summaryrefslogtreecommitdiffstats
path: root/src/import/hwpf/fapi2/include/fapi2_target.H
blob: 9c7c97cd33a081482a7712b3238da38ba4bfa2aa (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
/* IBM_PROLOG_BEGIN_TAG                                                   */
/* This is an automatically generated prolog.                             */
/*                                                                        */
/* $Source: src/import/hwpf/fapi2/include/fapi2_target.H $                */
/*                                                                        */
/* OpenPOWER HostBoot Project                                             */
/*                                                                        */
/* Contributors Listed Below - COPYRIGHT 2015,2019                        */
/* [+] International Business Machines Corp.                              */
/*                                                                        */
/*                                                                        */
/* Licensed under the Apache License, Version 2.0 (the "License");        */
/* you may not use this file except in compliance with the License.       */
/* You may obtain a copy of the License at                                */
/*                                                                        */
/*     http://www.apache.org/licenses/LICENSE-2.0                         */
/*                                                                        */
/* Unless required by applicable law or agreed to in writing, software    */
/* distributed under the License is distributed on an "AS IS" BASIS,      */
/* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or        */
/* implied. See the License for the specific language governing           */
/* permissions and limitations under the License.                         */
/*                                                                        */
/* IBM_PROLOG_END_TAG                                                     */
///
/// @file fapi2_target.H
/// @brief Common definitions for fapi2 targets
///

#ifndef __FAPI2_COMMON_TARGET__
#define __FAPI2_COMMON_TARGET__

#include <stdint.h>
#ifndef __PPE__
    #include <stdlib.h>
#endif // __PPE__
#include <vector>
#include <target_types.H>
#include <target_states.H>
#include <multicast_defs.H>
#include <plat_target.H>
#include <return_code_defs.H>

namespace fapi2
{

///
/// @brief Apply any platform specific static assertions to target construction
/// @tparam K the type of target to be constructed
/// @tparam M the multicast type of the target to be constructed
/// @tparam V the value type of the target to be constructed
///
template<TargetType K, MulticastType M, typename V>
static constexpr void plat_apply_target_limits(void);

///
/// @brief Class representing a FAPI2 Target
/// @tparam K the type (Kind) of target
/// @tparam M the type of multicast operation if it's a multicast target
/// @tparam V the type of the target's Value
/// @remark TargetLite targets are uint64_t, Targets
/// are uintptr_t (void*).
///
/// Assuming there are representations of a processor,
/// a membuf and a system here are some examples:
/// @code
/// #define PROCESSOR_CHIP_A 0xFFFF0000
/// #define MEMBUF_CHIP_B    0x0000FFFF
/// #define SYSTEM_C         0x0000AAAA
/// @endcode
///
/// * To define a target:
/// @code
/// fapi2::Target<fapi2::TARGET_TYPE_PROC_CHIP> A(PROCESSOR_CHIP_A);
/// fapi2::Target<fapi2::TARGET_TYPE_SYSTEM> C(SYSTEM_C);
/// fapi2::Target<fapi2::TARGET_TYPE_MEMBUF_CHIP> B(MEMBUF_CHIP_B);
/// @endcode
///
/// * Functions which take composite target types
/// @code
/// void takesProcOrMembuf(
/// const fapi2::Target<fapi2::TARGET_TYPE_PROC_CHIP |
///                     fapi2::TARGET_TYPE_MEMBUF_CHIP>& V );
///
/// void takesAny(const fapi2::Target<fapi2::TARGET_TYPE_ALL>& V );
///
/// @endcode
///
/// * Traversing the target "tree"
/// @code
/// fapi2::Target<fapi2::TARGET_TYPE_PROC_CHIP> A(PROCESSOR_CHIP_A);
///
/// // Get A's parent
/// A.getParent<fapi2::TARGET_TYPE_SYSTEM>();
///
/// // Get the 0x53'd core
/// fapi2::getTarget<fapi2::TARGET_TYPE_CORE>(0x53);
///
/// // Get all *my* present/functional children which are cores
/// A.getChildren<fapi2::TARGET_TYPE_CORE>();
///
/// // Get all of the the cores relative to my base target
/// fapi2::getChildren<fapi2::TARGET_TYPE_CORE>();
/// @endcode
///
/// * Invalid casts
/// @code
/// // Can't cast to a specialized target
/// fapi2::Target<fapi2::TARGET_TYPE_NONE> D(MEMBUF_CHIP_B);
/// takesProcOrMembuf( D );
///
/// // Not one of the shared types
/// fapi2::Target<fapi2::TARGET_TYPE_ABUS_ENDPOINT> E;
/// takesProcOrMembuf( E );
/// @endcode
template<TargetType K, MulticastType M = MULTICAST_OR, typename V = plat_target_handle_t>
class Target
{
    public:

        ///
        /// @brief Delagate default constructor to constructor
        ///        that takes in a value as a param
        ///
        Target(): Target(V())
        {
            plat_apply_target_limits<K, M, V>();
        };

        ///
        /// @brief Create a Target, with a value
        /// @param[in] Value the value (i.e., specific element this
        /// target represents, or pointer)
        /// @note Platforms can mangle the value and K to get a
        /// single uint64_t in value which represents all the information
        /// they might need. value( K | V ), for example
        ///
        Target(const V& Value):
            iv_handle(Value)
        {
            plat_apply_target_limits<K, M, V>();

            /* Iff this is a potential mcast target, update the handle.
             * We can't know the mcast op of the V handed in, so we have
             * to incur the cost of the update even if unnecessary.
             */
            if (K & TARGET_TYPE_MULTICAST)
            {
                mcUpdateHandle();
            }
        };

        ///
        /// @brief Assignment Operator.
        /// @param[in] i_right Reference to Target to assign from.
        /// @return Reference to 'this' Target
        ///
        Target& operator=(const Target& i_right);

        ///
        /// @brief Equality Comparison Operator
        /// @param[in] i_right Reference to Target to compare.
        /// @return bool. True if equal.
        /// @note Platforms need to define this so that the physical
        /// targets are determined to be equivilent rather than just the handles
        ///
        bool operator==(const Target& i_right) const;

        ///
        /// @brief Inquality Comparison Operator
        /// @param[in] i_right Reference to Target to compare.
        /// @return bool. True if not equal.
        /// @note Platforms need to define this so that the physical
        /// targets are determined to be equivilent rather than just the handles
        ///
        bool operator!=(const Target& i_right) const;

        ///
        /// @brief Less Than Comparison Operator
        /// @param[in] i_right Reference to Target to compare.
        /// @return bool. True if less than i_right.
        /// @note Platforms need to define this so that the physical
        /// targets are determined to be less than rather than just the handles
        ///
        bool operator<(const Target& i_right) const;

        ///
        /// @brief Get the handle.
        /// @return V The target's handle, or value
        ///
        V get(void) const
        {
            return iv_handle;
        }

        ///
        /// @brief Get the handle as a V
        /// @return V The target's handle, or value
        ///
        inline operator V() const
        {
            return iv_handle;
        }

        ///
        /// @brief Get a target's value
        /// @return V The target's handle, or value
        ///
        inline V& operator()(void)
        {
            return iv_handle;
        }

        ///
        /// @brief Get the target type
        /// @return The type of target represented by this target
        ///
        inline TargetType getType(void) const
        {
            return iv_type;
        }

        ///
        /// @brief Get this target's immediate parent
        /// @tparam T The type of the parent
        /// @return Target<T> a target representing the parent
        ///
        template< TargetType T >
        inline Target<T, M, V> getParent(void) const;

        ///
        /// @brief Is this target a chip?
        /// @return Return true if this target is a chip, false otherwise
        ///
        inline constexpr bool isChip(void) const
        {
            return (isChip(K));
        }

        ///
        /// @brief Static function check if a Target type value is that of
        ///        a chip. It will return false for compound types that
        ///        include non-chip Target type bits
        ///
        /// @param[in] i_type  The value of the Target type.
        /// @return Return true if this type is of a chip, false otherwise
        ///
        static inline bool isChip(const TargetType i_type)
        {
            bool l_retVal = false;

