summaryrefslogtreecommitdiffstats
path: root/src/import/generic/memory/lib/utils/mcbist/gen_mss_memdiags.H
blob: dfb6b495b6f0a13638a1451f4da47f9489218b68 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
/* IBM_PROLOG_BEGIN_TAG                                                   */
/* This is an automatically generated prolog.                             */
/*                                                                        */
/* $Source: src/import/generic/memory/lib/utils/mcbist/gen_mss_memdiags.H $ */
/*                                                                        */
/* OpenPOWER HostBoot Project                                             */
/*                                                                        */
/* Contributors Listed Below - COPYRIGHT 2019                             */
/* [+] International Business Machines Corp.                              */
/*                                                                        */
/*                                                                        */
/* Licensed under the Apache License, Version 2.0 (the "License");        */
/* you may not use this file except in compliance with the License.       */
/* You may obtain a copy of the License at                                */
/*                                                                        */
/*     http://www.apache.org/licenses/LICENSE-2.0                         */
/*                                                                        */
/* Unless required by applicable law or agreed to in writing, software    */
/* distributed under the License is distributed on an "AS IS" BASIS,      */
/* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or        */
/* implied. See the License for the specific language governing           */
/* permissions and limitations under the License.                         */
/*                                                                        */
/* IBM_PROLOG_END_TAG                                                     */

///
/// @file gen_mss_memdiags.H
/// @brief API for memory diagnostics
///
// *HWP HWP Owner: Stephen Glancy <sglancy@us.ibm.com>
// *HWP HWP Backup: Marc Gollub <gollub@us.ibm.com>
// *HWP Team: Memory
// *HWP Level: 3
// *HWP Consumed by: HB:FSP
//

#ifndef _GEN_MSS_MEMDIAGS_H_
#define _GEN_MSS_MEMDIAGS_H_

#include <fapi2.H>
#include <generic/memory/lib/mss_generic_system_attribute_getters.H>
#include <generic/memory/lib/utils/shared/mss_generic_consts.H>
#include <generic/memory/lib/utils/mcbist/gen_mss_mcbist.H>
#include <generic/memory/lib/utils/mcbist/gen_mss_mcbist_address.H>
#include <generic/memory/lib/utils/mcbist/gen_mss_mcbist_patterns.H>
#include <generic/memory/lib/utils/mcbist/gen_mss_mcbist_settings.H>
#include <generic/memory/lib/utils/fir/gen_mss_unmask.H>
#include <generic/memory/lib/utils/count_dimm.H>
#include <generic/memory/lib/utils/conversions.H>
#include <generic/memory/lib/utils/pos.H>
#include <generic/memory/lib/utils/count_dimm.H>
#include <generic/memory/lib/utils/poll.H>


namespace mss
{

///
/// @brief Determine if a thing is functional
/// @tparam I, the type of the item we want to check for
/// @tparam P, the type of the parent which holds the things of interest
/// @param[in] i_target the parent containing the thing we're looking for
/// @param[in] i_rel_pos the relative position of the item of interest.
/// @return bool true iff the thing at i_rel_pos is noted as functional
///
template< fapi2::TargetType I, fapi2::TargetType P >
inline bool is_functional( const fapi2::Target<P>& i_target, const uint64_t i_rel_pos )
{
    // Not sure of a good way to do this ... we get all the functional
    // children of the parent and look for our relative position ...
    for (const auto& i : i_target.template getChildren<I>(fapi2::TARGET_STATE_FUNCTIONAL))
    {
        if (mss::template relative_pos<P>(i) == i_rel_pos)
        {
            return true;
        }
    }

    return false;
}

namespace mcbist
{
namespace sim
{

/// @brief Perform a sim version of initializing memory
/// @tparam MC the mc type of the T
/// @tparam T the fapi2::TargetType - derived
/// @tparam TT the mcbistTraits associated with T
/// @param T a fapi2::TargetType
/// @param[in] i_target
/// @param[in] i_pattern an index representing a pattern to use to initize memory (defaults to 0)
/// @return FAPI2_RC_SUCCESS iff ok
///
template< mss::mc_type MC = DEFAULT_MC_TYPE, fapi2::TargetType T, typename TT = mcbistTraits<MC, T> >
fapi2::ReturnCode sf_init( const fapi2::Target<T>& i_target, const uint64_t i_pattern )
{
    FAPI_INF("Start sim init for %s", mss::c_str(i_target));

    // If we're running in the simulator, we want to only touch the addresses which training touched

    for (const auto& p : i_target.template getChildren<TT::PORT_TYPE>())
    {
        std::vector<uint64_t> l_pr;
        mss::mcbist::program<MC> l_program;

        mss::mcbist::address l_start;
        mss::mcbist::address l_end;

        size_t l_rank_address_pair = 0;

        // No point in bothering if we don't have any DIMM
        if (mss::count_dimm(p) == 0)
        {
            FAPI_INF("No DIMM on %s, not running sf_init", mss::c_str(p));
            continue;
        }

        // In sim we know a few things ...
        // Get the primary ranks for this port. We know there can only be 4, and we know we only trained the primary
        // ranks. Therefore, we only need to clean up the primary ranks. And because there's 4 max, we can do it
        // all using the 4 address range registers of tne MCBIST (broadcast currently not considered.)
        // So we can write 0's to those to get their ECC fixed up.
        FAPI_TRY( mss::rank::primary_ranks(p, l_pr) );
        fapi2::Assert( l_pr.size() <= mss::MAX_RANK_PER_DIMM );

        for (auto r = l_pr.begin(); r != l_pr.end(); ++l_rank_address_pair, ++r)
        {
            FAPI_INF("sim init %s, rank %d", mss::c_str(p), *r);

            // Setup l_start to represent this rank, and then make the end address from that.
            l_start.set_master_rank(*r);

            // Set C3 bit to get an entire cache line
            l_start.get_sim_end_address(l_end);

            // By default we're in maint address mode, not address counting mode. So we give it a start and end, and ignore
            // anything invalid - that's what maint address mode is all about
            mss::mcbist::config_address_range<MC>(i_target, l_start, l_end, l_rank_address_pair);

            // Write
            {
                // Run in ECC mode, 64B writes (superfast mode)

                mss::mcbist::subtest_t<MC> l_fw_subtest =
                    mss::mcbist::write_subtest<MC>();

                l_fw_subtest.enable_port(mss::relative_pos<T>(p));
                l_fw_subtest.change_addr_sel(l_rank_address_pair);
                l_fw_subtest.enable_dimm(mss::rank::get_dimm_from_rank(*r));
                l_program.iv_subtests.push_back(l_fw_subtest);
                FAPI_DBG("adding superfast write for %s rank %d (dimm %d)", mss::c_str(p), *r, mss::rank::get_dimm_from_rank(*r));
            }

