summaryrefslogtreecommitdiffstats
path: root/src/import/chips/p9/procedures/hwp/pm/p9_pstate_parameter_block.C
blob: 21aede9f6d573ba18d562e42d343ff8ab64d7e58 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401
3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435
3436
3437
3438
3439
3440
3441
3442
3443
3444
3445
3446
3447
3448
3449
3450
3451
3452
3453
3454
3455
3456
3457
3458
3459
3460
3461
3462
3463
3464
3465
3466
3467
3468
3469
3470
3471
3472
3473
3474
3475
3476
3477
3478
3479
3480
3481
3482
3483
3484
3485
3486
3487
3488
3489
3490
3491
3492
3493
3494
3495
3496
3497
3498
3499
3500
3501
3502
3503
3504
3505
3506
3507
3508
3509
3510
3511
3512
3513
3514
3515
3516
3517
3518
3519
3520
3521
3522
3523
3524
3525
3526
3527
3528
3529
3530
3531
3532
3533
3534
3535
3536
3537
3538
3539
3540
3541
3542
3543
3544
3545
3546
3547
3548
3549
3550
3551
3552
3553
3554
3555
3556
3557
3558
3559
3560
3561
3562
3563
3564
3565
3566
3567
3568
3569
3570
3571
3572
3573
3574
3575
3576
3577
3578
3579
3580
3581
3582
3583
3584
3585
3586
3587
3588
3589
3590
3591
3592
3593
3594
3595
3596
3597
3598
3599
3600
3601
3602
3603
3604
3605
3606
3607
3608
3609
3610
3611
3612
3613
3614
3615
3616
3617
3618
3619
3620
3621
3622
3623
3624
3625
3626
3627
3628
3629
3630
3631
3632
3633
3634
3635
3636
3637
3638
3639
3640
3641
3642
3643
3644
3645
3646
3647
3648
3649
3650
3651
3652
3653
3654
3655
3656
3657
3658
3659
3660
3661
3662
3663
3664
3665
3666
3667
3668
3669
3670
3671
3672
3673
3674
3675
3676
3677
3678
3679
3680
3681
3682
3683
3684
3685
3686
3687
3688
3689
3690
3691
3692
3693
3694
3695
3696
3697
3698
3699
3700
3701
3702
3703
3704
3705
3706
3707
3708
3709
3710
3711
3712
3713
3714
3715
3716
3717
3718
3719
3720
3721
3722
3723
3724
3725
3726
3727
3728
3729
3730
3731
3732
3733
3734
3735
3736
3737
3738
3739
3740
3741
3742
3743
3744
3745
3746
3747
3748
3749
3750
3751
3752
3753
3754
3755
3756
3757
3758
3759
3760
3761
3762
3763
3764
3765
3766
3767
3768
3769
3770
3771
3772
3773
3774
3775
3776
3777
3778
3779
3780
3781
3782
3783
3784
3785
3786
3787
3788
3789
3790
3791
3792
3793
3794
3795
3796
3797
/* IBM_PROLOG_BEGIN_TAG                                                   */
/* This is an automatically generated prolog.                             */
/*                                                                        */
/* $Source: src/import/chips/p9/procedures/hwp/pm/p9_pstate_parameter_block.C $ */
/*                                                                        */
/* OpenPOWER HostBoot Project                                             */
/*                                                                        */
/* Contributors Listed Below - COPYRIGHT 2015,2017                        */
/* [+] International Business Machines Corp.                              */
/*                                                                        */
/*                                                                        */
/* Licensed under the Apache License, Version 2.0 (the "License");        */
/* you may not use this file except in compliance with the License.       */
/* You may obtain a copy of the License at                                */
/*                                                                        */
/*     http://www.apache.org/licenses/LICENSE-2.0                         */
/*                                                                        */
/* Unless required by applicable law or agreed to in writing, software    */
/* distributed under the License is distributed on an "AS IS" BASIS,      */
/* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or        */
/* implied. See the License for the specific language governing           */
/* permissions and limitations under the License.                         */
/*                                                                        */
/* IBM_PROLOG_END_TAG                                                     */

///
/// @file  p9_pstate_parameter_block.C
/// @brief Setup Pstate super structure for PGPE/CME HCode
///
/// *HWP HW Owner        : Sudheendra K Srivathsa <sudheendraks@in.ibm.com>
/// *HWP HW Backup Owner : Greg Still <stillgs@us.ibm.com>
/// *HWP FW Owner        : Sangeetha T S <sangeet2@in.ibm.com>
/// *HWP Team            : PM
/// *HWP Level           : 2
/// *HWP Consumed by     : PGPE,CME
///
/// @verbatim
/// Procedure Summary:
///   - Read VPD and attributes to create the Pstate Parameter Block(s) (one each for PGPE,OCC and CMEs).
/// @endverbatim

// *INDENT-OFF*
//
// ----------------------------------------------------------------------
// Includes
// ----------------------------------------------------------------------
#include <fapi2.H>
#include <p9_pstate_parameter_block.H>
#include <p9_hcd_memmap_base.H>
#include "p9_pm_get_poundw_bucket.H"
#include "p9_resclk_defines.H"
#include <attribute_ids.H>
#include <math.h>
//the value in this table are in Index format
uint8_t g_GreyCodeIndexMapping [] =
{
/*    0x00*/ 0,
/*    0x01*/ 1,
/*    0x02*/ 3,
/*    0x03*/ 2,
/*    0x04*/ 7,
/*    0x05*/ 6,
/*    0x06*/ 4,
/*    0x07*/ 5,
/*    0x08*/ 12,
/*    0x09*/ 12,
/*    0x0a*/ 12,
/*    0x0b*/ 12,
/*    0x0c*/ 8,
/*    0x0d*/ 9,
/*    0x0e*/ 11,
/*    0x0f*/ 10
};

fapi2::vdmData_t g_vpdData = {1,
                              2,
{
    0x29, 0x0C, 0x05, 0xC3, 0x61, 0x36, 0x1, 0x3, 0x0, 0x0,   //Nominal
    0x28, 0xa8, 0x05, 0x5f, 0x21, 0x36, 0x1, 0x3, 0x0, 0x0,   //PowerSave
    0x29, 0x70, 0x06, 0x27, 0x71, 0x36, 0x1, 0x3, 0x0, 0x0,   //Turbo
    0x29, 0xD4, 0x06, 0x8b, 0x51, 0x36, 0x1, 0x3, 0x0, 0x0,   //UltraTurbo
    0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x0, 0x0, 0x0, 0x0,   //Resistance
    0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x0, 0x0, 0x0, 0x0    //Spare
}
                             };


uint8_t g_wofData[] = { 0x57, 0x46, 0x54, 0x48  /*MAGIC CODE WFTH*/,
                        0x00, 0x00, 0x00, 0x01  /*version*/,
                        0x00, 0x80              /*VFRT block size*/,
                        0x00, 0x08              /*VFRT header size*/,
                        0x00, 0x01              /*VFRT data size*/,
                        0x6                     /*Quad value*/,
                        0x18                    /*core count*/,
                        0x00, 0xFA              /*Vdn start*/,
                        0x00, 0x64              /*Vdn step*/,
                        0x00, 0x08              /*Vdn size*/,
                        0x00, 0x00              /*Vdd start*/,
                        0x00, 0x32              /*Vdd step*/,
                        0x00, 0x15              /*Vdd size*/,
                        0x03, 0xE8              /*Vratio start*/,
                        0x00, 0x53              /*Vratio step*/,
                        0x00, 0x18              /*Vratio size*/,
                        0x03, 0xE8              /*Fratio start*/,
                        0x00, 0x64              /*Fratio step*/,
                        0x00, 0x5               /*Fratio size*/,
                        0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 /*Vdn percent*/,
                        0x00, 0x64              /*Socket power Watts*/,
                        0x07, 0x4a              /*nest freq*/,
                        0x09, 0x60              /*nominl freq*/,
                        0x00, 0x00              /*RDP capacity*/,
                        0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 /* WOF table source tag*/,
                        0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 /*package name*/,
                        0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
                        0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
                        0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, /*Pad to 128B*/
                      };


uint8_t g_sysvfrtData[] = {0x56, 0x54, 0x00, 0x00, 0x02, 0x01, 0x01, 0x06, /// VFRT header values
                           // Magic_codea(2B)
                           // reserved(2B)
                           // type(4b),version(4b)
                           // vdn(1B),vdd(1B)
                           // quad id(1B)
                           0xB1, 0xB1, 0xB0, 0xAF, 0xA9, 0xA1, 0x97, 0x8E, 0x86, 0x7F, 0x78, 0x73, 0x6D, 0x68, 0x63, 0x5F, 0x5B, 0x57, 0x53, 0x4E, 0x4D, 0x4D, 0x4D, 0x4D,
                           0xB1, 0xB1, 0xB0, 0xAF, 0xA9, 0xA1, 0x97, 0x8E, 0x86, 0x7F, 0x78, 0x73, 0x6D, 0x68, 0x63, 0x5F, 0x5B, 0x57, 0x53, 0x4E, 0x4D, 0x4D, 0x4D, 0x4D,
                           0xB1, 0xB1, 0xB0, 0xAF, 0xA9, 0xA1, 0x97, 0x8E, 0x86, 0x7F, 0x78, 0x73, 0x6D, 0x68, 0x63, 0x5F, 0x5B, 0x57, 0x53, 0x4E, 0x4D, 0x4D, 0x4D, 0x4D,
                           0xB1, 0xB1, 0xB0, 0xAF, 0xA9, 0xA1, 0x97, 0x8E, 0x86, 0x7F, 0x78, 0x73, 0x6D, 0x68, 0x63, 0x5F, 0x5B, 0x57, 0x53, 0x4E, 0x4D, 0x4D, 0x4D, 0x4D,
                           0xB1, 0xB1, 0xB0, 0xAF, 0xA9, 0xA1, 0x97, 0x8E, 0x86, 0x7F, 0x78, 0x73, 0x6D, 0x68, 0x63, 0x5F, 0x5B, 0x57, 0x53, 0x4E, 0x4D, 0x4D, 0x4D, 0x4D
                          };

#define VALIDATE_VID_VALUES(w,x,y,z,state) \
    if (!((w < x) && (x < y) && (y < z)))  \
       {state = 0;}

#define VALIDATE_THRESHOLD_VALUES(w,x,y,z,state) \
    if ((w > 0x7 && w != 0xC) || /* overvolt */ \
        (x == 8) ||  (x == 9) || (x > 0xF) ||  \
        (y == 8) ||  (y == 9) || (y > 0xF) ||  \
        (z == 8) ||  (z == 9) || (z > 0xF)   ) \
       {state = 0;}

//w => N_L (w > 7 is invalid)
//x => N_S (x > N_L is invalid)
//y => L_S (y > (N_L - S_N) is invalid)
//z => S_N (z > N_S is invalid
#define VALIDATE_FREQUENCY_DROP_VALUES(w,x,y,z,state) \
    if ((w > 7)         ||  \
        (x > w)         ||  \
        (y > (w - z))   ||  \
        (z > x)         ||  \
        ((w | x | y | z) == 0)) \
       {state = 0; }

#define VALIDATE_WOF_HEADER_DATA(a,b,c,d,e,f,g,state)        if ( ((!a) || (!b) || (!c) || (!d) || (!e) || (!f) || (!g)))  \
                                                                {state = 0; }



double internal_ceil(double x)
{
    if ((x-(int)(x))>0) return (int)x+1;
    return ((int)x);
}

double internal_floor(double x)
{
    if(x>=0)return (int)x;
    return (int)(x-0.9999999999999999);
}


// Struct Variable for all attributes
AttributeList attr;

// Strings used in traces
char const* vpdSetStr[NUM_VPD_PTS_SET] = VPD_PT_SET_ORDER_STR;
char const* region_names[]     = { "REGION_POWERSAVE_NOMINAL",
                                   "REGION_NOMINAL_TURBO",
                                   "REGION_TURBO_ULTRA"
                                 };
char const* prt_region_names[] = VPD_OP_SLOPES_REGION_ORDER_STR;

bool
is_wof_enabled()
{
    return (!(attr.attr_system_wof_disable) && !(attr.attr_dd_wof_not_supported)) ? true : false;
}

bool
is_vdm_enabled()
{
    return (!(attr.attr_system_vdm_disable) && !(attr.attr_dd_vdm_not_supported)) ? true : false;
}

