = (_tb + 0x1000000);
// Note that SPR 286 is intended (while getTB is 268) here.
// This is the mttbu40 instruction and not the mttb, which doesn't exist.
asm volatile("mtspr 286, %0" :: "r" (tb));
}
ALWAYS_INLINE
inline void setDEC(uint64_t _dec)
{
register uint64_t dec = _dec;
asm volatile("mtdec %0" :: "r" (dec));
}
ALWAYS_INLINE
inline void setRPR(uint64_t _rpr)
{
register uint64_t rpr = _rpr;
asm volatile("mtspr 186, %0" :: "r"(rpr));
}
ALWAYS_INLINE
inline void sync()
{
asm volatile("sync" ::: "memory");
}
ALWAYS_INLINE
inline void lwsync()
{
asm volatile("lwsync" ::: "memory");
}
ALWAYS_INLINE
inline void isync()
{
asm volatile("isync" ::: "memory");
}
ALWAYS_INLINE
inline void eieio()
{
asm volatile("eieio" ::: "memory");
}
ALWAYS_INLINE
inline uint64_t getHMER()
{
register uint64_t hmer = 0;
asm volatile("mfspr %0, 336" : "=r" (hmer));
return hmer;
}
ALWAYS_INLINE
inline void setHMER(uint64_t _hmer)
{
register uint64_t hmer = _hmer;
asm volatile("mtspr 336, %0" : : "r" (hmer));
return;
}
ALWAYS_INLINE
inline uint64_t getHEIR()
{
register uint64_t heir = 0;
asm volatile("mfspr %0, 339" : "=r" (heir));
return heir;
}
ALWAYS_INLINE
inline uint64_t getLPCR()
{
register uint64_t lpcr = 0;
asm volatile("mfspr %0, 318" : "=r" (lpcr));
return lpcr;
}
ALWAYS_INLINE
inline void setLPCR(uint64_t _lpcr)
{
register uint64_t lpcr = _lpcr;
asm volatile("mtspr 318, %0; isync" :: "r" (lpcr));
}
ALWAYS_INLINE
inline uint64_t getHRMOR()
{
register uint64_t hrmor = 0;
asm volatile("mfspr %0, 313" : "=r" (hrmor));
return hrmor;
}
ALWAYS_INLINE
inline void setThreadPriorityLow()
{
asm volatile("or 1,1,1");
}
ALWAYS_INLINE
inline void setThreadPriorityHigh()
{
asm volatile("or 2,2,2");
}
ALWAYS_INLINE
inline void setThreadPriorityVeryHigh()
{
asm volatile("or 7,7,7");
}
ALWAYS_INLINE
inline void dcbf(void* _ptr)
{
register void* ptr = _ptr;
asm volatile("dcbf 0, %0" : : "b" (ptr) : "memory");
}
ALWAYS_INLINE
inline void dcbst(void* _ptr)
{
register void* ptr = _ptr;
asm volatile("dcbst 0, %0" : : "b" (ptr) : "memory");
}
ALWAYS_INLINE
inline void dcbz(void* _ptr)
{
register void* ptr = _ptr;
asm volatile("dcbz 0, %0" : : "b" (ptr) : "memory");
}
ALWAYS_INLINE
inline void icbi(void* _ptr)
{
register void* ptr = _ptr;
asm volatile("icbi 0, %0" : : "b" (ptr) : "memory");
}
ALWAYS_INLINE
inline void nap()
{
asm volatile("nap");
}
ALWAYS_INLINE
inline size_t getCacheLineBytes()
{
return 128;
}
ALWAYS_INLINE
inline size_t getCacheLineWords()
{
return getCacheLineBytes() / sizeof(uint64_t);
}
/** @brief This is a special assembler instruction that is a nop on
* regular hardware, but has special meaning to Simics. Code that
* executes this instruction in Simics will cause a "hap," a
* Simics term. If there is no hap handler registered, and magic
* breakpoints have not been enabled with
* simics> enable-magic-breakpoint
* then this instruction is also a nop in Simics.
*
* If magic breakpoints are enabled, and there is no hap handler, then
* when Hostboot code executes this instruction in Simics, Simics will
* stop the simulation. (Prompt changes from running> to simics> )
*
* If a hap is registered, then Simics will call the hap handler. Hap
* handlers are written in Python, and the best place for them is
*
* src/build/debug/simics-debug-framework.py
*
* Sample code to register the hap handler:
* # arg contains the integer parameter n passed to MAGIC_INSTRUCTION(n)
* def magic_instruction_callback(user_arg, cpu, arg):
* # print to console works...
* print "Hit magic instruction ", arg
* # Or else stop the simulation...
* SIM_break_simulation( "Stopped at magic instruction" )
*
* # Register the magic instruction callback.
* SIM_hap_add_callback( "Core_Magic_Instruction", magic_instruction_callback, None )
*
* # Better to register the Hostboot range 7000-7999
* # so that PHYP and others won't be affected.
* SIM_hap_add_callback_range( "Core_Magic_Instruction", magic_instruction_callback, None, 7000, 7999 )
*
* The argument n is an integer from 0..8191 which Simics passes to the hap
* handler in parameter 3, or "arg" in the sample code above.
*/
ALWAYS_INLINE
inline void MAGIC_INSTRUCTION(int _n)
{
register int n = _n;
asm volatile("rlwimi %0,%0,0,%1,%2" \
:: "i" (((n) >> 8) & 0x1f), \
"i" (((n) >> 4) & 0xf), \
"i" ((((n) >> 0) & 0xf) | 16));
}
// Arguments to MAGIC_INSTRUCTION().
// To ensure they do not conflict with haps from other groups (PHYP
// for example), assign hap numbers in the range 7000..7999 (decimal).
// Presently, the hap handler for magic instruction is found in
// src/build/debug/simics-debug-framework.py
// Jan 2012 Monte
enum
{
MAGIC_SIMICS_CORESTATESAVE = 10, // Indicate to the PHYP model of simics
// that we are preparing to wake up a core
// or thread. This allows them to save
// some state from the core doing the
// wakeup to apply into the woken one.
MAGIC_SHUTDOWN = 7006, // KernelMisc::shutdown() called.
MAGIC_BREAK = 7007, // hard-code a breakpoint
MAGIC_RANDOM = 7008, // generate random number
MAGIC_MEMORYLEAK_FUNCTION = 7009, // A memory was function called.
MAGIC_CONTINUOUS_TRACE = 7055, // extract mixed trace buffer
};
#endif
|