            // Read - we do a read here as verification can use this as a tool as we do the write and then the read.
            // If we failed to write properly the read would thow ECC errors. Just a write (which the real hardware would
            // do) doesn't catch that. This takes longer, but it's not terribly long in any event.
            {
                // Run in ECC mode, 64B writes (superfast mode)
                mss::mcbist::subtest_t<MC> l_fr_subtest =
                    mss::mcbist::read_subtest<MC>();

                l_fr_subtest.enable_port(mss::relative_pos<T>(p));
                l_fr_subtest.change_addr_sel(l_rank_address_pair);
                l_fr_subtest.enable_dimm(mss::rank::get_dimm_from_rank(*r));
                l_program.iv_subtests.push_back(l_fr_subtest);
                FAPI_DBG("adding superfast read for %s rank %d (dimm %d)", mss::c_str(p), *r, mss::rank::get_dimm_from_rank(*r));
            }
        }

        // Write pattern
        FAPI_TRY( mss::mcbist::load_pattern<MC>(i_target, i_pattern) );

        // Setup the sim polling based on a heuristic <cough>guess</cough>
        // Looks like ~400ck per address for a write/read program on the sim-dimm, and add a long number of polls
        // On real hardware wait 100ms and then start polling for another 5s
        l_program.iv_poll.iv_initial_sim_delay = mss::cycles_to_simcycles(((l_end - l_start) * l_pr.size()) * 800);
        l_program.iv_poll.iv_initial_delay = 100 * mss::DELAY_1MS;
        l_program.iv_poll.iv_sim_delay = 100000;
        l_program.iv_poll.iv_delay = 10 * mss::DELAY_1MS;
        l_program.iv_poll.iv_poll_count = 500;

        // Just one port for now. Per Shelton we need to set this in maint address mode
        // even tho we specify the port/dimm in the subtest.
        fapi2::buffer<uint8_t> l_port;
        l_port.setBit(mss::relative_pos<T>(p));
        l_program.select_ports(l_port >> 4);

        // Kick it off, wait for a result
        FAPI_TRY( mss::mcbist::execute(i_target, l_program) );
    }

    return fapi2::FAPI2_RC_SUCCESS;

fapi_try_exit:
    FAPI_INF("End sim init for %s", mss::c_str(i_target));
    return fapi2::current_err;
}

} // namespace sim
} // namespace mcbist


namespace memdiags
{

// Map some of the mcbist namespace here to make it easier for users of memdiags
// This is an intentional using statement in a header which is typically
// disallowed - I am intentionally pulling these into this namespace for all callers.
using mss::mcbist::constraints;
using mss::mcbist::speed;
using mss::mcbist::end_boundary;
using mss::mcbist::stop_conditions;
using mss::mcbist::cache_line;
using mss::mcbist::pattern;
using mss::mcbist::patterns;

// Why not mss::mcbist::address? Because the fields can't be pulled in via using,
// and it seems even more confusing to have a memdiags address but have to use
// mcbist fields. So, we all use mcbist address until such time that its promoted
// to some other general namespace.

using mss::mcbist::PATTERN_ZEROS;
using mss::mcbist::PATTERN_0;
using mss::mcbist::PATTERN_ONES;
using mss::mcbist::PATTERN_1;
using mss::mcbist::PATTERN_2;
using mss::mcbist::PATTERN_3;
using mss::mcbist::PATTERN_4;
using mss::mcbist::PATTERN_5;
using mss::mcbist::PATTERN_6;
using mss::mcbist::PATTERN_7;
using mss::mcbist::PATTERN_8;
using mss::mcbist::PATTERN_RANDOM;
using mss::mcbist::LAST_PATTERN;
using mss::mcbist::NO_PATTERN;

///
/// @brief Stop the current command
/// @tparam MC the mc type of the T
/// @tparam T the fapi2::TargetType of the target
/// @param[in] i_target the target
/// @return FAPI2_RC_SUCCESS iff ok
///
template< mss::mc_type MC = DEFAULT_MC_TYPE, fapi2::TargetType T>
fapi2::ReturnCode stop( const fapi2::Target<T>& i_target )
{
    // Too long, make shorter
    using TT = mss::mcbistTraits<MC, T>;
    using ET = mss::mcbistMCTraits<MC>;

    // Poll parameters are defined as TK so that we wait a nice time for operations
    // For now use the defaults
    mss::poll_parameters l_poll_parameters;
    fapi2::buffer<uint64_t> l_status;
    fapi2::buffer<uint64_t> l_last_address;
    bool l_poll_result = false;

    FAPI_INF("Stopping any mcbist operations which are in progress for %s", mss::c_str(i_target));

    // TODO RTC:153951 Add masking of FIR when stopping
    FAPI_TRY( mss::mcbist::start_stop<MC>(i_target, mss::STOP) );

    // Poll waiting for the engine to stop
    l_poll_result = mss::poll(i_target, TT::STATQ_REG, l_poll_parameters,
                              [&l_status](const size_t poll_remaining, const fapi2::buffer<uint64_t>& stat_reg) -> bool
    {
        FAPI_DBG("looking for mcbist not in-progress, mcbist statq 0x%llx, remaining: %d", stat_reg, poll_remaining);
        l_status = stat_reg;
        // We're done polling when either we see we're in progress or we see we're done.
        return l_status.getBit<TT::MCBIST_IN_PROGRESS>() == false;
    });

    // Pass or fail output the current address. This is useful for debugging when we can get it.
    // It's in the register FFDC for memdiags so we don't need it below
    FAPI_TRY( mss::getScom(i_target, TT::LAST_ADDR_REG, l_last_address) );
    FAPI_INF("MCBIST last address (during stop): 0x%016lx for %s",
             l_last_address, mss::c_str(i_target));

    // So we've either stopped or we timed out
    FAPI_ASSERT( l_poll_result == true,
                 ET::memdiags_failed_to_stop()
                 .set_MC_TARGET(i_target)
                 .set_POLL_COUNT(l_poll_parameters.iv_poll_count),
                 "%s The MCBIST engine failed to stop its program",
                 mss::c_str(i_target) );

fapi_try_exit:
    return fapi2::current_err;

}


///
/// @class Base class for memdiags operations
/// @tparam MC the mc type of the T
/// @tparam T fapi2::TargetType of the MCBIST engine
/// @tparam TT the mcbistTraits associated with T
///
template< mss::mc_type MC = DEFAULT_MC_TYPE, fapi2::TargetType T = mss::mcbistMCTraits<MC>::MC_TARGET_TYPE , typename TT = mcbistTraits<MC, T> >
class operation
{
    public:
        ///
        /// @brief memdiags::operation constructor
        /// @param[in] i_target the target of the mcbist engine
        /// @param[in] i_subtest the proper subtest for this operation
        /// @param[in] i_const mss::constraint structure
        ///
        operation( const fapi2::Target<T>& i_target,
                   const mss::mcbist::subtest_t<MC> i_subtest,
                   const constraints<MC> i_const ):
            iv_target(i_target),
            iv_subtest(i_subtest),
            iv_const(i_const)
        {
            FAPI_TRY( mss::attr::get_is_simulation (iv_sim) );
            return;

        fapi_try_exit:
            // Seems like a safe risk to take ...
            FAPI_ERR("Unable to get the attribute ATTR_IS_SIMULATION");
            return;
        }

        operation() = delete;