// START OF PSTATE PARAMETER BLOCK function

/// -------------------------------------------------------------------
/// @brief Populate Pstate super structure from VPD data
/// @param[in]    i_target          => Chip Target
/// @param[inout] *io_pss           => pointer to pstate superstructure
/// @param[out]   *o_buf            => wof table data
/// @param[inout] &io_size          => wof table data size
/// @return   FAPI2::SUCCESS
/// -------------------------------------------------------------------

fapi2::ReturnCode
p9_pstate_parameter_block( const fapi2::Target<fapi2::TARGET_TYPE_PROC_CHIP>& i_target,
                           PstateSuperStructure* io_pss, uint8_t* o_buf, uint32_t& io_size)
{
    FAPI_INF("> p9_pstate_parameter_block");
    const fapi2::Target<fapi2::TARGET_TYPE_SYSTEM> FAPI_SYSTEM;
    fapi2::ReturnCode l_rc         = 0;

    do
    {

        // -----------------------------------------------------------
        // Clear the PstateSuperStructure and install the magic number
        //----------------------------------------------------------
        memset(io_pss, 0, sizeof(PstateSuperStructure));
        FAPI_INF("Populating magic number in Pstate Parameter block structure");
        (*io_pss).magic = revle64(PSTATE_PARMSBLOCK_MAGIC);

        //Local variables for Global,local and OCC parameter blocks
        // PGPE content
        GlobalPstateParmBlock l_globalppb;

        // CME content
        LocalPstateParmBlock l_localppb;

        // OCC content
        OCCPstateParmBlock l_occppb;
        PSTATE_attribute_state l_state;
        l_state.iv_pstates_enabled = true;
        l_state.iv_resclk_enabled  = true;
        l_state.iv_vdm_enabled     = true;
        l_state.iv_ivrm_enabled    = true;
        l_state.iv_wof_enabled     = true;


        memset (&l_globalppb, 0, sizeof(GlobalPstateParmBlock));
        memset (&l_localppb, 0, sizeof(LocalPstateParmBlock));
        memset (&l_occppb , 0, sizeof (OCCPstateParmBlock));

        PoundW_data l_poundw_data;
        memset (&l_poundw_data,0,sizeof(l_poundw_data));

        //ChipCharacterization* characterization;

        // MVPD #V variables
        uint32_t attr_mvpd_voltage_control[PV_D][PV_W];
        uint8_t present_chiplets = 0;
        uint32_t valid_pdv_points = 0;

        //Variables for Loadline, Distribution loss and offset
        SysPowerDistParms l_vdd_sysparm;
        SysPowerDistParms l_vcs_sysparm;
        SysPowerDistParms l_vdn_sysparm;
        memset(&l_vdd_sysparm,0x00,sizeof(SysPowerDistParms));
        memset(&l_vcs_sysparm,0x00,sizeof(SysPowerDistParms));
        memset(&l_vdn_sysparm,0x00,sizeof(SysPowerDistParms));

        // Local IDDQ table variable
        IddqTable l_iddqt;
        memset( & l_iddqt, 0x00, sizeof(IddqTable));

        // Frequency step variable
        double l_frequency_step_khz;

        //VDM Parm block
        GP_VDMParmBlock l_gp_vdmpb;
        memset (&l_gp_vdmpb,0x00,sizeof(GP_VDMParmBlock));

        LP_VDMParmBlock   l_lp_vdmpb;
        memset (&l_lp_vdmpb, 0x00, sizeof(LP_VDMParmBlock));

        //Resonant Clocking setup
        ResonantClockingSetup l_resclk_setup;
        memset (&l_resclk_setup,0x00, sizeof(ResonantClockingSetup));

        //IVRM Parm block
        IvrmParmBlock l_ivrmpb;
        memset (&l_ivrmpb, 0x00,sizeof(IvrmParmBlock));

        // VPD voltage and frequency biases
        VpdBias l_vpdbias[NUM_OP_POINTS];
        memset (l_vpdbias,0,sizeof(VpdBias));


        // -------------------------
        // Get all attributes needed
        // -------------------------
        FAPI_INF("Getting Attributes to build Pstate Superstructure");

        FAPI_TRY(proc_get_attributes(i_target, &attr), "Get attributes function failed");

        //if PSTATES_MODE is off then we dont need to execute further to collect
        //the data.
        if (attr.attr_pstate_mode == fapi2::ENUM_ATTR_SYSTEM_PSTATES_MODE_OFF)
        {
            FAPI_INF("Pstate mode is to not boot the PGPE.  Thus, none of the parameter blocks will be constructed");

            // Set the io_size to 0 so that memory allocation issues won't be
            // detected by the caller.

            io_size = 0;

            break;
        }

        // ----------------
        // get #V data
        // ----------------
        FAPI_IMP("Getting #V Data");
        uint8_t l_poundv_bucketId = 0;

        // clear MVPD array
        memset(attr_mvpd_voltage_control, 0, sizeof(attr_mvpd_voltage_control));
        fapi2::voltageBucketData_t l_poundv_data;


        FAPI_TRY(proc_get_mvpd_data( i_target, attr_mvpd_voltage_control, &valid_pdv_points, &present_chiplets,
                                   l_poundv_bucketId, &l_poundv_data, &l_state),
                          "proc_get_mvpd_data function failed to retrieve porund V data");

        if (!present_chiplets)
        {
            FAPI_IMP("**** WARNING : There are no EQ chiplets present which means there is no valid #V VPD");
            FAPI_IMP("**** WARNING : Pstates and all related functions will NOT be enabled.");
            l_state.iv_pstates_enabled = false;

//             FAPI_ASSERT(false,
//                         fapi2::PSTATE_PB_NO_PRESENT_CHIPLETS_ERROR()
//                         .set_CHIP_TARGET(i_target)
//                         .set_PRESENT_CHIPLETS(present_chiplets),
//                         "No eq chiplets are present for a give proc target");

            // Set the io_size to 0 so that memory allocation issues won't be
            // detected by the caller.

            io_size = 0;

            break;
        }

        FAPI_DBG("Pstate Base Frequency - Raw %X (%d)",
                 attr_mvpd_voltage_control[ULTRA][0] * 1000,
                 attr_mvpd_voltage_control[ULTRA][0] * 1000);

        //Calculate freq step value
        l_frequency_step_khz = (attr.attr_freq_proc_refclock_khz / attr.attr_proc_dpll_divider);

        VpdOperatingPoint l_raw_operating_points[NUM_OP_POINTS];
        FAPI_INF("Load RAW VPD");
        FAPI_TRY(load_mvpd_operating_point(attr_mvpd_voltage_control, l_raw_operating_points, l_frequency_step_khz),
                 "Loading MVPD operating point failed");

        // ---------------------------------------------
        // process external and internal bias attributes
        // ---------------------------------------------
        FAPI_IMP("Apply Biasing to #V");

        FAPI_TRY(proc_get_extint_bias(attr_mvpd_voltage_control, &attr, l_vpdbias),
                 "Bias application function failed");

        //Validating Bias values
        FAPI_INF("Validate Biasd Voltage and Frequency values");

        FAPI_TRY(proc_chk_valid_poundv( i_target,
                                        attr_mvpd_voltage_control,
                                        &valid_pdv_points,
                                        i_target.getChipletNumber(),
                                        l_poundv_bucketId,
                                        &l_state));

        FAPI_DBG("Pstate Base Frequency - after bias %X (%d)",
                 attr_mvpd_voltage_control[ULTRA][0] * 1000,
                 attr_mvpd_voltage_control[ULTRA][0] * 1000);

        // -----------------------------------------------
        // System power distribution parameters
        // -----------------------------------------------
        // VDD rail
        l_vdd_sysparm.loadline_uohm = revle32(attr.attr_proc_r_loadline_vdd_uohm);
        l_vdd_sysparm.distloss_uohm = revle32(attr.attr_proc_r_distloss_vdd_uohm);
        l_vdd_sysparm.distoffset_uv = revle32(attr.attr_proc_vrm_voffset_vdd_uv);

        // VCS rail
        l_vcs_sysparm.loadline_uohm = revle32(attr.attr_proc_r_loadline_vcs_uohm);
        l_vcs_sysparm.distloss_uohm = revle32(attr.attr_proc_r_distloss_vcs_uohm);
        l_vcs_sysparm.distoffset_uv = revle32(attr.attr_proc_vrm_voffset_vcs_uv);

        // VDN rail
        l_vdn_sysparm.loadline_uohm = revle32(attr.attr_proc_r_loadline_vdn_uohm);
        l_vdn_sysparm.distloss_uohm = revle32(attr.attr_proc_r_distloss_vdn_uohm);
        l_vdn_sysparm.distoffset_uv = revle32(attr.attr_proc_vrm_voffset_vdn_uv);

        //if wof is disabled.. don't call IQ function
        if (is_wof_enabled())
        {
            // ----------------
            // get IQ (IDDQ) data
            // ----------------
            FAPI_INF("Getting IQ (IDDQ) Data");
            l_rc = proc_get_mvpd_iddq(i_target, &l_iddqt, &l_state);

            if (l_rc)
            {
                FAPI_ASSERT_NOEXIT(false,
                                   fapi2::PSTATE_PB_FUNCTION_FAIL(fapi2::FAPI2_ERRL_SEV_RECOVERED)
                                   .set_CHIP_TARGET(i_target)
                                   .set_FAPI_RC(l_rc),
                                   "Pstate Parameter Block proc_get_mvpd_iddq function failed");
                fapi2::current_err = fapi2::FAPI2_RC_SUCCESS;
            }
        }
        else
        {
            FAPI_INF("Skipping IQ (IDDQ) Data as WOF is disabled");
            l_state.iv_wof_enabled = false;
        }

        // ----------------
        // get VDM Parameters data
        // ----------------
        FAPI_INF("Getting VDM Parameters Data");
        FAPI_TRY(proc_get_vdm_parms(i_target, &attr, &l_gp_vdmpb));

        // Note:  the proc_get_mvpd_poundw has the conditional checking for VDM and WOF enablement
        // as #W has both VDM and WOF content

        l_rc = proc_get_mvpd_poundw(i_target, l_poundv_bucketId, &l_lp_vdmpb, &l_poundw_data, l_poundv_data, &l_state);

        if (l_rc)
        {
            FAPI_ASSERT_NOEXIT(false,
                               fapi2::PSTATE_PB_FUNCTION_FAIL(fapi2::FAPI2_ERRL_SEV_RECOVERED)
                               .set_CHIP_TARGET(i_target)
                               .set_FAPI_RC(l_rc),
                               "Pstate Parameter Block proc_get_mvpd_poundw function failed");
            fapi2::current_err = fapi2::FAPI2_RC_SUCCESS;
        }


        // ----------------
        // get IVRM Parameters data
        // ----------------
        FAPI_INF("Getting IVRM Parameters Data");
        FAPI_TRY(proc_get_ivrm_parms(i_target, &attr, &l_ivrmpb, &l_state));

        // -----------------------------------------------
        // Global parameter block
        // -----------------------------------------------

        // Needs to be Endianness corrected going into the block

        l_globalppb.magic = revle64(PSTATE_PARMSBLOCK_MAGIC);

        l_globalppb.options.options = 0;   // until options get defined.