            // Target type must have only chip type bits set
            if ( ((i_type & TARGET_TYPE_CHIPS) != 0) &&
                 ((i_type & ~TARGET_TYPE_CHIPS) == 0) )
            {
                l_retVal = true;
            }

            return l_retVal;
        }

        ///
        /// @brief Is this target a chiplet?
        /// @return Return true if this target is a chiplet, false otherwise
        ///
        inline constexpr bool isChiplet(void) const
        {
            return (isChiplet(K));
        }

        ///
        /// @brief Static function check if a Target type value is that of
        ///        a chiplet. It will return false for compound types that
        ///        include non-chiplet Target type bits
        ///
        /// @param[in] i_type  The value of the Target type.
        /// @return Return true if this type is of a chiplet, false otherwise
        ///
        static inline bool isChiplet(const TargetType i_type)
        {
            bool l_retVal = false;

            // Target type must have only chiplet type bits set
            if ( ((i_type & TARGET_TYPE_CHIPLETS) != 0) &&
                 ((i_type & ~TARGET_TYPE_CHIPLETS) == 0) )
            {
                l_retVal = true;
            }

            return l_retVal;
        }

        ///
        /// @brief Get this target's children
        /// @tparam T The type of the parent
        /// @param[in] i_state The desired TargetState of the children
        /// @return std::vector<Target<T,V>> a vector of present/functional
        /// children
        /// @warning The children of EX's (cores) are expected to be returned
        /// in order. That is, core 0 is std::vector[0].
        ///
        template< TargetType T>
        inline std::vector<Target<T, M, V> >
        getChildren(const TargetState i_state = TARGET_STATE_FUNCTIONAL) const;

        ///
        /// @brief Get this target's children, filtered
        /// @tparam T The type of the parent
        /// @param[in] i_filter The desired chiplet filter
        /// @param[in] i_state The desired TargetState of the children
        /// @return std::vector<Target<T,V>> a vector of present/functional
        /// children
        ///
        template< TargetType T>
        inline std::vector<Target<T, M, V> >
        getChildren(const TargetFilter i_filter,
                    const TargetState i_state = TARGET_STATE_FUNCTIONAL) const;

        ///
        /// @brief Get a multicast target for a given chip
        /// @tparam T The type of target to return; TARGET_TYPE_MULTICAST is added automatically
        /// @tparam O The type of multicast read operation for the target; defaults to OR
        /// @param[in] i_group The abstract multicast group the target should point to
        /// @return The multicast target
        ///
        /// This method is only applicable to chip-level targets.
        /// If the requested multicast group cannot be mapped to an available HW multicast
        /// group, a platform specific error will be thrown.
        ///
        template< TargetType T, MulticastType O = MULTICAST_OR >
        inline Target < T | TARGET_TYPE_MULTICAST, O, V >
        getMulticast(const MulticastGroup i_group) const;

        ///
        /// @brief Get a multicast core target for a given chip
        /// @tparam O The type of multicast read operation for the target; defaults to OR
        /// @param[in] i_group The abstract multicast group (selecting EQs) the target should point to
        /// @param[in] i_cores Which cores inside the selected EQ should be targeted
        /// @return The multicast target
        ///
        /// This method is only applicable to chip-level targets.
        /// If the requested multicast group cannot be mapped to an available HW multicast
        /// group, a platform specific error will be thrown.
        ///
        template< MulticastType O = MULTICAST_OR >
        inline Target < TARGET_TYPE_CORE | TARGET_TYPE_MULTICAST, O, V >
        getMulticast(const MulticastGroup i_group, const MulticastCoreSelect i_cores) const;

        ///
        /// @brief Get the target at the other end of a bus
        /// @tparam T The type of the target on the other end
        /// @param[out] o_target A target representing the thing on the other end
        /// @param[in] i_state The desired TargetState of the other end
        /// @return FAPI2_RC_SUCCESS if OK, platforms will return a non-success
        /// ReturnCode in the event of failure
        /// @note o_target is only valid if return is FAPI2_RC_SUCCESS
        ///

        template<TargetType T>
        inline fapi2::ReturnCodes
        getOtherEnd(Target<T, M, V>& o_target, const TargetState i_state = TARGET_STATE_FUNCTIONAL) const;

        ///
        /// @brief Is the target functional?
        /// @return true if target is functional, false if non-functional
        ///
        inline bool
        isFunctional(void) const;