        ///
        /// @brief Execute the memdiags operation
        /// @return FAPI2_RC_SUCCESS iff ok
        ///
        inline fapi2::ReturnCode execute()
        {
            return mss::mcbist::execute(iv_target, iv_program);
        }

        ///
        /// @brief memdiags::operation destructor
        ///
        virtual ~operation() = default;

        ///
        /// @brief memdiags init helper
        /// Initializes common sections. Broken out rather than the base class ctor to enable checking return codes
        /// in subclassed constructores more easily.
        /// @return FAPI2_RC_SUCCESS iff everything ok
        ///
        fapi2::ReturnCode base_init();

        ///
        /// @brief Configures all subtests for a multiport init
        /// @param[in] i_dimms a vector of DIMM targets
        ///
        void configure_multiport_subtests(const std::vector<fapi2::Target<fapi2::TARGET_TYPE_DIMM>>& i_dimms);

        ///
        /// @brief memdiags multi-port init helper
        /// Initializes common sections. Broken out rather than the base class ctor to enable checking return codes
        /// in subclassed constructores more easily.
        /// @return FAPI2_RC_SUCCESS iff everything ok
        ///
        fapi2::ReturnCode multi_port_init();

        ///
        /// @brief memdiags multi-port init for specific chip
        /// Initializes common sections. Broken out rather than the base class ctor to enable checking return codes
        /// in subclassed constructores more easily.
        /// @return FAPI2_RC_SUCCESS iff everything ok
        ///
        fapi2::ReturnCode multi_port_init_internal();


        ///
        /// @brief memdiags multi-port address config helper
        /// Initializes the address configs needed for a multi port operation
        /// @return FAPI2_RC_SUCCESS iff everything ok
        ///
        fapi2::ReturnCode multi_port_addr();

        ///
        /// @brief Single port initializer
        /// Initializes common sections. Broken out rather than the base class ctor to enable checking return codes
        /// in subclassed constructores more easily.
        /// @return FAPI2_RC_SUCCESS iff everything ok
        ///
        fapi2::ReturnCode single_port_init();

        ///
        /// @brief get the protected mcbist program - useful for testing
        /// @return a reference to the iv_program member
        /// @note Intentionally not const ref; allows getter to set.
        ///
        mss::mcbist::program<MC>& get_program()
        {
            return iv_program;
        }

        ///
        /// @brief get the protected mcbist subtest_t - useful for testing
        /// @return a reference to the iv_subtest member
        ///
        const mss::mcbist::subtest_t<MC>& get_subtest() const
        {
            return iv_subtest;
        }

    protected:
        fapi2::Target<T>          iv_target;
        mss::mcbist::subtest_t<MC> iv_subtest;
        constraints<MC>            iv_const;
        mss::mcbist::program<MC>   iv_program;
        uint8_t                   iv_sim;
};



///
/// @brief memdiags init helper
/// @tparam MC the mc type of the T
/// @tparam T the fapi2::TargetType - derived
/// @tparam TT the mcbistTraits associated with T
/// Initializes common sections. Broken out rather than the base class ctor to enable checking return codes
/// in subclassed constructors more easily.
/// @return FAPI2_RC_SUCCESS iff everything ok
///
template< mss::mc_type MC, fapi2::TargetType T, typename TT >
inline fapi2::ReturnCode operation<MC, T, TT>::base_init()
{
    FAPI_INF("memdiags base init for %s", mss::c_str(iv_target));

    // Check the state of the MCBIST engine to make sure its OK that we proceed.
    // Force stop the engine (per spec, as opposed to waiting our turn)
    FAPI_TRY( memdiags::stop<MC>(iv_target) );

    // Zero out cmd timebase - mcbist::program constructor does that for us.
    // Load pattern
    FAPI_TRY( iv_program.change_pattern(iv_const.iv_pattern) );

    // Load end boundaries
    iv_program.change_end_boundary(iv_const.iv_end_boundary);

    // Load thresholds
    iv_program.change_thresholds(iv_const.iv_stop);

    // Setup the requested speed
    FAPI_TRY( iv_program.change_speed(iv_target, iv_const.iv_speed) );

    // Enable maint addressing mode - enabled by default in the mcbist::program ctor

    // Apparently the MCBIST engine needs the ports selected even though the ports are specified
    // in the subtest. We can just select them all, and it adjusts when it executes the subtest
    iv_program.select_ports(0b1111);

    // Kick it off, don't wait for a result
    iv_program.change_async(mss::ON);

fapi_try_exit:
    return fapi2::current_err;
}

///
/// @brief Single port initializer
/// @tparam MC the mc type of the T
/// @tparam T the fapi2::TargetType - derived
/// @tparam TT the mcbistTraits associated with T
/// Initializes common sections. Broken out rather than the base class ctor to enable checking return codes
/// in subclassed constructors more easily.
/// @return FAPI2_RC_SUCCESS iff everything ok
///
template< mss::mc_type MC, fapi2::TargetType T, typename TT >
inline fapi2::ReturnCode operation<MC, T, TT>::single_port_init()
{
    using ET = mcbistMCTraits<MC>;
    FAPI_INF("single port init for %s", mss::c_str(iv_target));

    const uint64_t l_relative_port_number = iv_const.iv_start_address.get_port();
    const uint64_t l_dimm_number = iv_const.iv_start_address.get_dimm();

    // Make sure the specificed port is functional
    FAPI_ASSERT( mss::is_functional<TT::PORT_TYPE>(iv_target, l_relative_port_number),
                 ET::memdiags_port_not_functional()
                 .set_RELATIVE_PORT_POSITION(l_relative_port_number)
                 .set_ADDRESS( uint64_t(iv_const.iv_start_address) )
                 .set_MC_TARGET(iv_target),
                 "Port with relative postion %d is not functional for %s",
                 l_relative_port_number, mss::c_str(iv_target));

    // No broadcast mode for this one
    // Push on a read subtest
    {
        mss::mcbist::subtest_t<MC> l_subtest = iv_subtest;

        l_subtest.enable_port(l_relative_port_number);
        l_subtest.enable_dimm(l_dimm_number);
        iv_program.iv_subtests.push_back(l_subtest);
        FAPI_INF("%s adding subtest  0x%04x for port %d, DIMM %d",
                 mss::c_str(iv_target), l_subtest, l_relative_port_number, l_dimm_number);
    }