        // Pstate Options @todo RTC 161279, Check what needs to be populated here

        // @todo RTC 161279 - Corresponds to Pstate 0 . Setting to ULTRA TURBO frequency point. REVIEW with Greg
        // FIXME this should be the l_operating_points[VPD_PT_SET_BIASED][ULTRA].frequency_mhz value with
        // p9_pstate_compute_vpd_pts ahead of this!!!!
        l_globalppb.reference_frequency_khz = revle32((attr_mvpd_voltage_control[ULTRA][0] * 1000));
        FAPI_INF("Pstate Base Frequency %X (%d)",
                 revle32(l_globalppb.reference_frequency_khz),
                 revle32(l_globalppb.reference_frequency_khz));

        // frequency_step_khz
        l_globalppb.frequency_step_khz = revle32(l_frequency_step_khz);
        l_globalppb.nest_frequency_mhz = revle32(attr.attr_nest_frequency_mhz);

        // External VRM parameters
        l_globalppb.ext_vrm_transition_start_ns = revle32(attr.attr_ext_vrm_transition_start_ns);
        l_globalppb.ext_vrm_transition_rate_inc_uv_per_us = revle32(attr.attr_ext_vrm_transition_rate_inc_uv_per_us);
        l_globalppb.ext_vrm_transition_rate_dec_uv_per_us = revle32(attr.attr_ext_vrm_transition_rate_dec_uv_per_us);
        l_globalppb.ext_vrm_stabilization_time_us = revle32(attr.attr_ext_vrm_stabilization_time_us);
        l_globalppb.ext_vrm_step_size_mv = revle32(attr.attr_ext_vrm_step_size_mv);

        // -----------------------------------------------
        // populate VpdOperatingPoint with biased MVPD attributes
        // -----------------------------------------------

        FAPI_INF("Load VPD");
        // VPD operating point
        FAPI_TRY(load_mvpd_operating_point(attr_mvpd_voltage_control, l_globalppb.operating_points, l_frequency_step_khz),
                 "Loading MVPD operating point failed");

        // VpdBias External and Internal Biases for Global and Local parameter block
        for (uint8_t i = 0; i < NUM_OP_POINTS; i++)
        {
            l_globalppb.ext_biases[i] = l_vpdbias[i];
            l_globalppb.int_biases[i] = l_vpdbias[i];

            l_localppb.ext_biases[i]  = l_vpdbias[i];
            l_localppb.int_biases[i]  = l_vpdbias[i];
        }

        l_globalppb.vdd_sysparm = l_vdd_sysparm;
        l_globalppb.vcs_sysparm = l_vcs_sysparm;
        l_globalppb.vdn_sysparm = l_vdn_sysparm;

        // safe_voltage_mv
        l_globalppb.safe_voltage_mv = revle32(attr.attr_pm_safe_voltage_mv);

        // safe_frequency_khz
        l_globalppb.safe_frequency_khz = revle32(attr.attr_pm_safe_frequency_mhz / 1000);

        // vrm_stepdelay_range -@todo RTC 161279 potential attributes to be defined

        // vrm_stepdelay_value -@todo RTC 161279 potential attributes to be defined

        VpdOperatingPoint l_operating_points[NUM_VPD_PTS_SET][NUM_OP_POINTS];
        // Compute VPD points
        p9_pstate_compute_vpd_pts(l_operating_points, &l_globalppb, l_raw_operating_points);

        memcpy(l_globalppb.operating_points_set, l_operating_points, sizeof(l_operating_points));

        // ----------------
        // get Resonant clocking attributes
        // ----------------
        {
            if (attr.attr_resclk_disable == fapi2::ENUM_ATTR_SYSTEM_RESCLK_DISABLE_OFF)
            {
                FAPI_TRY(proc_set_resclk_table_attrs(i_target, &l_state), "proc_set_resclk_table_attrs failed");
                if (l_state.iv_resclk_enabled)
                {
                    FAPI_TRY(proc_res_clock_setup(i_target, &l_resclk_setup, &l_globalppb));
                    l_localppb.resclk = l_resclk_setup;
                    l_globalppb.resclk = l_resclk_setup;
                }

                FAPI_INF("Resonant Clocks are enabled");
            }
            else
            {
                l_state.iv_resclk_enabled = false;
                FAPI_INF("Resonant Clocks are disabled.  Skipping setup.");
            }
        }

        // VDMParmBlock vdm
        l_globalppb.vdm = l_gp_vdmpb;

        // IvrmParmBlock
        l_globalppb.ivrm = l_ivrmpb;

        // Calculate pre-calculated slopes
        p9_pstate_compute_PsV_slopes(l_operating_points, &l_globalppb); //Remote this RTC: 174743
        p9_pstate_compute_PStateV_slope(l_operating_points, &l_globalppb);

        l_globalppb.dpll_pstate0_value = revle32(revle32(l_globalppb.reference_frequency_khz)  / revle32(
                                             l_globalppb.frequency_step_khz));

        FAPI_INF("l_globalppb.dpll_pstate0_value %X", revle32(l_globalppb.dpll_pstate0_value));

        // -----------------------------------------------
        // Local parameter block
        // -----------------------------------------------
        l_localppb.magic = revle64(LOCAL_PARMSBLOCK_MAGIC);

        // VPD operating point
        FAPI_TRY(load_mvpd_operating_point(attr_mvpd_voltage_control, l_localppb.operating_points, l_frequency_step_khz),
                 "Loading MVPD operating point failed");

        l_localppb.vdd_sysparm = l_vdd_sysparm;

        // IvrmParmBlock
        l_localppb.ivrm = l_ivrmpb;

        // VDMParmBlock
        l_localppb.vdm = l_lp_vdmpb;


        l_localppb.dpll_pstate0_value = revle32(revle32(l_globalppb.reference_frequency_khz)  / revle32(
                                             l_globalppb.frequency_step_khz));


        FAPI_INF("l_localppb.dpll_pstate0_value %X", revle32(l_localppb.dpll_pstate0_value));

        uint8_t l_biased_pstate[NUM_OP_POINTS];

        for (uint8_t i = 0; i < NUM_OP_POINTS; ++i)
        {
            l_biased_pstate[i] = l_operating_points[VPD_PT_SET_BIASED][i].pstate;
            FAPI_INF ("l_biased_pstate %d ", l_biased_pstate[i]);
        }

        if (attr.attr_system_vdm_disable == fapi2::ENUM_ATTR_SYSTEM_VDM_DISABLE_OFF)
        {
            p9_pstate_compute_vdm_threshold_pts(l_poundw_data, &l_localppb);

           // VID slope calculation
           p9_pstate_compute_PsVIDCompSlopes_slopes(l_poundw_data, &l_localppb, l_biased_pstate);

           // VDM threshold slope calculation
           p9_pstate_compute_PsVDMThreshSlopes(&l_localppb, l_biased_pstate);
           // VDM Jump slope calculation
           p9_pstate_compute_PsVDMJumpSlopes (&l_localppb, l_biased_pstate);


           //Initializing threshold values for GPPB
           memcpy (l_globalppb.vid_point_set,l_localppb.vid_point_set,sizeof(l_localppb.vid_point_set));
           memcpy (l_globalppb.threshold_set, l_localppb.threshold_set, sizeof(l_localppb.threshold_set));
           memcpy (l_globalppb.PsVIDCompSlopes, l_localppb.PsVIDCompSlopes,sizeof(l_localppb.PsVIDCompSlopes));
           memcpy (l_globalppb.PsVDMThreshSlopes, l_localppb.PsVDMThreshSlopes, sizeof(l_localppb.PsVDMThreshSlopes));
           memcpy (l_globalppb.PsVDMJumpSlopes, l_localppb.PsVDMJumpSlopes, sizeof(l_localppb.PsVDMJumpSlopes));
        }
        // -----------------------------------------------
        // OCC parameter block
        // -----------------------------------------------
        l_occppb.magic = revle64(OCC_PARMSBLOCK_MAGIC);

        // VPD operating point
        FAPI_TRY(load_mvpd_operating_point(attr_mvpd_voltage_control, l_occppb.operating_points, l_frequency_step_khz),
                 "Loading MVPD operating point failed");

        l_occppb.vdd_sysparm = l_vdd_sysparm;
        l_occppb.vcs_sysparm = l_vcs_sysparm;
        l_occppb.vdn_sysparm = l_vdn_sysparm;

        // Iddq Table
        l_occppb.iddq = l_iddqt;

        //WOFElements - @todo RTC 161279 (VID Modification table not populated)

        l_occppb.wof.tdp_rdp_factor = revle32(attr.attr_tdp_rdp_current_factor);

        // frequency_min_khz - Value from Power save operating point after biases
        l_occppb.frequency_min_khz = revle32(attr_mvpd_voltage_control[VPD_PV_POWERSAVE][0] * 1000);

        // frequency_max_khz - Value from Ultra Turbo operating point after biases
        l_occppb.frequency_max_khz = revle32(attr_mvpd_voltage_control[VPD_PV_ULTRA][0] * 1000);

        // frequency_step_khz
        l_occppb.frequency_step_khz = revle32(l_frequency_step_khz);

        //nest leakage percent
        l_occppb.nest_leakage_percent = attr.attr_nest_leakage_percent;

        FAPI_INF("l_occppb.nest_leakage_percent %x", l_occppb.nest_leakage_percent);

        l_occppb.lac_tdp_vdd_turbo_10ma   = revle16(l_poundw_data.poundw[TURBO].ivdd_tdp_ac_current_10ma);
        l_occppb.lac_tdp_vdd_nominal_10ma = revle16(l_poundw_data.poundw[NOMINAL].ivdd_tdp_ac_current_10ma);

        FAPI_INF("l_occppb.lac_tdp_vdd_turbo_10ma %x", l_occppb.lac_tdp_vdd_turbo_10ma);
        FAPI_INF("l_occppb.lac_tdp_vdd_nominal_10ma %x",l_occppb.lac_tdp_vdd_nominal_10ma);

        //Power bus vdn voltage
        uint16_t l_vpd_vdn_mv = revle16(l_poundv_data.VdnPbVltg);
        FAPI_INF("l_vpd_vdn_mv %x", (l_vpd_vdn_mv));

        //Power bus nest freq
        uint16_t l_pbus_nest_freq = revle16(l_poundv_data.pbFreq);

        FAPI_INF("l_pbus_nest_freq %x", (l_pbus_nest_freq));

        // I- VDN PB current
        uint16_t l_vpd_idn_100ma = revle16(l_poundv_data.IdnPbCurr);
        FAPI_INF("l_vpd_idn_100ma %x", (l_vpd_idn_100ma));

        uint8_t l_nest_leakage_for_occ = 75;

        if (attr.attr_system_wof_disable == fapi2::ENUM_ATTR_SYSTEM_WOF_DISABLE_OFF)
        {        io_size = 0;

            uint16_t l_iac_tdp_vdn = get_iac_vdn_value (l_vpd_vdn_mv, l_iddqt, l_nest_leakage_for_occ,
                                     l_vpd_idn_100ma);

            if (!l_iac_tdp_vdn)
            {
                l_state.iv_wof_enabled = false;
            }
            else
            {
                l_occppb.ceff_tdp_vdn =  revle16(pstate_calculate_effective_capacitance(l_iac_tdp_vdn,
                                             l_vpd_vdn_mv * 1000,
                                             l_pbus_nest_freq));
            }
            FAPI_INF("l_iac_tdp_vdn %x", l_iac_tdp_vdn);
            FAPI_INF("l_occppb.ceff_tdp_vdn %x", revle16(l_occppb.ceff_tdp_vdn));
        }
        else
        {
            l_state.iv_wof_enabled = false;
        }


        // @todo RTC 161279 - Need Pstate 0 definition and freq2pstate function to be coded

        Pstate pstate_min;
        int rc = freq2pState(&l_globalppb, revle32(l_occppb.frequency_min_khz), &pstate_min);

        switch (rc)
        {
            case -PSTATE_LT_PSTATE_MIN:
                FAPI_INF("OCC Minimum Frequency was clipped to Pstate 0");
                break;

            case -PSTATE_GT_PSTATE_MAX:
                FAPI_INF("OCC Minimum FrequenL1617cy %d KHz is outside the range that can be represented"
                         " by a Pstate with a base frequency of %d KHz and step size %d KHz",
                         revle32(l_occppb.frequency_min_khz),
                         revle32(l_globalppb.reference_frequency_khz),
                         revle32(l_globalppb.frequency_step_khz));
                FAPI_INF("Pstate is set to %X (%d)", pstate_min);
                break;
        }

        l_occppb.pstate_min = pstate_min;

        // pstate_max

        gppb_print(&(l_globalppb));
        oppb_print(&(l_occppb));


        //Check WOF is enabled or not
        io_size = 0;

        if (!attr.attr_system_wof_disable && l_state.iv_wof_enabled)
        {
            p9_pstate_wof_initialization(&l_globalppb,
                                         o_buf,
                                         io_size,
                                         &l_state,
                                         attr_mvpd_voltage_control[VPD_PV_ULTRA][0]);
        }
        else
        {
            FAPI_INF("WOF is not enabled");
            l_state.iv_wof_enabled = false;
        }

        l_occppb.wof.wof_enabled = l_state.iv_wof_enabled;
        // QuadManagerFlags
        QuadManagerFlags l_qm_flags;
        FAPI_TRY(p9_pstate_set_global_feature_attributes(i_target,
                 l_state,
                 &l_qm_flags));
        l_localppb.qmflags = l_qm_flags;
        // -----------------------------------------------
        // Populate Global,local and OCC parameter blocks into Pstate super structure
        // -----------------------------------------------
        (*io_pss).globalppb = l_globalppb;
        (*io_pss).localppb = l_localppb;
        (*io_pss).occppb = l_occppb;
    }
    while(0);

fapi_try_exit:
    FAPI_INF("< p9_pstate_parameter_block");

    if (fapi2::current_err)
    {
        fapi2::logError(fapi2::current_err,fapi2::FAPI2_ERRL_SEV_RECOVERED);
        fapi2::current_err = fapi2::FAPI2_RC_SUCCESS;
    }

    return fapi2::current_err;
}
// END OF PSTATE PARAMETER BLOCK function


void p9_pstate_wof_initialization (const GlobalPstateParmBlock* i_gppb,
                                   uint8_t* o_buf,
                                   uint32_t& io_size,
                                   PSTATE_attribute_state* o_state,
                                   const uint32_t i_base_state_frequency)
{
    fapi2::ReturnCode l_rc = 0;
    //If this attribute is set then read the VFRT data from static table.
    const fapi2::Target<fapi2::TARGET_TYPE_SYSTEM> FAPI_SYSTEM;
    uint8_t l_sys_vfrt_static_data = 0;
    FAPI_ATTR_GET(fapi2::ATTR_SYS_VFRT_STATIC_DATA_ENABLE,
                  FAPI_SYSTEM,
                  l_sys_vfrt_static_data);