        ///
        /// @brief Returns the chiplet number associated with the Target
        /// @return The chiplet number for the Target. 0 is returned if the
        /// Target does not have a chiplet number (for ex, the PROC_CHIP Target)
        /// @note For logical targets such as the EX, the chiplet number of
        /// their immediate parent chiplet is returned. For multicast targets
        /// getChipletNumber() is not supported.
        ///
        inline uint8_t
        getChipletNumber(void) const;

        ///
        /// @brief Returns the core select vector associated with a Core target
        /// @return The core select value for the target. For unicast core targets
        /// the return value will have exactly one bit set. For multicast core
        /// targets it will have between one and four bits set.
        ///
        inline MulticastCoreSelect
        getCoreSelect(void) const
        {
            static_assert(K & TARGET_TYPE_CORE, "getCoreSelect is only applicable to TARGET_TYPE_CORE targets");
            return _getCoreSelect();
        }

        ///
        /// @brief Copy from a Target<O, MO> to a Target<K, M>
        /// @tparam O the target type of the other
        /// @tparam MO the multicast type of the other
        ///
        template<TargetType O, MulticastType MO>
        inline Target( const Target<O, MO, V>& Other ):
            iv_handle(Other.get())
        {
            plat_apply_target_limits<K, M, V>();

            // In case of recursion depth failure, use -ftemplate-depth=
            static_assert( (K & O) != 0,
                           "unable to cast Target, no shared types");

            static_assert( bitCount<K>::count >= bitCount<O>::count,
                           "unable to cast to specialized Target");

            // Only need to update the handle if we're coming from a target that's already MULTICAST
            if ((O & TARGET_TYPE_MULTICAST) && (MO != M))
            {
                mcUpdateHandle();
            }
        }

    private:
        // Don't use enums here as it makes it hard to assign
        // in the platform target cast constructor.
        static const TargetType iv_type = K;
        V iv_handle;

        /// @brief if iv_handle is a multicast target, update its multicast type to M
        inline void mcUpdateHandle(void);

        /// @brief Internal implementation of getCoreSelect, filtered for CORE targets
        inline MulticastCoreSelect _getCoreSelect(void) const;
};

// EX threads map to CORE threads:
// t0 / t2 / t4 / t6 fused = t0 / t1 / t2 / t3 normal (c0)
// t1 / t3 / t5 / t7 fused = t0 / t1 / t2 / t3 normal (c1)
// So when splitting the EX, we need to map from EX threads
// to CORE threads.

///
/// @brief Given a normal core thread id, translate this to
/// a fused core thread id. (normal to fused)
/// @param[in] i_ordinal   the ordinal number of the normal core this thread belongs to
/// @param[in] i_thread_id a normal core thread id - 0, ..., 3
/// @return the fused core thread id
///
inline uint8_t thread_id_n2f(const uint8_t i_ordinal, const uint8_t i_thread_id)
{
    return (i_thread_id << 1) | i_ordinal;
}

///
/// @brief Given a fused core thread id, translate this to
/// a normal core thread id. (fused to normal)
/// @param[in] i_thread_id a fused core thread id - 0, ..., 7
/// @return the normal core thread id
///
inline uint8_t thread_id_f2n(const uint8_t i_thread_id)
{
    return i_thread_id >> 1;
}

///
/// @brief Given a normal core thread id, translate this to a
/// normal core bitset.
/// @param[in] i_thread_id a normal core thread id - 0, ..., 3
/// @return the normal core bitset
/// @note to got from a fused core id to a normal core bitset,
/// translate from a fused core thread id first.
///
inline uint8_t thread_id2bitset(const uint8_t i_thread_id)
{
    // 0xff means "set all bits"
    static const uint8_t all_threads  = 0xff;
    static const uint8_t all_normal_threads_bitset = 0x0f;

    if (i_thread_id == all_threads)
    {
        return all_normal_threads_bitset;
    }

    // A thread_id is really just bit index.
    return (1 << (4 - i_thread_id - 1));
}