    // The address should have the port and DIMM noted in it. All we need to do is calculate the
    // remainder of the address
    if (iv_sim)
    {
        iv_const.iv_start_address.get_sim_end_address(iv_const.iv_end_address);
    }
    else if (iv_const.iv_end_address == TT::LARGEST_ADDRESS)
    {
        // Only the DIMM range as we don't want to cross ports.
        iv_const.iv_start_address.template get_range<mss::mcbist::address::DIMM>(iv_const.iv_end_address);
    }

    // Configure the address range
    FAPI_TRY( mss::mcbist::config_address_range0<MC>(iv_target, iv_const.iv_start_address, iv_const.iv_end_address) );

    // Initialize the common sections
    FAPI_TRY( base_init() );

fapi_try_exit:
    return fapi2::current_err;
}



///
/// @brief memdiags multi-port init helper
/// @tparam MC the mc type of the T
/// @tparam T the fapi2::TargetType - derived
/// @tparam TT the mcbistTraits associated with T
/// Initializes common sections. Broken out rather than the base class ctor to enable checking return codes
/// in subclassed constructors more easily.
/// @return FAPI2_RC_SUCCESS iff everything ok
///
template< mss::mc_type MC, fapi2::TargetType T, typename TT >
inline fapi2::ReturnCode operation<MC, T, TT>::multi_port_init()
{
    FAPI_INF("multi-port init for %s", mss::c_str(iv_target));

    const auto l_port = mss::find_targets<TT::PORT_TYPE>(iv_target);

    // Make sure we have ports, if we don't then exit out
    if(l_port.size() == 0)
    {
        // Cronus can have no ports under an MCBIST, FW deconfigures by association
        FAPI_INF("%s has no attached ports skipping setup", mss::c_str(iv_target));
        return fapi2::FAPI2_RC_SUCCESS;
    }

    // Let's assume we are going to send out all subtest unless we are in broadcast mode,
    // where we only send up to 2 subtests under an port ( 1 for each DIMM) which is why no const
    auto l_dimms = mss::find_targets<fapi2::TARGET_TYPE_DIMM>(iv_target);

    if( l_dimms.size() == 0)
    {
        // Cronus can have no DIMMS under an MCBIST, FW deconfigures by association
        FAPI_INF("%s has no attached DIMMs skipping setup", mss::c_str(iv_target));
        return fapi2::FAPI2_RC_SUCCESS;
    }

    return multi_port_init_internal();
}


///
/// @class Class for memdiags' super-fast init
/// @tparam MC the mc type of the T
/// @tparam T fapi2::TargetType of the MCBIST engine
/// @tparam TT the mcbistTraits associated with T
///
template< mss::mc_type MC = DEFAULT_MC_TYPE, fapi2::TargetType T = mss::mcbistMCTraits<MC>::MC_TARGET_TYPE , typename TT = mcbistTraits<MC, T> >
struct sf_init_operation : public operation<MC>
{

    ///
    /// @brief memdiags::sf_init_operation constructor
    /// @param[in] i_target the target of the mcbist engine
    /// @param[in] i_const mss::constraint structure
    /// @param[out] o_rc the fapi2::ReturnCode of the intialization process
    ///
    sf_init_operation( const fapi2::Target<T>& i_target,
                       const constraints<MC> i_const,
                       fapi2::ReturnCode& o_rc):
        operation<MC>(i_target, mss::mcbist::init_subtest<MC>(), i_const)
    {
        // If sf_init was passed the random data pattern, then modify the subtest to use the true random data
        if(i_const.iv_pattern == PATTERN_RANDOM)
        {
            this->iv_subtest.change_data_mode(mss::mcbist::data_mode::RAND_FWD_MAINT);
        }

        // We're a multi-port operation
        o_rc = this->multi_port_init();
    }

    sf_init_operation() = delete;
};



///
/// @class Class for memdiags' super-fast read
/// @tparam MC the mc type of the T
/// @tparam T fapi2::TargetType of the MCBIST engine
/// @tparam TT the mcbistTraits associated with T
///
template< mss::mc_type MC = DEFAULT_MC_TYPE, fapi2::TargetType T = mss::mcbistMCTraits<MC>::MC_TARGET_TYPE , typename TT = mcbistTraits<MC, T> >
struct sf_read_operation : public operation<MC>
{

    ///
    /// @brief memdiags::sf_read_operation constructor
    /// @param[in] i_target the target of the mcbist engine
    /// @param[in] i_const mss::constraint structure
    /// @param[out] o_rc the fapi2::ReturnCode of the intialization process
    ///
    sf_read_operation( const fapi2::Target<T>& i_target,
                       const constraints<MC> i_const,
                       fapi2::ReturnCode& o_rc):
        operation<MC>(i_target, mss::mcbist::read_subtest<MC>(), i_const)
    {
        // We're a multi-port operation
        o_rc = this->multi_port_init();
    }

    sf_read_operation() = delete;
};


///
/// @class Class for memdiags' super-fast read to end of port
/// @tparam MC the mc type of the T
/// @tparam T fapi2::TargetType of the MCBIST engine
/// @tparam TT the mcbistTraits associated with T
///
template< mss::mc_type MC = DEFAULT_MC_TYPE, fapi2::TargetType T = mss::mcbistMCTraits<MC>::MC_TARGET_TYPE , typename TT = mcbistTraits<MC, T> >
struct sf_read_eop_operation : public operation<MC>
{
    ///
    /// @brief memdiags::sf_read_operation constructor
    /// @param[in] i_target the target of the mcbist engine
    /// @param[in] i_const mss::constraint structure
    /// @param[out] o_rc the fapi2::ReturnCode of the intialization process
    ///
    sf_read_eop_operation( const fapi2::Target<T>& i_target,
                           const constraints<MC> i_const,
                           fapi2::ReturnCode& o_rc ):
        operation<MC>(i_target, mss::mcbist::read_subtest<MC>(), i_const)
    {
        // We're a single-port operation
        o_rc = this->single_port_init();
    }

    sf_read_eop_operation() = delete;
};

///
/// @class Class for memdiags' continuous scrub
/// @tparam MC the mc type of the T
/// @tparam T fapi2::TargetType of the MCBIST engine
/// @tparam TT the mcbistTraits associated with T
///
template< mss::mc_type MC = DEFAULT_MC_TYPE, fapi2::TargetType T = mss::mcbistMCTraits<MC>::MC_TARGET_TYPE , typename TT = mcbistTraits<MC, T> >
struct continuous_scrub_operation : public operation<MC>
{

    ///
    /// @brief memdiags::continuous_scrub_operation constructor
    /// @param[in] i_target the target of the mcbist engine
    /// @param[in] i_const the contraints of the operation
    /// @param[out] o_rc the fapi2::ReturnCode of the intialization process
    ///
    continuous_scrub_operation( const fapi2::Target<T>& i_target,
                                const constraints<MC> i_const,
                                fapi2::ReturnCode& o_rc );

    continuous_scrub_operation() = delete;
};