    //this structure has VFRT header + data
    HomerVFRTLayout_t l_vfrt;
    memset (&l_vfrt, 0, sizeof(l_vfrt));
    FAPI_INF("Entering WOF initialization part");

    if (l_sys_vfrt_static_data)
    {
        FAPI_DBG("ATTR_SYS_VFRT_STATIC_DATA_ENABLE is SET");
        // Copy WOF header data
        FAPI_INF("WFTH struct size = %d", sizeof(g_wofData));
        memcpy (o_buf, g_wofData, sizeof(g_wofData));
        uint32_t l_index = sizeof(g_wofData);

        WofTablesHeader_t* p_wfth;
        p_wfth = reinterpret_cast<WofTablesHeader_t*>(o_buf);
        FAPI_INF("WFTH: %X", revle32(p_wfth->magic_number));

        for (uint32_t vfrt_index = 0; vfrt_index < (CEF_VDN_INDEX * CEF_VDD_INDEX * ACTIVE_QUADS); ++vfrt_index)
        {
            p9_pstate_update_vfrt (i_gppb,
                                   g_sysvfrtData,
                                   &l_vfrt,
                                   i_base_state_frequency);

            memcpy(o_buf + l_index, &l_vfrt, sizeof (l_vfrt));
            l_index += sizeof (l_vfrt);
        }
        io_size = l_index;
    }
    else
    {
        FAPI_DBG("ATTR_SYS_VFRT_STATIC_DATA_ENABLE is not SET");

        do
        {
            // Read System VFRT data
            // Use new to avoid over-running the stack
            fapi2::ATTR_WOF_TABLE_DATA_Type* l_wof_table_data =
                (fapi2::ATTR_WOF_TABLE_DATA_Type*)new fapi2::ATTR_WOF_TABLE_DATA_Type;
            l_rc = FAPI_ATTR_GET(fapi2::ATTR_WOF_TABLE_DATA,
                                 FAPI_SYSTEM,
                                 (*l_wof_table_data));
            if (l_rc)
            {
                o_state->iv_wof_enabled = false;
                FAPI_ASSERT_NOEXIT(false,
                                   fapi2::PSTATE_PB_FUNCTION_FAIL(fapi2::FAPI2_ERRL_SEV_RECOVERED)
                                   .set_CHIP_TARGET(FAPI_SYSTEM)
                                   .set_FAPI_RC(l_rc),
                                   "Pstate Parameter Block ATTR_WOF_TABLE_DATA attribute failed");
                break;
            }

            // Copy WOF header data
            FAPI_INF("WFTH struct size = %d", sizeof(g_wofData));
            memcpy (o_buf, (*l_wof_table_data), sizeof(WofTablesHeader_t));
            uint32_t l_wof_table_index = sizeof(WofTablesHeader_t);
            uint32_t l_index = sizeof(WofTablesHeader_t);

            //Validate WOF header part
            WofTablesHeader_t* p_wfth;
            p_wfth = reinterpret_cast<WofTablesHeader_t*>(o_buf);
            FAPI_INF("WFTH: %X", revle32(p_wfth->magic_number));

            bool l_wof_header_data_state = 1;
            VALIDATE_WOF_HEADER_DATA(p_wfth->magic_number,
                                     p_wfth->reserved_version,
                                     p_wfth->vfrt_block_size,
                                     p_wfth->vfrt_block_header_size,
                                     p_wfth->vfrt_data_size,
                                     p_wfth->quads_active_size,
                                     p_wfth->core_count,
                                     l_wof_header_data_state);

            if (!l_wof_header_data_state)
            {
                o_state->iv_wof_enabled = false;
                FAPI_ASSERT_NOEXIT(false,
                                   fapi2::PSTATE_PB_WOF_HEADER_DATA_INVALID(fapi2::FAPI2_ERRL_SEV_RECOVERED)
                                   .set_CHIP_TARGET(FAPI_SYSTEM)
                                   .set_MAGIC_NUMBER(p_wfth->magic_number)
                                   .set_VERSION(p_wfth->reserved_version)
                                   .set_VFRT_BLOCK_SIZE(p_wfth->vfrt_block_size)
                                   .set_VFRT_HEADER_SIZE(p_wfth->vfrt_block_header_size)
                                   .set_VFRT_DATA_SIZE(p_wfth->vfrt_data_size)
                                   .set_QUADS_ACTIVE_SIZE(p_wfth->quads_active_size)
                                   .set_CORE_COUNT(p_wfth->core_count),
                                   "Pstate Parameter Block ATTR_WOF_TABLE_DATA attribute failed");
                break;

            }

            // Convert system vfrt to homer vfrt
            for (uint32_t vfrt_index = 0; vfrt_index < (CEF_VDN_INDEX * CEF_VDD_INDEX * ACTIVE_QUADS); ++vfrt_index)
            {

                p9_pstate_update_vfrt (i_gppb,
                                       ((*l_wof_table_data) + l_wof_table_index),
                                       &l_vfrt,
                                       i_base_state_frequency);

                // Check for "VT" at the start of the magic number
                if (l_vfrt.vfrtHeader.magic_number != 0x5654)
                {
                    o_state->iv_wof_enabled = false;
                    FAPI_ASSERT_NOEXIT(false,
                                   fapi2::PSTATE_PB_VFRT_HEADER_DATA_INVALID(fapi2::FAPI2_ERRL_SEV_RECOVERED)
                                   .set_CHIP_TARGET(FAPI_SYSTEM)
                                   .set_MAGIC_NUMBER(l_vfrt.vfrtHeader.magic_number)
                                   .set_VFRT_INDEX(vfrt_index),
                                   "Pstate Parameter Block: Invalid VFRT Magic word");
                    break;
                }
                l_wof_table_index += 128; //System vFRT size is 128B..hence need to jump after each VFRT entry

                memcpy(o_buf + l_index, &l_vfrt, sizeof (l_vfrt));
                l_index += sizeof (l_vfrt);
            }

            io_size = l_index;

            delete l_wof_table_data;
        } while(0);

        fapi2::current_err = fapi2::FAPI2_RC_SUCCESS;

    }
}
// START OF GET ATTRIBUTES function

fapi2::ReturnCode
proc_get_attributes ( const fapi2::Target<fapi2::TARGET_TYPE_PROC_CHIP>& i_target,
                      AttributeList* io_attr)
{
    const uint32_t EXT_VRM_TRANSITION_START_NS = 8000;
    const uint32_t EXT_VRM_TRANSITION_RATE_INC_UV_PER_US = 10000;
    const uint32_t EXT_VRM_TRANSITION_RATE_DEC_UV_PER_US = 10000;
    const uint32_t EXT_VRM_STABILIZATION_TIME_NS = 5;
    const uint32_t EXT_VRM_STEPSIZE_MV = 50;

    const fapi2::Target<fapi2::TARGET_TYPE_SYSTEM> FAPI_SYSTEM;

    // --------------------------
    // attributes not yet defined
    // --------------------------
    io_attr->attr_dpll_bias                 = 0;
    io_attr->attr_undervolting              = 0;
    // ---------------------------------------------------------------
    // set ATTR_PROC_DPLL_DIVIDER
    // ---------------------------------------------------------------

    FAPI_TRY(FAPI_ATTR_GET(fapi2::ATTR_PROC_DPLL_DIVIDER, i_target,
                           io_attr->attr_proc_dpll_divider), "fapiGetAttribute of ATTR_PROC_DPLL_DIVIDER failed");
    FAPI_DBG("ATTR_PROC_DPLL_DIVIDER - get to %x", io_attr->attr_proc_dpll_divider);

    // If value is 0, set a default
    if (!io_attr->attr_proc_dpll_divider)
    {
        FAPI_DBG("ATTR_PROC_DPLL_DIVIDER - setting default to %x", io_attr->attr_proc_dpll_divider);
        io_attr->attr_proc_dpll_divider = 8;
        FAPI_TRY(FAPI_ATTR_SET(fapi2::ATTR_PROC_DPLL_DIVIDER, i_target,
                               io_attr->attr_proc_dpll_divider), "fapiSetAttribute of ATTR_PROC_DPLL_DIVIDER failed");
    }

    FAPI_INF("ATTR_PROC_DPLL_DIVIDER - %x", io_attr->attr_proc_dpll_divider);

    // ----------------------------
    // attributes currently defined
    // ----------------------------
#define DATABLOCK_GET_ATTR(attr_name, target, attr_assign) \
FAPI_TRY(FAPI_ATTR_GET(fapi2::attr_name, target, io_attr->attr_assign),"Attribute read failed"); \
FAPI_INF("%-60s = 0x%08x %d", #attr_name, io_attr->attr_assign, io_attr->attr_assign);

    // Frequency Bias attributes
    DATABLOCK_GET_ATTR(ATTR_FREQ_BIAS_ULTRATURBO, i_target, attr_freq_bias_ultraturbo);
    DATABLOCK_GET_ATTR(ATTR_FREQ_BIAS_TURBO, i_target, attr_freq_bias_turbo);
    DATABLOCK_GET_ATTR(ATTR_FREQ_BIAS_NOMINAL, i_target, attr_freq_bias_nominal);
    DATABLOCK_GET_ATTR(ATTR_FREQ_BIAS_POWERSAVE, i_target, attr_freq_bias_powersave);

    // Voltage Bias attributes
    DATABLOCK_GET_ATTR(ATTR_VOLTAGE_EXT_VDD_BIAS_ULTRATURBO, i_target, attr_voltage_ext_vdd_bias_ultraturbo);
    DATABLOCK_GET_ATTR(ATTR_VOLTAGE_EXT_VDD_BIAS_TURBO, i_target, attr_voltage_ext_vdd_bias_turbo);
    DATABLOCK_GET_ATTR(ATTR_VOLTAGE_EXT_VDD_BIAS_NOMINAL, i_target, attr_voltage_ext_vdd_bias_nominal);
    DATABLOCK_GET_ATTR(ATTR_VOLTAGE_EXT_VDD_BIAS_POWERSAVE, i_target, attr_voltage_ext_vdd_bias_powersave);
    DATABLOCK_GET_ATTR(ATTR_VOLTAGE_EXT_VCS_BIAS, i_target, attr_voltage_ext_vcs_bias);
    DATABLOCK_GET_ATTR(ATTR_VOLTAGE_EXT_VDN_BIAS, i_target, attr_voltage_ext_vdn_bias);

    DATABLOCK_GET_ATTR(ATTR_VOLTAGE_INT_VDD_BIAS_ULTRATURBO, i_target, attr_voltage_int_vdd_bias_ultraturbo);
    DATABLOCK_GET_ATTR(ATTR_VOLTAGE_INT_VDD_BIAS_TURBO, i_target, attr_voltage_int_vdd_bias_turbo);
    DATABLOCK_GET_ATTR(ATTR_VOLTAGE_INT_VDD_BIAS_NOMINAL, i_target, attr_voltage_int_vdd_bias_nominal);
    DATABLOCK_GET_ATTR(ATTR_VOLTAGE_INT_VDD_BIAS_POWERSAVE, i_target, attr_voltage_int_vdd_bias_powersave);

    // Frequency attributes
    DATABLOCK_GET_ATTR(ATTR_FREQ_PROC_REFCLOCK_KHZ, FAPI_SYSTEM, attr_freq_proc_refclock_khz);
    DATABLOCK_GET_ATTR(ATTR_FREQ_PB_MHZ, FAPI_SYSTEM, attr_nest_frequency_mhz);
    DATABLOCK_GET_ATTR(ATTR_FREQ_CORE_CEILING_MHZ, FAPI_SYSTEM, attr_freq_core_ceiling_mhz);
    // @todo RTC 169768 Safe mode and use of boot mode
//    DATABLOCK_GET_ATTR(ATTR_PM_SAFE_FREQUENCY_MHZ, FAPI_SYSTEM, attr_pm_safe_frequency_mhz);
//    DATABLOCK_GET_ATTR(ATTR_PM_SAFE_VOLTAGE_MV, FAPI_SYSTEM, attr_pm_safe_voltage_mv);
    DATABLOCK_GET_ATTR(ATTR_FREQ_CORE_FLOOR_MHZ, FAPI_SYSTEM, attr_freq_core_floor_mhz);