///
/// @brief Given a bitset of normal core thread ids, translate this to
/// a bit mask of fused core thread id. (normal to fused)
/// @param[in] i_ordinal the ordinal number of the normal core this thread belongs to
/// @param[in] i_threads a normal core thread bitset - b0000, ..., b1111
/// @return the corresponding fused core bitset
///
inline uint8_t thread_bitset_n2f(const uint8_t i_ordinal, const uint8_t i_threads)
{
    // Since we only have 4 bits I think this is better than a shift-type solution
    // for interleaving bits
    static uint8_t core_map[] =
    {
        0b00000000, // b0000
        0b00000010, // b0001
        0b00001000, // b0010
        0b00001010, // b0011
        0b00100000, // b0100
        0b00100010, // b0101
        0b00101000, // b0110
        0b00101010, // b0111
        0b10000000, // b1000
        0b10000010, // b1001
        0b10001000, // b1010
        0b10001010, // b1011
        0b10100000, // b1100
        0b10100010, // b1101
        0b10101000, // b1110
        0b10101010, // b1111
    };

    return core_map[i_threads] >> i_ordinal;
}

///
/// @brief Given a fused core thread bitset, translate this to
/// a normal core thread bitset. (fused to normal)
/// @param[in] i_ordinal the ordinal number of the normal core this thread belongs to
/// @param[in] i_threads a fused core thread bitset - b00000000, ..., b11111111
/// @return the corresponding normal core bitset
///
inline uint8_t thread_bitset_f2n(const uint8_t i_ordinal, const uint8_t i_threads)
{
    uint8_t normal_set = 0;

    // core 0 is the left-most bit in the pair
    uint8_t pair_mask = (i_ordinal == 0) ? 0x2 : 0x1;

    // For each bit which can be set in the normal core bit_set ...
    for( auto i = 0; i <= 3; ++i )
    {
        // ... grab the two fused bits which represent it ...
        // ... and mask off the bit in the pair which represents this normal core ...
        // (the << 1 shifts the masks over as we walk the pairs of bits)
        uint8_t bits = (((3 << (i << 1)) & i_threads) & (pair_mask << (i << 1)));

        // ... if either bit is set, set the corresponding bit in
        // the normal core bitset.
        normal_set |= (bits != 0) << i;
    }

    return normal_set;
}

///
/// @brief Return the string interpretation of this target
/// @tparam T The type of the target
/// @param[in] i_target Target<T,V>
/// @param[in] i_buffer buffer to write in to
/// @param[in] i_bsize size of the buffer
/// @return void
/// @post The contents of the buffer is replaced with the string
/// representation of the target
///
template< TargetType T, MulticastType M, typename V >
inline void toString(const Target<T, M, V>& i_target, char* i_buffer, size_t i_bsize);

///
/// @brief Return the string interpretation of this target
/// @tparam T The type of the target
/// @tparam B The type of the buffer
/// @param[in] i_target A pointer to the Target<T,V>
/// @param[in] i_buffer buffer to write in to
/// @param[in] i_bsize  size of the buffer
/// @return void
/// @post The contents of the buffer is replaced with the string
/// representation of the target
///
template< TargetType T, MulticastType M, typename V >
inline void toString(const Target<T, M, V>* i_target, char* i_buffer, size_t i_bsize);

///
/// @brief Get an enumerated target of a specific type
/// @tparam T The type of the target
/// @param[in] Ordinal representing the ordinal number of
/// the desired target
/// @return Target<T> the target requested
///
template<TargetType T, MulticastType M = MULTICAST_OR, typename V = plat_target_handle_t>
inline Target<T, M, V> getTarget(uint64_t Ordinal);

///
/// @brief Return the string interpretation of this target
/// @tparam T The type of the target
/// @tparam B The type of the buffer
/// @param[in] i_target Target<T,V>
/// @param[in] i_buffer buffer
/// @return void
/// @post The contents of the buffer is replaced with the string
/// representation of the target
///
template<TargetType T, MulticastType M, typename V, typename B>
inline void toString(const Target<T, M, V>& i_target, B& i_buffer);

///
/// @brief Check if the target is of a type, or in a type subset.
/// @tparam K the TargetType to check
/// @tparam T TargetType or TargetType composite to check against
/// @return True, iff K is a proper T
///
template< TargetType K, TargetType T >
inline constexpr bool is_same(void)
{
    return (K & T) != 0;
}

}

#endif
OpenPOWER on IntegriCloud