///
/// @brief memdiags::continuous_scrub_operation constructor
/// @tparam MC the mc type of the T
/// @tparam T fapi2::TargetType of the MCBIST engine
/// @tparam TT the mcbistTraits associated with T
/// @param[in] i_target the target of the mcbist engine
/// @param[in] i_const the contraints of the operation
/// @param[out] o_rc the fapi2::ReturnCode of the intialization process
///
template< mss::mc_type MC, fapi2::TargetType T, typename TT>
continuous_scrub_operation<MC, T, TT>::continuous_scrub_operation(
    const fapi2::Target<T>& i_target,
    const constraints<MC> i_const,
    fapi2::ReturnCode& o_rc ):
    operation<MC>(i_target, mss::mcbist::scrub_subtest<MC>(), i_const)
{
    mss::mcbist::address l_generic_start_address;
    mss::mcbist::address l_generic_end_address;

    FAPI_INF("setting up for continuous scrub for %s", mss::c_str(i_target));

    // Scrub operations run 128B
    operation<MC>::iv_program.change_len64(mss::OFF);

    // We build a little program here which allows us to restart the loop in the event of a pause.
    // So we need to craft some of the address ranges and some of the subtests by hand.

    // Setup address config 0 to cover all the addresses for a port/dimm.
    // We leverage the MCBIST's ability to skip invalid addresses, and just setup
    // If we're running in the simulator, we want to only touch the addresses which training touched
    // *INDENT-OFF*
    operation<MC>::iv_sim ?
        l_generic_start_address.get_sim_end_address(l_generic_end_address) :
        l_generic_start_address.get_range<mss::mcbist::address::DIMM>(l_generic_end_address);
    // *INDENT-ON*

    FAPI_TRY( mss::mcbist::config_address_range0<MC>(i_target, l_generic_start_address, l_generic_end_address) );

    // We push on a fake subtest 0 and subtest 1. We fix them up after we fill in the
    // rest of the subtests.
    operation<MC>::iv_program.iv_subtests.push_back(operation<MC>::iv_subtest);
    operation<MC>::iv_program.iv_subtests.push_back(operation<MC>::iv_subtest);

    // a generic 0 - DIMM address range.
    //
    // Subtests 2-9: One subtest per port/dimm each covering the whole range of that
    // port/dimm. scrub_subtests by default are using address config 0, so each of
    // these get their full address complement.
    for (const auto& p : operation<MC>::iv_target.template getChildren<TT::PORT_TYPE>())
    {
        for (const auto& d : p.template getChildren<fapi2::TARGET_TYPE_DIMM>())
        {
            // Don't destroy the subtest passed in, copy it
            auto l_subtest = operation<MC>::iv_subtest;

            l_subtest.enable_port(mss::relative_pos<T>(p));
            l_subtest.enable_dimm(mss::index(d));
            operation<MC>::iv_program.iv_subtests.push_back(l_subtest);
            FAPI_INF("adding scrub subtest for %s (dimm %d) ( 0x%04x)", mss::c_str(d), mss::index(d), l_subtest);
        }
    }

    //
    // Subtest 10: goto subtest 2. This causes us to loop back to the first port/dimm and go thru them all
    // This subtest will be marked the last when the MCBMR registers are filled in.
    //
    operation<MC>::iv_program.iv_subtests.push_back(mss::mcbist::goto_subtest<MC>(2));
    FAPI_INF("last goto subtest (10) is going to subtest 2 ( 0x%04x) for %s", operation<MC>::iv_program.iv_subtests[2],
             mss::c_str(operation<MC>::iv_target));

    // Ok, now we can go back in to fill in the first two subtests.

    {
        auto l_subtest = operation<MC>::iv_subtest;
        auto l_port = operation<MC>::iv_const.iv_start_address.get_port();
        auto l_dimm = operation<MC>::iv_const.iv_start_address.get_dimm();
        size_t l_index = 2;

        // By default if we don't find our port/dimm in the subtests, we just go back to the beginning.
        uint64_t l_goto_subtest = 2;

        //
        // subtest 0
        //

        // load the start address given and calculate the end address. Stick this into address config 1
        // We don't need to account for the simulator here as the caller can do that when they setup the
        // start address.
        // *INDENT-OFF*
        operation<MC>::iv_sim ?
            operation<MC>::iv_const.iv_start_address.get_sim_end_address(operation<MC>::iv_const.iv_end_address) :
            operation<MC>::iv_const.iv_start_address.template get_range<mss::mcbist::address::DIMM>(operation<MC>::iv_const.iv_end_address);
        // *INDENT-ON*

        FAPI_TRY( mss::mcbist::config_address_range1(i_target, operation<MC>::iv_const.iv_start_address,
                  operation<MC>::iv_const.iv_end_address) );

        // We need to use this address range. We know it's ok to write to element 0 as we pushed it on above
        l_subtest.change_addr_sel(1);
        l_subtest.enable_port(l_port);
        l_subtest.enable_dimm(l_dimm);

        operation<MC>::iv_program.iv_subtests[0] = l_subtest;
        FAPI_INF("adding scrub subtest 0 for port %d dimm %d (0x%04x) for %s", l_port, l_dimm, l_subtest, mss::c_str(i_target));

        //
        // subtest 1
        //

        // From the port/dimm specified in the start address, we know what subtest should execute next. The idea
        // being that this 0'th subtest is a mechanism to allow the caller to start a scrub 'in the middle' and
        // jump to the next port/dimm which would have been scrubbed. The hard part is that we don't know where
        // in the subtest vector the 'next' port/dimm are placed. So we look for our port/dimm (skipping subtest 0
        // since we know that's us and skipping subtest 1 since it isn't there yet.)
        for (; l_index < operation<MC>::iv_program.iv_subtests.size(); ++l_index)
        {
            auto l_my_dimm = operation<MC>::iv_program.iv_subtests[l_index].get_dimm();
            auto l_my_port = operation<MC>::iv_program.iv_subtests[l_index].get_port();

            if ((l_dimm == l_my_dimm) && (l_port == l_my_port))
            {
                l_goto_subtest = l_index + 1;
                break;
            }
        }

        // Since we set l_goto_subtest up with a meaningful default, we can just make a subtest with the
        // l_goto_subtest subtest specified and pop that in to index 1.
        FAPI_INF("adding scrub subtest 1 to goto subtest %d (port %d, dimm %d, test 0x%04x) for %s", l_goto_subtest,
                 operation<MC>::iv_program.iv_subtests[l_goto_subtest].get_port(),
                 operation<MC>::iv_program.iv_subtests[l_goto_subtest].get_dimm(),
                 operation<MC>::iv_program.iv_subtests[l_goto_subtest], mss::c_str(i_target) );

        operation<MC>::iv_program.iv_subtests[1] = mss::mcbist::goto_subtest<MC>(l_goto_subtest);
    }