    // Loadline, Distribution loss and Distribution offset attributes
    DATABLOCK_GET_ATTR(ATTR_PROC_R_LOADLINE_VDD_UOHM, i_target, attr_proc_r_loadline_vdd_uohm);
    DATABLOCK_GET_ATTR(ATTR_PROC_R_DISTLOSS_VDD_UOHM, i_target, attr_proc_r_distloss_vdd_uohm);
    DATABLOCK_GET_ATTR(ATTR_PROC_VRM_VOFFSET_VDD_UV, i_target, attr_proc_vrm_voffset_vdd_uv);
    DATABLOCK_GET_ATTR(ATTR_PROC_R_LOADLINE_VDN_UOHM, i_target, attr_proc_r_loadline_vdn_uohm);
    DATABLOCK_GET_ATTR(ATTR_PROC_R_DISTLOSS_VDN_UOHM, i_target, attr_proc_r_distloss_vdn_uohm);
    DATABLOCK_GET_ATTR(ATTR_PROC_VRM_VOFFSET_VDN_UV, i_target, attr_proc_vrm_voffset_vdn_uv);
    DATABLOCK_GET_ATTR(ATTR_PROC_R_LOADLINE_VCS_UOHM, i_target, attr_proc_r_loadline_vcs_uohm);
    DATABLOCK_GET_ATTR(ATTR_PROC_R_DISTLOSS_VCS_UOHM, i_target, attr_proc_r_distloss_vcs_uohm);
    DATABLOCK_GET_ATTR(ATTR_PROC_VRM_VOFFSET_VCS_UV, i_target, attr_proc_vrm_voffset_vcs_uv);

    // Read IVRM,WOF and DPLL attributes
    DATABLOCK_GET_ATTR(ATTR_SYSTEM_IVRM_DISABLE, FAPI_SYSTEM, attr_system_ivrm_disable);
    DATABLOCK_GET_ATTR(ATTR_SYSTEM_WOF_DISABLE, FAPI_SYSTEM, attr_system_wof_disable);
    DATABLOCK_GET_ATTR(ATTR_SYSTEM_VDM_DISABLE, FAPI_SYSTEM, attr_system_vdm_disable);
    DATABLOCK_GET_ATTR(ATTR_DPLL_VDM_RESPONSE, FAPI_SYSTEM, attr_dpll_vdm_response);
    DATABLOCK_GET_ATTR(ATTR_SYSTEM_RESCLK_DISABLE, FAPI_SYSTEM, attr_resclk_disable);
    DATABLOCK_GET_ATTR(ATTR_CHIP_EC_FEATURE_WOF_NOT_SUPPORTED, i_target, attr_dd_wof_not_supported);
    DATABLOCK_GET_ATTR(ATTR_CHIP_EC_FEATURE_VDM_NOT_SUPPORTED, i_target, attr_dd_vdm_not_supported);
    DATABLOCK_GET_ATTR(ATTR_SYSTEM_PSTATES_MODE, FAPI_SYSTEM, attr_pstate_mode);

    DATABLOCK_GET_ATTR(ATTR_TDP_RDP_CURRENT_FACTOR, i_target, attr_tdp_rdp_current_factor);

    // @todo RTC 169768   Safe mode and use of boot mode

    // Setting Safe Mode to the core floor frequency as this is the minimum
    // allowed for this system.
    io_attr->attr_pm_safe_frequency_mhz = io_attr->attr_freq_core_floor_mhz;


    DATABLOCK_GET_ATTR(ATTR_EXTERNAL_VRM_TRANSITION_START_NS, FAPI_SYSTEM,
                       attr_ext_vrm_transition_start_ns);
    DATABLOCK_GET_ATTR(ATTR_EXTERNAL_VRM_TRANSITION_RATE_INC_UV_PER_US, FAPI_SYSTEM,
                       attr_ext_vrm_transition_rate_inc_uv_per_us);
    DATABLOCK_GET_ATTR(ATTR_EXTERNAL_VRM_TRANSITION_RATE_DEC_UV_PER_US, FAPI_SYSTEM,
                       attr_ext_vrm_transition_rate_dec_uv_per_us);
    DATABLOCK_GET_ATTR(ATTR_EXTERNAL_VRM_TRANSITION_STABILIZATION_TIME_NS, FAPI_SYSTEM,
                       attr_ext_vrm_stabilization_time_us);
    DATABLOCK_GET_ATTR(ATTR_EXTERNAL_VRM_STEPSIZE, FAPI_SYSTEM, attr_ext_vrm_step_size_mv);

    DATABLOCK_GET_ATTR(ATTR_NEST_LEAKAGE_PERCENT, FAPI_SYSTEM, attr_nest_leakage_percent);

    io_attr->attr_ext_vrm_transition_start_ns =
        (io_attr->attr_ext_vrm_transition_start_ns) ? io_attr->attr_ext_vrm_transition_start_ns : EXT_VRM_TRANSITION_START_NS;

    io_attr->attr_ext_vrm_transition_rate_inc_uv_per_us =
        (io_attr->attr_ext_vrm_transition_rate_inc_uv_per_us) ? io_attr->attr_ext_vrm_transition_rate_inc_uv_per_us :
        EXT_VRM_TRANSITION_RATE_INC_UV_PER_US;  // 10mV/us

    io_attr->attr_ext_vrm_transition_rate_dec_uv_per_us =
        (io_attr->attr_ext_vrm_transition_rate_dec_uv_per_us) ? io_attr->attr_ext_vrm_transition_rate_dec_uv_per_us :
        EXT_VRM_TRANSITION_RATE_DEC_UV_PER_US;  // 10mV/us

    io_attr->attr_ext_vrm_stabilization_time_us =
        (io_attr->attr_ext_vrm_stabilization_time_us) ? io_attr->attr_ext_vrm_stabilization_time_us :
        EXT_VRM_STABILIZATION_TIME_NS;

    io_attr->attr_ext_vrm_step_size_mv = (io_attr->attr_ext_vrm_step_size_mv) ? io_attr->attr_ext_vrm_step_size_mv :
                                         EXT_VRM_STEPSIZE_MV;

fapi_try_exit:
    return fapi2::current_err;

}
///  END OF GET ATTRIBUTES function

///  START OF MVPD DATA FUNCTION

fapi2::ReturnCode
proc_get_mvpd_data(const fapi2::Target<fapi2::TARGET_TYPE_PROC_CHIP>& i_target,
                   uint32_t       o_attr_mvpd_data[PV_D][PV_W],
                   uint32_t*      o_valid_pdv_points,
                   uint8_t*       o_present_chiplets,
                   uint8_t&       o_bucketId,
                   fapi2::voltageBucketData_t* o_poundv_data,
                   PSTATE_attribute_state* o_state)
{

    std::vector<fapi2::Target<fapi2::TARGET_TYPE_EQ>> l_eqChiplets;
    fapi2::voltageBucketData_t l_poundv_data;
    fapi2::Target<fapi2::TARGET_TYPE_EQ> l_firstEqChiplet;
    uint8_t*   l_buffer         =  reinterpret_cast<uint8_t*>(malloc(sizeof(l_poundv_data)) );
    uint8_t*   l_buffer_inc;
    uint32_t   chiplet_mvpd_data[PV_D][PV_W];
    uint8_t    j                = 0;
    uint8_t    i                = 0;
    uint8_t    ii               = 0;
    uint8_t    first_chplt      = 1;
    uint8_t    bucket_id        = 0;

    do
    {
        // initialize
        FAPI_TRY(proc_get_attributes(i_target, &attr), "proc_get_mvpd_data: Get attributes function failed");
        *o_present_chiplets    = 0;

        // -----------------------------------------------------------------
        // get list of quad chiplets and loop over each and get #V data from each
        // -----------------------------------------------------------------
        // check that frequency is the same per chiplet
        // for voltage, get the max for use for the chip

        l_eqChiplets = i_target.getChildren<fapi2::TARGET_TYPE_EQ>(fapi2::TARGET_STATE_FUNCTIONAL);


        *o_present_chiplets = l_eqChiplets.size();
        FAPI_INF("Number of EQ chiplets present => %u", *o_present_chiplets);

        for (j = 0; j < l_eqChiplets.size(); j++)
        {

            uint8_t l_chipNum = 0xFF;

            FAPI_TRY(FAPI_ATTR_GET(fapi2::ATTR_CHIP_UNIT_POS, l_eqChiplets[j], l_chipNum));

            FAPI_INF("Chip Number => %u", l_chipNum);

            // clear out buffer to known value before calling fapiGetMvpdField
            memset(l_buffer, 0, sizeof(o_poundv_data));

            FAPI_TRY(p9_pm_get_poundv_bucket(l_eqChiplets[j], l_poundv_data));

            memcpy(l_buffer, &l_poundv_data, sizeof(l_poundv_data));
            memcpy(o_poundv_data, &l_poundv_data, sizeof(l_poundv_data));

            // clear array
            memset(chiplet_mvpd_data, 0, sizeof(chiplet_mvpd_data));

            // fill chiplet_mvpd_data 2d array with data iN buffer (skip first byte - bucket id)
#define UINT16_GET(__uint8_ptr)   ((uint16_t)( ( (*((const uint8_t *)(__uint8_ptr)) << 8) | *((const uint8_t *)(__uint8_ptr) + 1) ) ))

            l_buffer_inc = l_buffer;

            bucket_id = *l_buffer_inc;
            l_buffer_inc++;

            FAPI_INF("#V chiplet = %u bucket id = %u", l_chipNum, bucket_id);

            for (i = 0; i <= 4; i++)
            {

                for (ii = 0; ii <= 4; ii++)
                {
                    chiplet_mvpd_data[i][ii] = (uint32_t) UINT16_GET(l_buffer_inc);
                    FAPI_INF("#V data = 0x%04X  %-6d", chiplet_mvpd_data[i][ii],
                             chiplet_mvpd_data[i][ii]);
                    // increment to next MVPD value in buffer
                    l_buffer_inc += 2;
                }
            }

            FAPI_TRY(proc_chk_valid_poundv( i_target,
                                            chiplet_mvpd_data,
                                            o_valid_pdv_points,
                                            l_chipNum,
                                            bucket_id,
                                            o_state));

            // on first chiplet put each bucket's data into attr_mvpd_voltage_control
            if (first_chplt)
            {
                l_firstEqChiplet = l_eqChiplets[j];
                o_bucketId = bucket_id;

                for (i = 0; i <= 4; i++)
                {
                    for (ii = 0; ii <= 4; ii++)
                    {
                        o_attr_mvpd_data[i][ii] = chiplet_mvpd_data[i][ii];
                    }
                }

                first_chplt = 0;
            }
            else
            {
                // on subsequent chiplets, check that frequencies are same for each operating point for each chiplet
                if ( (o_attr_mvpd_data[0][0] != chiplet_mvpd_data[0][0]) ||
                     (o_attr_mvpd_data[1][0] != chiplet_mvpd_data[1][0]) ||
                     (o_attr_mvpd_data[2][0] != chiplet_mvpd_data[2][0]) ||
                     (o_attr_mvpd_data[3][0] != chiplet_mvpd_data[3][0]) ||
                     (o_attr_mvpd_data[4][0] != chiplet_mvpd_data[4][0]) )
                {
                    o_state->iv_pstates_enabled = false;
                    // Error out has Pstate and all dependent functions are suspious.
                    FAPI_ASSERT(false,
                                fapi2::PSTATE_MVPD_CHIPLET_VOLTAGE_NOT_EQUAL()
                                .set_CHIP_TARGET(i_target)
                                .set_CURRENT_EQ_CHIPLET_TARGET(l_eqChiplets[j])
                                .set_FIRST_EQ_CHIPLET_TARGET(l_firstEqChiplet)
                                .set_BUCKET(bucket_id),
                                "frequencies are not the same for each operating point for each chiplet");