    // Initialize the common sections
    FAPI_TRY( operation<MC>::base_init() );

fapi_try_exit:
    o_rc = fapi2::current_err;
    return;
}



///
/// @class Class for memdiags' targeted scrub
/// @tparam MC the mc type of the T
/// @tparam T fapi2::TargetType of the MCBIST engine
/// @tparam TT the mcbistTraits associated with T
///
template< mss::mc_type MC = DEFAULT_MC_TYPE, fapi2::TargetType T = mss::mcbistMCTraits<MC>::MC_TARGET_TYPE , typename TT = mcbistTraits<MC, T> >
struct targeted_scrub_operation : public operation<MC>
{

    ///
    /// @brief memdiags::targeted_scrub_operation constructor
    /// @param[in] i_target the target of the mcbist engine
    /// @param[in] i_const the contraints of the operation
    /// @param[out] o_rc the fapi2::ReturnCode of the intialization process
    ///
    targeted_scrub_operation( const fapi2::Target<T>& i_target,
                              const constraints<MC> i_const,
                              fapi2::ReturnCode& o_rc ):
        operation<MC>(i_target, mss::mcbist::scrub_subtest<MC>(), i_const)
    {
        // Scrub operations run 128B
        this->iv_program.change_len64(mss::OFF);

        // We're a single-port operation
        o_rc = this->single_port_init();

        // Targeted scrub needs to force a pause and the end boundary. So we make sure that happens here.
        this->iv_program.change_forced_pause( i_const.iv_end_boundary );
    }

    targeted_scrub_operation() = delete;
};

///
/// @brief Super Fast Init - used to init all memory behind a target with a given pattern
/// @note Uses broadcast mode if possible
/// @tparam MC the mc type of the T
/// @tparam T the fapi2::TargetType of the target
/// @param[in] i_target the target behind which all memory should be initialized
/// @param[in] i_pattern an index representing a pattern to use to init memory (defaults to 0)
/// @return FAPI2_RC_SUCCESS iff everything ok
/// @note The function is asynchronous, and the caller should be looking for a done attention
///
template<  mss::mc_type MC = DEFAULT_MC_TYPE, fapi2::TargetType T >
fapi2::ReturnCode sf_init( const fapi2::Target<T>& i_target,
                           const uint64_t i_pattern = PATTERN_0 )
{
    using ET = mss::mcbistMCTraits<MC>;
    FAPI_INF("superfast init start for %s", mss::c_str(i_target));

    uint8_t l_sim = false;
    FAPI_TRY( mss::attr::get_is_simulation( l_sim) );

    if (l_sim)
    {
        // Use some sort of pattern in sim in case the verification folks need to look for something
        // TK. Need a verification pattern. This is a not-good pattern for verification ... We don't really
        // have a good pattern for verification defined.
        FAPI_INF("running mss sim init in place of sf_init for %s", mss::c_str(i_target));
        return mss::mcbist::sim::sf_init<MC>(i_target, i_pattern);
    }
    else
    {
        fapi2::ReturnCode l_rc;
        constraints<MC> l_const(i_pattern);
        sf_init_operation<MC> l_init_op(i_target, l_const, l_rc);

        FAPI_ASSERT( l_rc == fapi2::FAPI2_RC_SUCCESS,
                     ET::memdiags_sf_init_failed_init().set_MC_TARGET(i_target),
                     "Unable to initialize the MCBIST engine for a sf read %s", mss::c_str(i_target) );

        return l_init_op.execute();
    }

fapi_try_exit:
    return fapi2::current_err;
}

///
/// @brief Super Fast Read - used to run superfast read on all memory behind the target
/// Determines ability to braodcast to all ports behind a target, does so if possible.
/// @tparam MC the mc type of the T
/// @tparam T the fapi2::TargetType of the target
/// @tparam TT the mcbistTraits associated with T - derived
/// @param[in] i_target the target behind which all memory should be read
/// @param[in] i_stop stop conditions
/// @param[in] i_address mcbist::address representing the address from which to start.
//    Defaults to the first address behind the target
/// @param[in] i_end whether to end, and where
///   Defaults to stop after slave rank
/// @param[in] i_end_address mcbist::address representing the address to end.
//    Defaults to TT::LARGEST_ADDRESS
/// @return FAPI2_RC_SUCCESS iff everything ok
/// @note The function is asynchronous, and the caller should be looking for a done attention
/// @note The address is often the port, dimm, rank but this is not enforced in the API.
///
template< mss::mc_type MC = DEFAULT_MC_TYPE, fapi2::TargetType T = mss::mcbistMCTraits<MC>::MC_TARGET_TYPE , typename TT = mcbistTraits<MC, T> >
fapi2::ReturnCode sf_read( const fapi2::Target<T>& i_target,
                           const stop_conditions<MC>& i_stop,
                           const mss::mcbist::address& i_address = mss::mcbist::address(),
                           const end_boundary i_end = end_boundary::STOP_AFTER_SLAVE_RANK,
                           const mss::mcbist::address& i_end_address = mss::mcbist::address(TT::LARGEST_ADDRESS) )
{
    using ET = mss::mcbistMCTraits<MC>;
    FAPI_INF("superfast read - start for %s", mss::c_str(i_target));

    fapi2::ReturnCode l_rc;
    constraints<MC> l_const(i_stop, speed::LUDICROUS, i_end, i_address, i_end_address);
    sf_read_operation<MC> l_read_op(i_target, l_const, l_rc);

    FAPI_ASSERT( l_rc == fapi2::FAPI2_RC_SUCCESS,
                 ET::memdiags_sf_init_failed_init().set_MC_TARGET(i_target),
                 "Unable to initialize the MCBIST engine for a sf read %s", mss::c_str(i_target) );

    return l_read_op.execute();

fapi_try_exit:
    return fapi2::current_err;
}


///
/// @brief Scrub - continuous scrub all memory behind the target
/// @tparam MC the mc type of the T
/// @tparam T the fapi2::TargetType of the target
/// @param[in] i_target the target behind which all memory should be scrubbed
/// @param[in] i_stop stop conditions
/// @param[in] i_speed the speed to scrub
/// @param[in] i_address mcbist::address representing the address from which to start.
/// @return FAPI2_RC_SUCCESS iff everything ok
/// @note The function is asynchronous, and the caller should be looking for a done attention
/// @note The address is often the port, dimm, rank but this is not enforced in the API.
///
template< mss::mc_type MC = DEFAULT_MC_TYPE, fapi2::TargetType T >
fapi2::ReturnCode background_scrub( const fapi2::Target<T>& i_target,
                                    const stop_conditions<MC>& i_stop,
                                    const speed i_speed,
                                    const mss::mcbist::address& i_address )
{
    using ET = mss::mcbistMCTraits<MC>;
    FAPI_INF("continuous (background) scrub for %s", mss::c_str(i_target));

    fapi2::ReturnCode l_rc;
    constraints<MC> l_const(i_stop, i_speed, end_boundary::STOP_AFTER_ADDRESS, i_address);
    continuous_scrub_operation<MC> l_op(i_target, l_const, l_rc);