                }
            }

            // check each bucket for max voltage and if max, put bucket's data into attr_mvpd_voltage_control
            for (i = 0; i <= 4; i++)
            {
                if (o_attr_mvpd_data[i][1] < chiplet_mvpd_data[i][1])
                {
                    o_attr_mvpd_data[i][0] = chiplet_mvpd_data[i][0];
                    o_attr_mvpd_data[i][1] = chiplet_mvpd_data[i][1];
                    o_attr_mvpd_data[i][2] = chiplet_mvpd_data[i][2];
                    o_attr_mvpd_data[i][3] = chiplet_mvpd_data[i][3];
                    o_attr_mvpd_data[i][4] = chiplet_mvpd_data[i][4];
                    o_bucketId = bucket_id;
                }
            }
        } // end for loop
    }
    while(0);

    free (l_buffer);

fapi_try_exit:

    if (fapi2::current_err != fapi2::FAPI2_RC_SUCCESS)
    {
        o_state->iv_pstates_enabled = false;
    }

    return fapi2::current_err;

} // end proc_get_mvpd_data
///  END OF MVPD DATA FUNCTION

///  START OF IDDQ READ FUNCTION

fapi2::ReturnCode
proc_get_mvpd_iddq( const fapi2::Target<fapi2::TARGET_TYPE_PROC_CHIP>& i_target,
                    IddqTable* io_iddqt,
                    PSTATE_attribute_state* o_state)
{

    uint8_t*        l_buffer_iq_c =  reinterpret_cast<uint8_t*>(malloc(IQ_BUFFER_ALLOC));
    uint32_t        l_record = 0;
    uint32_t        l_bufferSize_iq  = IQ_BUFFER_ALLOC;
    uint8_t         i, j;
    const char*     idd_meas_str[IDDQ_MEASUREMENTS] = IDDQ_ARRAY_VOLTAGES_STR;
    char            l_buffer_str[256];   // Temporary formatting string buffer
    char            l_line_str[256];     // Formatted output line string

    static const uint32_t IDDQ_DESC_SIZE = 56;
    static const uint32_t IDDQ_QUAD_SIZE = IDDQ_DESC_SIZE -
                                            strlen("Quad X:");

    // --------------------------------------------
    // Process IQ Keyword (IDDQ) Data
    // --------------------------------------------

    // clear out buffer to known value before calling fapiGetMvpdField
    memset(l_buffer_iq_c, 0, IQ_BUFFER_ALLOC);

    // set l_record to appropriate cprx record
    l_record = (uint32_t)fapi2::MVPD_RECORD_CRP0;
    l_bufferSize_iq = IQ_BUFFER_ALLOC;

    //First read is to get size of vpd record, note the o_buffer is NULL
    FAPI_TRY( getMvpdField((fapi2::MvpdRecord)l_record,
                           fapi2::MVPD_KEYWORD_IQ,
                           i_target,
                           NULL,
                           l_bufferSize_iq) );

    //Allocate memory for vpd data
    l_buffer_iq_c = reinterpret_cast<uint8_t*>(malloc(l_bufferSize_iq));

    // Get Chip IQ MVPD data from the CRPx records
    FAPI_TRY(getMvpdField((fapi2::MvpdRecord)l_record,
                          fapi2::MVPD_KEYWORD_IQ,
                          i_target,
                          l_buffer_iq_c,
                          l_bufferSize_iq));

    //copy VPD data to IQ structure table
    memcpy(io_iddqt, l_buffer_iq_c, l_bufferSize_iq);

    //Verify Payload header data.
    if ( !(io_iddqt->iddq_version) ||
         !(io_iddqt->good_quads_per_sort) ||
         !(io_iddqt->good_normal_cores_per_sort) ||
         !(io_iddqt->good_caches_per_sort))
    {
        o_state->iv_wof_enabled = false;
        FAPI_ASSERT_NOEXIT(false,
                           fapi2::PSTATE_PB_IQ_VPD_ERROR(fapi2::FAPI2_ERRL_SEV_RECOVERED)
                           .set_CHIP_TARGET(i_target)
                           .set_VERSION(io_iddqt->iddq_version)
                           .set_GOOD_QUADS_PER_SORT(io_iddqt->good_quads_per_sort)
                           .set_GOOD_NORMAL_CORES_PER_SORT(io_iddqt->good_normal_cores_per_sort)
                           .set_GOOD_CACHES_PER_SORT(io_iddqt->good_caches_per_sort),
                           "Pstate Parameter Block IQ Payload data error being logged");
        fapi2::current_err = fapi2::FAPI2_RC_SUCCESS;
    }

    // get IQ version and advance pointer 1-byte
    FAPI_INF("  IDDQ Version Number = %u", io_iddqt->iddq_version);
    FAPI_INF("  Sort Info:         Good Quads = %02d Good Cores = %02d Good Caches = %02d",
             io_iddqt->good_quads_per_sort,
             io_iddqt->good_normal_cores_per_sort,
             io_iddqt->good_caches_per_sort);

    // get number of good normal cores in each quad
    strcpy(l_line_str, "  Good normal cores:");
    strcpy(l_buffer_str, "");

    for (i = 0; i < MAXIMUM_QUADS; i++)
    {
        sprintf(l_buffer_str, " Quad %d = %u ", i, io_iddqt->good_normal_cores[i]);
        strcat(l_line_str, l_buffer_str);
    }

    FAPI_INF("%s", l_line_str);

    // get number of good caches in each quad
    strcpy(l_line_str, "  Good caches:      ");
    strcpy(l_buffer_str, "");

    for (i = 0; i < MAXIMUM_QUADS; i++)
    {
        sprintf(l_buffer_str, " Quad %d = %u ", i, io_iddqt->good_caches[i]);
        strcat(l_line_str, l_buffer_str);
    }

    FAPI_INF("%s", l_line_str);

    // get RDP TO TDP scalling factor
    FAPI_INF("  RDP TO TDP scalling factor = %u", revle16(io_iddqt->rdp_to_tdp_scale_factor));

    // get WOF IDDQ margin factor
    FAPI_INF("  WOF IDDQ margin factor     = %u", revle16(io_iddqt->wof_iddq_margin_factor));

    // get VDD Temperature scaling factor
    FAPI_INF("  VDD  Temperature scaling factor = %u", revle16(io_iddqt->vdd_temperature_scale_factor));

    // get VDN Temperature scaling factor
    FAPI_INF("  VDN  Temperature scaling factor = %u", revle16(io_iddqt->vdn_temperature_scale_factor));

    // All IQ IDDQ measurements are at 5mA resolution. The OCC wants to
    // consume these at 1mA values.  thus, all values are multiplied by
    // 5 upon installation into the paramater block.
    static const uint32_t CONST_5MA_1MA = 5;
    FAPI_INF("  IDDQ data is converted 5mA units to 1mA units");

    // Put out the measurement voltages to the trace.
    strcpy(l_line_str, "  Measurement voltages:");
    sprintf(l_buffer_str, "%-*s", IDDQ_DESC_SIZE, l_line_str);
    strcpy(l_line_str, l_buffer_str);
    strcpy(l_buffer_str, "");

    for (i = 0; i < IDDQ_MEASUREMENTS; i++)
    {
        sprintf(l_buffer_str, "  %sV", idd_meas_str[i]);
        strcat(l_line_str, l_buffer_str);
    }

    FAPI_INF("%s", l_line_str);

#define IDDQ_CURRENT_EXTRACT(_member) \
        io_iddqt->_member = revle16(io_iddqt->_member) * CONST_5MA_1MA;     \
        sprintf(l_buffer_str, "  %04u ", io_iddqt->_member);                \
        strcat(l_line_str, l_buffer_str);

#define IDDQ_TEMP_EXTRACT(_member) \
        sprintf(l_buffer_str, "  %04u ", io_iddqt->_member);                \
        strcat(l_line_str, l_buffer_str);

#define IDDQ_TRACE(string, size) \
        strcpy(l_line_str, string); \
        sprintf(l_buffer_str, "%-*s", size, l_line_str);\
        strcpy(l_line_str, l_buffer_str); \
        strcpy(l_buffer_str, "");

    // get IVDDQ measurements with all good cores ON
    IDDQ_TRACE ("  IDDQ all good cores ON:", IDDQ_DESC_SIZE);

    for (i = 0; i < IDDQ_MEASUREMENTS; i++)
    {
        IDDQ_CURRENT_EXTRACT(ivdd_all_good_cores_on_caches_on[i]);
    }

    FAPI_INF("%s", l_line_str);

    // get IVDDQ measurements with all cores and caches OFF
    IDDQ_TRACE ("  IVDDQ all cores and caches OFF:", IDDQ_DESC_SIZE);

    for (i = 0; i < IDDQ_MEASUREMENTS; i++)
    {
       IDDQ_CURRENT_EXTRACT(ivdd_all_cores_off_caches_off[i]);
    }

    FAPI_INF("%s", l_line_str);;

    // get IVDDQ measurements with all good cores OFF and caches ON
    IDDQ_TRACE ("  IVDDQ all good cores OFF and caches ON:", IDDQ_DESC_SIZE);

    for (i = 0; i < IDDQ_MEASUREMENTS; i++)
    {
        IDDQ_CURRENT_EXTRACT(ivdd_all_good_cores_off_good_caches_on[i]);
    }

    FAPI_INF("%s", l_line_str);

    // get IVDDQ measurements with all good cores in each quad
    for (i = 0; i < MAXIMUM_QUADS; i++)
    {
        IDDQ_TRACE ("  IVDDQ all good cores ON and caches ON ", IDDQ_QUAD_SIZE);
        sprintf(l_buffer_str, "Quad %d:", i);
        strcat(l_line_str, l_buffer_str);

        for (j = 0; j < IDDQ_MEASUREMENTS; j++)
        {
            IDDQ_CURRENT_EXTRACT(ivdd_quad_good_cores_on_good_caches_on[i][j]);
        }

        FAPI_INF("%s", l_line_str);
    }

    // get IVDN data
    IDDQ_TRACE ("  IVDN", IDDQ_DESC_SIZE);

    for (i = 0; i < IDDQ_MEASUREMENTS; i++)
    {
        IDDQ_CURRENT_EXTRACT(ivdn[i]);
    }

    FAPI_INF("%s", l_line_str);

    // get average temperature measurements with all good cores ON
    IDDQ_TRACE ("  Average temp all good cores ON:",IDDQ_DESC_SIZE);

    for (i = 0; i < IDDQ_MEASUREMENTS; i++)
    {
         IDDQ_TEMP_EXTRACT(avgtemp_all_good_cores_on[i]);
    }

    FAPI_INF("%s", l_line_str);

    // get average temperature measurements with all cores and caches OFF
    IDDQ_TRACE ("  Average temp all cores OFF, caches OFF:", IDDQ_DESC_SIZE);

    for (i = 0; i < IDDQ_MEASUREMENTS; i++)
    {
        IDDQ_TEMP_EXTRACT(avgtemp_all_cores_off_caches_off[i]);
    }

    FAPI_INF("%s", l_line_str);

    // get average temperature measurements with all good cores OFF and caches ON
    IDDQ_TRACE ("  Average temp all good cores OFF, caches ON:",IDDQ_DESC_SIZE);

    for (i = 0; i < IDDQ_MEASUREMENTS; i++)
    {
        IDDQ_TEMP_EXTRACT(avgtemp_all_good_cores_off[i]);
    }

    FAPI_INF("%s", l_line_str);

    // get average temperature measurements with all good cores in each quad
    for (i = 0; i < MAXIMUM_QUADS; i++)
    {
        IDDQ_TRACE ("  Average temp all good cores ON, good caches ON ",IDDQ_QUAD_SIZE);
        sprintf(l_buffer_str, "Quad %d:", i);
        strcat(l_line_str, l_buffer_str);

        for (j = 0; j < IDDQ_MEASUREMENTS; j++)
        {
            IDDQ_TEMP_EXTRACT(avgtemp_quad_good_cores_on[i][j]);
        }

        FAPI_INF("%s", l_line_str);
    }

    // get average nest temperature nest
    IDDQ_TRACE ("  Average temp Nest:",IDDQ_DESC_SIZE);

    for (i = 0; i < IDDQ_MEASUREMENTS; i++)
    {
        IDDQ_TEMP_EXTRACT(avgtemp_vdn[i]);
    }

    FAPI_INF("%s", l_line_str);

fapi_try_exit:

    // Free up memory buffer
    free(l_buffer_iq_c);

    if (fapi2::current_err != fapi2::FAPI2_RC_SUCCESS)
    {
        o_state->iv_wof_enabled = false;
    }

    return fapi2::current_err;
} // proc_get_mvdp_iddq

/// END OF IDDQ READ FUNCTION

/// START OF BIAS APPLICATION FUNCTION

// Bias multiplier helper function
// NOTE: BIAS_PCT_UNIT is a multipler on the percentage that the value represents
double
calc_bias(const int8_t i_value)
{
    double temp = 1.0 + ((BIAS_PCT_UNIT/100) * (double)i_value);
    FAPI_DBG("    calc_bias: input bias (in 1/2 percent) = %d; biased multiplier = %f",
                i_value, temp);
    return temp;
}



fapi2::ReturnCode
proc_get_extint_bias( uint32_t io_attr_mvpd_data[PV_D][PV_W],
                      const AttributeList* i_attr,
                      VpdBias o_vpdbias[NUM_OP_POINTS]
                    )
{
    double freq_bias[NUM_OP_POINTS];
    double voltage_ext_vdd_bias[NUM_OP_POINTS];
    double voltage_ext_vcs_bias;
    double voltage_ext_vdn_bias;

    // Calculate the frequency multiplers and load the biases into the exported
    // structure
    for (auto p = 0; p < NUM_OP_POINTS; p++)
    {
        switch (p)
        {
            case POWERSAVE:
               o_vpdbias[p].frequency_hp    = i_attr->attr_freq_bias_powersave;
               o_vpdbias[p].vdd_ext_hp      = i_attr->attr_voltage_ext_vdd_bias_powersave;
               o_vpdbias[p].vdd_int_hp      = i_attr->attr_voltage_int_vdd_bias_powersave;

               break;
            case NOMINAL:
               o_vpdbias[p].frequency_hp    = i_attr->attr_freq_bias_nominal;
               o_vpdbias[p].vdd_ext_hp      = i_attr->attr_voltage_ext_vdd_bias_nominal;
               o_vpdbias[p].vdd_int_hp      = i_attr->attr_voltage_int_vdd_bias_nominal;
               break;
            case TURBO:
               o_vpdbias[p].frequency_hp    = i_attr->attr_freq_bias_turbo;
               o_vpdbias[p].vdd_ext_hp      = i_attr->attr_voltage_ext_vdd_bias_turbo;
               o_vpdbias[p].vdd_int_hp      = i_attr->attr_voltage_int_vdd_bias_turbo;
               break;
            case ULTRA:
               o_vpdbias[p].frequency_hp    = i_attr->attr_freq_bias_ultraturbo;
               o_vpdbias[p].vdd_ext_hp      = i_attr->attr_voltage_ext_vdd_bias_ultraturbo;
               o_vpdbias[p].vdd_int_hp      = i_attr->attr_voltage_int_vdd_bias_ultraturbo;
        }

        o_vpdbias[p].vdn_ext_hp      = i_attr->attr_voltage_ext_vdn_bias;
        o_vpdbias[p].vcs_ext_hp      = i_attr->attr_voltage_ext_vcs_bias;

        freq_bias[p]                 = calc_bias(o_vpdbias[p].frequency_hp);
        voltage_ext_vdd_bias[p]      = calc_bias(o_vpdbias[p].vdd_ext_hp);

        FAPI_DBG("    Biases[%d](bias): Freq=%f (%f%%); VDD=%f (%f%%)",
                    p,
                    freq_bias[p],            o_vpdbias[p].frequency_hp/2,
                    voltage_ext_vdd_bias[p], o_vpdbias[p].vdd_ext_hp/2);
    }

    // VCS bias applied to all operating points
    voltage_ext_vcs_bias = calc_bias(i_attr->attr_voltage_ext_vcs_bias);

    // VDN bias applied to all operating points
    voltage_ext_vdn_bias = calc_bias(i_attr->attr_voltage_ext_vdn_bias);

    // Change the VPD frequency, VDD and VCS values with the bias multiplers
    for (auto p = 0; p < NUM_OP_POINTS; p++)
    {
        FAPI_DBG("    Orig values[%d](bias): Freq=%d (%f); VDD=%d (%f), VCS=%d (%f)",
                    p,
                    io_attr_mvpd_data[p][VPD_PV_CORE_FREQ_MHZ], freq_bias[p],
                    io_attr_mvpd_data[p][VPD_PV_VDD_MV], voltage_ext_vdd_bias[p],
                    io_attr_mvpd_data[p][VPD_PV_VCS_MV], voltage_ext_vcs_bias);

        double freq_mhz =
            (( (double)io_attr_mvpd_data[p][VPD_PV_CORE_FREQ_MHZ]) * freq_bias[p]);
        double vdd_mv =
            (( (double)io_attr_mvpd_data[p][VPD_PV_VDD_MV]) * voltage_ext_vdd_bias[p]);
        double vcs_mv =
            (( (double)io_attr_mvpd_data[p][VPD_PV_VCS_MV]) * voltage_ext_vcs_bias);

        io_attr_mvpd_data[p][VPD_PV_CORE_FREQ_MHZ] = (uint32_t)internal_floor(freq_mhz);
        io_attr_mvpd_data[p][VPD_PV_VDD_MV] = (uint32_t)internal_ceil(vdd_mv);
        io_attr_mvpd_data[p][VPD_PV_VCS_MV] = (uint32_t)(vcs_mv);

        FAPI_DBG("    Biased values[%d]: Freq=%f %d; VDD=%f %d, VCS=%f %d ",
                    p,
                    freq_mhz, io_attr_mvpd_data[p][VPD_PV_CORE_FREQ_MHZ],
                    vdd_mv, io_attr_mvpd_data[p][VPD_PV_VDD_MV],
                    vcs_mv, io_attr_mvpd_data[p][VPD_PV_VCS_MV]);
    }

    // Power bus operating point
    double vdn_mv =
           (( (double)io_attr_mvpd_data[VPD_PV_POWERBUS][VPD_PV_VDN_MV]) * voltage_ext_vdn_bias);
    io_attr_mvpd_data[VPD_PV_POWERBUS][VPD_PV_VDN_MV] = (uint32_t)internal_ceil(vdn_mv);

    return fapi2::FAPI2_RC_SUCCESS;

} // end proc_get_extint_bias

/// END OF BIAS APPLICATION FUNCTION




fapi2::ReturnCode
proc_chk_valid_poundv(const fapi2::Target<fapi2::TARGET_TYPE_PROC_CHIP>& i_target,
                      const uint32_t i_chiplet_mvpd_data[PV_D][PV_W],
                      uint32_t*      o_valid_pdv_points,
                      const uint8_t  i_chiplet_num,
                      const uint8_t  i_bucket_id,
                      PSTATE_attribute_state* o_state)
{
    const uint8_t pv_op_order[NUM_OP_POINTS] = VPD_PV_ORDER;
    const char*     pv_op_str[NUM_OP_POINTS] = VPD_PV_ORDER_STR;
    uint8_t         i = 0;
    bool            suspend_ut_check = false;

    FAPI_INF(">> proc_chk_valid_poundv");

    // check for non-zero freq, voltage, or current in valid operating points
    for (i = 0; i <= NUM_OP_POINTS - 1; i++)
    {
        FAPI_INF("Checking for Zero valued data in each #V operating point (%s) f=%u v=%u i=%u v=%u i=%u",
                 pv_op_str[pv_op_order[i]],
                 i_chiplet_mvpd_data[pv_op_order[i]][0],
                 i_chiplet_mvpd_data[pv_op_order[i]][1],
                 i_chiplet_mvpd_data[pv_op_order[i]][2],
                 i_chiplet_mvpd_data[pv_op_order[i]][3],
                 i_chiplet_mvpd_data[pv_op_order[i]][4]);

        if (is_wof_enabled() && (strcmp(pv_op_str[pv_op_order[i]], "UltraTurbo") == 0))
        {

            if (i_chiplet_mvpd_data[pv_op_order[i]][0] == 0 ||
                i_chiplet_mvpd_data[pv_op_order[i]][1] == 0 ||
                i_chiplet_mvpd_data[pv_op_order[i]][2] == 0 ||
                i_chiplet_mvpd_data[pv_op_order[i]][3] == 0 ||
                i_chiplet_mvpd_data[pv_op_order[i]][4] == 0   )
            {

                FAPI_INF("**** WARNING: WOF is enabled but zero valued data found in #V (chiplet = %u  bucket id = %u  op point = %s)",
                         i_chiplet_num, i_bucket_id, pv_op_str[pv_op_order[i]]);
                FAPI_INF("**** WARNING: Disabling WOF and continuing");
                suspend_ut_check = true;

                // Set ATTR_WOF_ENABLED so the caller can set header flags
                {
                    o_state->iv_wof_enabled = false;
                }

                // Take out an informational error log and then keep going.
                FAPI_ASSERT_NOEXIT(false,
                                   fapi2::PSTATE_PB_POUNDV_WOF_UT_ERROR(fapi2::FAPI2_ERRL_SEV_RECOVERED)
                                   .set_CHIP_TARGET(i_target)
                                   .set_CHIPLET_NUMBER(i_chiplet_num)
                                   .set_BUCKET(i_bucket_id)
                                   .set_FREQUENCY(i_chiplet_mvpd_data[pv_op_order[i]][0])
                                   .set_VDD(i_chiplet_mvpd_data[pv_op_order[i]][1])
                                   .set_IDD(i_chiplet_mvpd_data[pv_op_order[i]][2])
                                   .set_VCS(i_chiplet_mvpd_data[pv_op_order[i]][3])
                                   .set_ICS(i_chiplet_mvpd_data[pv_op_order[i]][4]),
                                   "Pstate Parameter Block WOF #V UT error being logged");
                fapi2::current_err = fapi2::FAPI2_RC_SUCCESS;
            }
        }
        else if ((!is_wof_enabled()) && (strcmp(pv_op_str[pv_op_order[i]], "UltraTurbo") == 0))
        {
            FAPI_INF("**** NOTE: WOF is disabled so the UltraTurbo VPD is not being checked");
            suspend_ut_check = true;
        }
        else
        {

            if (i_chiplet_mvpd_data[pv_op_order[i]][0] == 0 ||
                i_chiplet_mvpd_data[pv_op_order[i]][1] == 0 ||
                i_chiplet_mvpd_data[pv_op_order[i]][2] == 0 ||
                i_chiplet_mvpd_data[pv_op_order[i]][3] == 0 ||
                i_chiplet_mvpd_data[pv_op_order[i]][4] == 0   )
            {

                FAPI_ERR("**** ERROR : Zero valued data found in #V (chiplet = %u  bucket id = %u  op point = %s)",
                         i_chiplet_num, i_bucket_id, pv_op_str[pv_op_order[i]]);

                {
                    o_state->iv_pstates_enabled = false;
                }

                // Error out has Pstate and all dependent functions are suspious.
                FAPI_ASSERT(false,
                            fapi2::PSTATE_PB_POUNDV_ZERO_ERROR()
                            .set_CHIP_TARGET(i_target)
                            .set_CHIPLET_NUMBER(i_chiplet_num)
                            .set_BUCKET(i_bucket_id)
                            .set_POINT(i)
                            .set_FREQUENCY(i_chiplet_mvpd_data[pv_op_order[i]][0])
                            .set_VDD(i_chiplet_mvpd_data[pv_op_order[i]][1])
                            .set_IDD(i_chiplet_mvpd_data[pv_op_order[i]][2])
                            .set_VCS(i_chiplet_mvpd_data[pv_op_order[i]][3])
                            .set_ICS(i_chiplet_mvpd_data[pv_op_order[i]][4]),
                            "Pstate Parameter Block #V Zero contents error being logged");
            }
        }
    }

    // Adjust the valid operating point based on UltraTurbo presence
    // and WOF enablement
    *o_valid_pdv_points = NUM_OP_POINTS;

    if (suspend_ut_check)
    {
        (*o_valid_pdv_points)--;
    }

    FAPI_DBG("o_valid_pdv_points = %d", *o_valid_pdv_points);

    // check valid operating points' values have this relationship (power save <= nominal <= turbo <= ultraturbo)
    for (i = 1; i <= (*o_valid_pdv_points) - 1; i++)
    {

        FAPI_INF("Checking for relationship between #V operating point (%s <= %s)",
                 pv_op_str[pv_op_order[i - 1]], pv_op_str[pv_op_order[i]]);