    FAPI_ASSERT( l_rc == fapi2::FAPI2_RC_SUCCESS,
                 ET::memdiags_continuous_scrub_failed_init().set_MC_TARGET(i_target),
                 "Unable to initialize the MCBIST engine for a continuous scrub %s", mss::c_str(i_target) );

    return l_op.execute();

fapi_try_exit:
    return fapi2::current_err;
}


///
/// @brief Scrub - targeted scrub all memory described by the input address (rank, slave, etc.)
/// @tparam MC the mc type of the T
/// @tparam T the fapi2::TargetType of the target
/// @param[in] i_target the target behind which all memory should be scrubbed
/// @param[in] i_stop stop conditions
/// @param[in] i_speed the speed to scrub
/// @param[in] i_start_address mcbist::address representing the address from which to start.
/// @param[in] i_end_address mcbist::address representing the address at which to end.
/// @param[in] i_end whether to end, and where
/// @return FAPI2_RC_SUCCESS iff everything ok
/// @note The function is asynchronous, and the caller should be looking for a done attention
/// @note The address is often the port, dimm, rank but this is not enforced in the API.
///
template< mss::mc_type MC = DEFAULT_MC_TYPE, fapi2::TargetType T >
fapi2::ReturnCode targeted_scrub( const fapi2::Target<T>& i_target,
                                  const stop_conditions<MC>& i_stop,
                                  const mss::mcbist::address& i_start_address,
                                  const mss::mcbist::address& i_end_address,
                                  const end_boundary i_end )
{
    using ET = mss::mcbistMCTraits<MC>;
    FAPI_INF("targeted scrub for %s", mss::c_str(i_target));

    fapi2::ReturnCode l_rc;
    constraints<MC> l_const(i_stop, speed::LUDICROUS, i_end, i_start_address, i_end_address);
    targeted_scrub_operation<MC> l_op(i_target, l_const, l_rc);

    FAPI_ASSERT( l_rc == fapi2::FAPI2_RC_SUCCESS,
                 ET::memdiags_targeted_scrub_failed_init().set_MC_TARGET(i_target),
                 "Unable to initialize the MCBIST engine for a targeted scrub %s", mss::c_str(i_target) );

    return l_op.execute();

fapi_try_exit:
    return fapi2::current_err;
}

///
/// @brief Continue current command on next address
/// The current commaand has paused on an error, so we can record the address of the error
/// and finish the current master or slave rank.
/// @tparam MC the mc type of the T
/// @tparam T the fapi2::TargetType of the target
/// @param[in] i_target the target
/// @param[in] i_end whether to end, and where (default - don't stop at end of rank)
/// @param[in] i_stop stop conditions (default - 0 meaning 'don't change conditions')
/// @param[in] i_speed the speed to scrub (default - SAME_SPEED meaning leave speed untouched)
/// @return FAPI2_RC_SUCCESS iff ok
///
template< mss::mc_type MC = DEFAULT_MC_TYPE, fapi2::TargetType T >
fapi2::ReturnCode continue_cmd( const fapi2::Target<T>& i_target,
                                const end_boundary i_end = end_boundary::DONT_CHANGE,
                                const stop_conditions<MC>& i_stop = stop_conditions<MC>(stop_conditions<MC>::DONT_CHANGE),
                                const speed i_speed = speed::SAME_SPEED )
{
    // Too long, make shorter
    using TT = mss::mcbistTraits<MC, T>;
    using ET = mss::mcbistMCTraits<MC>;

    // We can use a local mcbist::program to help with the bit processing, and then write just the registers we touch.
    mss::mcbist::program<MC> l_program;
    fapi2::buffer<uint64_t> l_status;

    FAPI_INF("continue_cmd for %s", mss::c_str(i_target));

    // TODO RTC:155518 Check for stop or in progress before allowing continue. Not critical
    // as the caller should know and can check the in-progress bit in the event they don't

    if (i_end != end_boundary::DONT_CHANGE)
    {
        // Before we go too far, check to see if we're already stopped at the boundary we are asking to stop at
        bool l_stopped_at_boundary = false;
        uint64_t l_error_mode = 0;
        bool l_detect_slave = false;

        FAPI_TRY( mss::getScom(i_target, TT::CFGQ_REG, l_program.iv_config) );
        FAPI_TRY( mss::getScom(i_target, TT::MCBAGRAQ_REG, l_program.iv_addr_gen) );
        l_program.iv_config.template extractToRight<TT::CFG_PAUSE_ON_ERROR_MODE, TT::CFG_PAUSE_ON_ERROR_MODE_LEN>(l_error_mode);
        l_detect_slave = l_program.iv_addr_gen.template getBit<TT::MAINT_DETECT_SRANK_BOUNDARIES>();


        switch (i_end)
        {
            case end_boundary::STOP_AFTER_ADDRESS:
                l_stopped_at_boundary =
                    l_program.iv_config.template getBit< TT::MCBIST_CFG_FORCE_PAUSE_AFTER_ADDR>() ||
                    l_error_mode == end_boundary::STOP_AFTER_ADDRESS;
                break;

            case end_boundary::STOP_AFTER_SLAVE_RANK:
                // Note: we really want STOP_AFTER_MASTER_RANK here even though we're in the slave
                // case because MASTER_RANK has the a 0 so that l_error_mode will check correctly
                l_stopped_at_boundary =
                    l_program.iv_config.template getBit< TT::MCBIST_CFG_PAUSE_AFTER_RANK>() ||
                    ((l_error_mode == end_boundary::STOP_AFTER_MASTER_RANK) && (l_detect_slave == false));
                break;

            case end_boundary::STOP_AFTER_MASTER_RANK:
                l_stopped_at_boundary =
                    l_program.iv_config.template getBit< TT::MCBIST_CFG_PAUSE_AFTER_RANK>() ||
                    ((l_error_mode == end_boundary::STOP_AFTER_MASTER_RANK) && (l_detect_slave == true));
                break;

            case end_boundary::STOP_AFTER_SUBTEST:
                l_stopped_at_boundary =
                    l_program.iv_config.template getBit< TT::MCBIST_CFG_FORCE_PAUSE_AFTER_SUBTEST>() ||
                    l_error_mode == end_boundary::STOP_AFTER_SUBTEST;
                break;

            // By default we're not stopped at a boundary we're going to continue from
            default:
                break;
        };

        FAPI_ASSERT( l_stopped_at_boundary == false,
                     ET::memdiags_already_at_boundary().set_MC_TARGET(i_target).set_BOUNDARY(i_stop),
                     "Asked to stop at a boundary, but we're already there" );

        // Ok, if we're here either we need to change the stop and boundary conditions.
        // Read-modify-write the fields in the program.
        FAPI_TRY( mss::getScom(i_target, TT::MCBAGRAQ_REG, l_program.iv_addr_gen) );

        // Configure broadcast mode if needed
        FAPI_TRY(mss::mcbist::configure_broadcast_mode(i_target, l_program));

        l_program.change_end_boundary(i_end);

        FAPI_TRY( mss::mcbist::load_addr_gen(i_target, l_program) );

        FAPI_TRY( mss::mcbist::load_config(i_target, l_program) );
    }

    // Thresholds
    // According to API definition, 0 means don't change conditions
    if( i_stop != stop_conditions<MC>::DONT_CHANGE)
    {
        FAPI_TRY( mss::mcbist::load_thresholds(i_target, i_stop) );
    }

    // Setup speed
    FAPI_TRY( l_program.change_speed(i_target, i_speed) );

    // Load new speed unless we aren't changing it
    if( i_speed != speed::SAME_SPEED )
    {
        FAPI_TRY( load_mcbparm(i_target, l_program) );
    }

    // Tickle the resume from pause
    FAPI_TRY( mss::mcbist::resume(i_target) );

fapi_try_exit:
    return fapi2::current_err;
}

///
/// @brief Begin initialize memory
/// @tparam MC the mc type of the T
/// @tparam T fapi2::TargetType of the MC engine
/// @tparam TT the mcbistTraits associated with T
/// @param[in] i_target MC
/// @return FAPI2_RC_SUCCESS iff ok
///
template< mss::mc_type MC = DEFAULT_MC_TYPE, fapi2::TargetType T, typename TT = mcbistTraits<MC, T> >
fapi2::ReturnCode mss_initialize_memory(const fapi2::Target<T>& i_target )
{
    using ET = mss::mcbistMCTraits<MC>;
    FAPI_INF("Start mss_initialize_memory for %s", mss::c_str(i_target));

    // If there are no DIMM we don't need to bother. In fact, we can't as we didn't setup
    // attributes for the PHY, etc.
    if (mss::count_dimm(i_target) == 0)
    {
        FAPI_INF("... skipping scrub for %s - no DIMM ...", mss::c_str(i_target));
        return fapi2::FAPI2_RC_SUCCESS;
    }

    // If we're running in the simulator, we want to only touch the addresses which training touched
    uint8_t l_sim = 0;
    bool l_poll_results = false;
    fapi2::buffer<uint64_t> l_status;

    // A small vector of addresses to poll during the polling loop
    const std::vector<mss::poll_probe<T>> l_probes =
    {
        {i_target, "mcbist current address", TT::LAST_ADDR_REG},
    };

    // We'll fill in the initial delay below
    mss::poll_parameters l_poll_parameters(0, 200, 100 * mss::DELAY_1MS, 200, 10000);
    uint64_t l_memory_size = 0;

    FAPI_TRY( mss::eff_memory_size<MC>(i_target, l_memory_size) );
    l_poll_parameters.iv_initial_delay = mss::calculate_initial_delay<MC>(i_target, (l_memory_size * mss::BYTES_PER_GB));

    FAPI_TRY( mss::attr::get_is_simulation( l_sim) );

    if (l_sim)
    {
        FAPI_INF("running mss sim init in place of scrub for %s", mss::c_str(i_target));

        // Use some sort of pattern in sim in case the verification folks need to look for something
        // TK. Need a verification pattern. This is a not-good pattern for verification ... We don't really
        // have a good pattern for verification defined.
        auto l_rc = mss::mcbist::sim::sf_init<MC>(i_target, mss::mcbist::PATTERN_0);

        // Unmask firs and turn off FIFO mode before returning
        FAPI_TRY ( mss::unmask::after_memdiags<MC>( i_target ) );
        FAPI_TRY ( mss::reset_reorder_queue_settings<MC>(i_target) );

        return l_rc;
    }

    // In Cronus on hardware (which is how we got here - f/w doesn't call this) we want
    // to call sf_init (0's)
    // TK we need to check FIR given the way this is right now, we should adjust with better stop
    // conditions when we learn more about what we want to find in the lab
    FAPI_TRY( mss::memdiags::sf_init<MC>(i_target, mss::mcbist::PATTERN_0) );

    // Poll for completion.
    l_poll_results = mss::poll(i_target, TT::FIRQ_REG, l_poll_parameters,
                               [&l_status](const size_t poll_remaining,
                                           const fapi2::buffer<uint64_t>& stat_reg) -> bool
    {
        FAPI_DBG("mcbist firq 0x%llx, remaining: %d", stat_reg, poll_remaining);
        l_status = stat_reg;
        return l_status.getBit<TT::MCB_PROGRAM_COMPLETE>() == true;
    },
    l_probes);

    FAPI_ASSERT( l_poll_results == true,
                 ET::memdiags_sf_init_failed_init().set_MC_TARGET(i_target),
                 "sf init for scrub/memdiags timedout %s", mss::c_str(i_target) );

    // Unmask firs after memdiags and turn off FIFO mode
    FAPI_TRY ( mss::unmask::after_memdiags<MC>( i_target ) );
    FAPI_TRY ( mss::reset_reorder_queue_settings<MC>(i_target) );

fapi_try_exit:
    return fapi2::current_err;
}

///
/// @brief Begin background scrub helper
/// @tparam MC the mc type of the T
/// @tparam T fapi2::TargetType of the MCBIST engine
/// @tparam TT the mcbistTraits associated with T
/// @param[in] i_target MC
/// @return FAPI2_RC_SUCCESS iff ok
///
template< mss::mc_type MC = DEFAULT_MC_TYPE, fapi2::TargetType T, typename TT = mcbistTraits<MC, T> >
fapi2::ReturnCode mss_background_scrub_helper( const fapi2::Target<T>& i_target )
{
    FAPI_INF("Start mss_background_scrub_helper b on: %s", mss::c_str( i_target ));

    // If there are no DIMM we don't need to bother. In fact, we can't as we didn't setup
    // attributes for the PHY, etc.
    if (mss::count_dimm(i_target) == 0)
    {
        FAPI_INF("... skipping background scrub for %s - no DIMM ...", mss::c_str(i_target));
        return fapi2::FAPI2_RC_SUCCESS;
    }

    // If we're running in the simulator, we want to only touch the addresses which training touched
    uint8_t l_sim = 0;
    FAPI_TRY( mss::attr::get_is_simulation(l_sim) );

    // Kick off background scrub if we are not running in sim
    if (!(l_sim))
    {
        // Start background scrub
        FAPI_TRY ( mss::memdiags::background_scrub<MC>( i_target,
                   mss::mcbist::stop_conditions<MC>(),
                   mss::mcbist::speed::BG_SCRUB,
                   mss::mcbist::address() ) );
    }

    // Unmask firs after background scrub is started
    FAPI_TRY ( mss::unmask::after_background_scrub<MC>( i_target ) );

fapi_try_exit:
    return fapi2::current_err;
}

} // namespace memdiags

} // namespace mss
#endif
OpenPOWER on IntegriCloud