        // Only skip checkinug for WOF not enabled and UltraTurbo.
        if (is_wof_enabled() || (!( !is_wof_enabled() && (strcmp(pv_op_str[pv_op_order[i]], "UltraTurbo") == 0))))
        {
            if (i_chiplet_mvpd_data[pv_op_order[i - 1]][0] > i_chiplet_mvpd_data[pv_op_order[i]][0]  ||
                i_chiplet_mvpd_data[pv_op_order[i - 1]][1] > i_chiplet_mvpd_data[pv_op_order[i]][1]  ||
                i_chiplet_mvpd_data[pv_op_order[i - 1]][2] > i_chiplet_mvpd_data[pv_op_order[i]][2]  ||
                i_chiplet_mvpd_data[pv_op_order[i - 1]][3] > i_chiplet_mvpd_data[pv_op_order[i]][3]  ||
                i_chiplet_mvpd_data[pv_op_order[i - 1]][4] > i_chiplet_mvpd_data[pv_op_order[i]][4]    )
            {

                FAPI_ERR("**** ERROR : Relationship error between #V operating point (%s > %s)(power save <= nominal <= turbo <= ultraturbo) (chiplet = %u  bucket id = %u  op point = %u)",
                         pv_op_str[pv_op_order[i - 1]], pv_op_str[pv_op_order[i]], i_chiplet_num, i_bucket_id,
                         pv_op_order[i]);
#define POUNDV_SLOPE_CHECK(x,y)   x > y ? " is GREATER (ERROR!) than " : " is less than "
                FAPI_INF("%s Frequency value %u is %s %s Frequency value %u",
                       pv_op_str[pv_op_order[i - 1]], i_chiplet_mvpd_data[pv_op_order[i - 1]][0],
                       POUNDV_SLOPE_CHECK(i_chiplet_mvpd_data[pv_op_order[i - 1]][0], i_chiplet_mvpd_data[pv_op_order[i]][0]),
                       pv_op_str[pv_op_order[i]], i_chiplet_mvpd_data[pv_op_order[i]][0]);

                FAPI_INF("%s VDD voltage value %u is %s %s Frequency value %u",
                       pv_op_str[pv_op_order[i - 1]], i_chiplet_mvpd_data[pv_op_order[i - 1]][1],
                       POUNDV_SLOPE_CHECK(i_chiplet_mvpd_data[pv_op_order[i - 1]][1], i_chiplet_mvpd_data[pv_op_order[i]][1]),
                       pv_op_str[pv_op_order[i]], i_chiplet_mvpd_data[pv_op_order[i]][1]);

                FAPI_INF("%s VDD current value %u is %s %s Frequency value %u",
                       pv_op_str[pv_op_order[i - 1]], i_chiplet_mvpd_data[pv_op_order[i - 1]][2],
                       POUNDV_SLOPE_CHECK(i_chiplet_mvpd_data[pv_op_order[i - 1]][2], i_chiplet_mvpd_data[pv_op_order[i]][2]),
                       pv_op_str[pv_op_order[i]], i_chiplet_mvpd_data[pv_op_order[i]][2]);

                FAPI_INF("%s VCS voltage value %u is %s %s Frequency value %u",
                       pv_op_str[pv_op_order[i - 1]], i_chiplet_mvpd_data[pv_op_order[i - 1]][3],
                       POUNDV_SLOPE_CHECK(i_chiplet_mvpd_data[pv_op_order[i - 1]][3], i_chiplet_mvpd_data[pv_op_order[i]][3]),
                       pv_op_str[pv_op_order[i]], i_chiplet_mvpd_data[pv_op_order[i]][3]);

                FAPI_INF("%s VCS current value %u is %s %s Frequency value %u",
                       pv_op_str[pv_op_order[i - 1]], i_chiplet_mvpd_data[pv_op_order[i - 1]][4],
                       POUNDV_SLOPE_CHECK(i_chiplet_mvpd_data[pv_op_order[i - 1]][4], i_chiplet_mvpd_data[pv_op_order[i]][4]),
                       pv_op_str[pv_op_order[i]], i_chiplet_mvpd_data[pv_op_order[i]][4]);

                o_state->iv_pstates_enabled = false;

                // Error out has Pstate and all dependent functions are suspious.
                FAPI_ASSERT(false,
                            fapi2::PSTATE_PB_POUNDV_SLOPE_ERROR()
                            .set_CHIP_TARGET(i_target)
                            .set_CHIPLET_NUMBER(i_chiplet_num)
                            .set_BUCKET(i_bucket_id)
                            .set_POINT(i)
                            .set_FREQUENCY_A(i_chiplet_mvpd_data[pv_op_order[i - 1]][0])
                            .set_VDD_A(i_chiplet_mvpd_data[pv_op_order[i - 1]][1])
                            .set_IDD_A(i_chiplet_mvpd_data[pv_op_order[i - 1]][2])
                            .set_VCS_A(i_chiplet_mvpd_data[pv_op_order[i - 1]][3])
                            .set_ICS_A(i_chiplet_mvpd_data[pv_op_order[i - 1]][4])
                            .set_FREQUENCY_B(i_chiplet_mvpd_data[pv_op_order[i]][0])
                            .set_VDD_B(i_chiplet_mvpd_data[pv_op_order[i]][1])
                            .set_IDD_B(i_chiplet_mvpd_data[pv_op_order[i]][2])
                            .set_VCS_B(i_chiplet_mvpd_data[pv_op_order[i]][3])
                            .set_ICS_B(i_chiplet_mvpd_data[pv_op_order[i]][4]),
                            "Pstate Parameter Block #V Zero contents error being logged");
            }
        }
    }

fapi_try_exit:
    FAPI_INF("<< proc_chk_valid_poundv");
    return fapi2::current_err;
}

/// ------------------------------------------------------------
/// \brief Copy VPD operating point into destination in assending order
/// \param[in]  &src[NUM_OP_POINTS]   => reference to source VPD structure (array)
/// \param[out] *dest[NUM_OP_POINTS]  => pointer to destination VpdOperatingPoint structure
//  \param[in]  i_frequency_step_khz  => Base frequency value for pstate calculation
/// ------------------------------------------------------------
/// \note:  this routine reads the keyword information in "VPD order" (eg Nominal,
///         PowerSave, Turbo, UltraTurbo) into the data structures in "Natural Order"
///         (eg (eg PowerSave, Nominal, Turbo, UltraTurbo)
///
fapi2::ReturnCode
load_mvpd_operating_point ( const uint32_t i_src[PV_D][PV_W],
                            VpdOperatingPoint* o_dest,
                            uint32_t i_frequency_step_khz)
{
    FAPI_INF(">> load_mvpd_operating_point");
    const uint8_t pv_op_order[NUM_OP_POINTS] = VPD_PV_ORDER;

    for (uint32_t i = 0; i < NUM_OP_POINTS; i++)
    {
        o_dest[i].frequency_mhz  = revle32(i_src[pv_op_order[i]][0]);
        o_dest[i].vdd_mv         = revle32(i_src[pv_op_order[i]][1]);
        o_dest[i].idd_100ma      = revle32(i_src[pv_op_order[i]][2]);
        o_dest[i].vcs_mv         = revle32(i_src[pv_op_order[i]][3]);
        o_dest[i].ics_100ma      = revle32(i_src[pv_op_order[i]][4]);
        o_dest[i].pstate = (i_src[ULTRA][0] - i_src[pv_op_order[i]][0]) * 1000 / i_frequency_step_khz;
    }

    FAPI_INF("<< load_mvpd_operating_point");
    return fapi2::FAPI2_RC_SUCCESS;
} // end load_mvpd_operating_point

fapi2::ReturnCode
proc_get_vdm_parms (const fapi2::Target<fapi2::TARGET_TYPE_PROC_CHIP>& i_target,
                    const AttributeList* i_attr,
                    GP_VDMParmBlock* o_vdmpb)
{
    FAPI_INF(">> proc_get_vdm_parms");

    if (i_attr->attr_system_vdm_disable == fapi2::ENUM_ATTR_SYSTEM_VDM_DISABLE_OFF)
    {
        const fapi2::Target<fapi2::TARGET_TYPE_SYSTEM> FAPI_SYSTEM;
        FAPI_TRY(FAPI_ATTR_GET( fapi2::ATTR_VDM_DROOP_SMALL_OVERRIDE,
                                FAPI_SYSTEM,
                                o_vdmpb->droop_small_override));
        FAPI_TRY(FAPI_ATTR_GET( fapi2::ATTR_VDM_DROOP_LARGE_OVERRIDE,
                                FAPI_SYSTEM,
                                o_vdmpb->droop_large_override));
        FAPI_TRY(FAPI_ATTR_GET( fapi2::ATTR_VDM_DROOP_EXTREME_OVERRIDE,
                                FAPI_SYSTEM,
                                o_vdmpb->droop_extreme_override));
        FAPI_TRY(FAPI_ATTR_GET( fapi2::ATTR_VDM_OVERVOLT_OVERRIDE,
                                FAPI_SYSTEM,
                                o_vdmpb->overvolt_override));
        FAPI_TRY(FAPI_ATTR_GET( fapi2::ATTR_VDM_FMIN_OVERRIDE_KHZ,
                                FAPI_SYSTEM,
                                o_vdmpb->fmin_override_khz));
        FAPI_TRY(FAPI_ATTR_GET( fapi2::ATTR_VDM_FMAX_OVERRIDE_KHZ,
                                FAPI_SYSTEM,
                                o_vdmpb->fmax_override_khz));
        FAPI_TRY(FAPI_ATTR_GET( fapi2::ATTR_VDM_VID_COMPARE_OVERRIDE_MV,
                                FAPI_SYSTEM,
                                o_vdmpb->vid_compare_override_mv));
        FAPI_TRY(FAPI_ATTR_GET(fapi2::ATTR_DPLL_VDM_RESPONSE,
                               FAPI_SYSTEM,
                               o_vdmpb->vdm_response));
    }
    else
    {
        FAPI_DBG("   VDM is diabled.  Skipping VDM attribute accesses");
    }

fapi_try_exit:
    FAPI_INF("<< proc_get_vdm_parms");
    return fapi2::current_err;

}


fapi2::ReturnCode
proc_res_clock_setup ( const fapi2::Target<fapi2::TARGET_TYPE_PROC_CHIP>& i_target,
                       ResonantClockingSetup* o_resclk_setup,
                       const GlobalPstateParmBlock* i_gppb)
{
    FAPI_INF(">> proc_res_clock_setup");
    uint8_t l_resclk_freq_index[RESCLK_FREQ_REGIONS];
    uint16_t l_step_delay_ns;
    uint16_t l_l3_threshold_mv;
    uint16_t l_steparray[RESCLK_STEPS];
    uint16_t l_resclk_freq_regions[RESCLK_FREQ_REGIONS];
    uint32_t l_ultra_turbo_freq_khz = revle32(i_gppb->reference_frequency_khz);

    const fapi2::Target<fapi2::TARGET_TYPE_SYSTEM> FAPI_SYSTEM;

    FAPI_TRY(FAPI_ATTR_GET( fapi2::ATTR_SYSTEM_RESCLK_STEP_DELAY,
                            FAPI_SYSTEM,
                            l_step_delay_ns));
    o_resclk_setup->step_delay_ns = revle16(l_step_delay_ns);

    // Resonant Clocking Frequency and Index arrays
    FAPI_TRY(FAPI_ATTR_GET(fapi2::ATTR_SYSTEM_RESCLK_FREQ_REGIONS, i_target,
                           l_resclk_freq_regions));
    FAPI_TRY(FAPI_ATTR_GET(fapi2::ATTR_SYSTEM_RESCLK_FREQ_REGION_INDEX, i_target,
                           l_resclk_freq_index));

    // Convert frequencies to pstates
    for (uint8_t i = 0; i < RESCLK_FREQ_REGIONS; ++i)
    {
        Pstate pstate;
        // Frequencies are given in MHz, convert to KHz
        uint32_t freq_khz = static_cast<uint32_t>(l_resclk_freq_regions[i]) * 1000;
        uint8_t idx = l_resclk_freq_index[i];

        // Frequencies need to be capped at Ultra-Turbo, frequencies less-than
        // the Minimum can be ignored (because this table is walked from
        // end-begin, and the frequencies are stored in ascending order,
        // the "walk" will never pass the minimum frequency).
        if (freq_khz > l_ultra_turbo_freq_khz)
        {
            freq_khz = l_ultra_turbo_freq_khz;

            // Need to walk the table backwards to find the index for this frequency
            for (uint8_t j = i; j >= 0; --j)
            {
                if (freq_khz >= (l_resclk_freq_regions[j] * 1000))
                {
                    idx = l_resclk_freq_index[j];
                    break;
                }
            }
        }

        int rc = freq2pState(i_gppb, freq_khz, &pstate);

        switch (rc)
        {
            case -PSTATE_LT_PSTATE_MIN:
                FAPI_INF("Resonant clock frequency %d KHz was clipped to Pstate 0",
                         freq_khz);
                break;

            case -PSTATE_GT_PSTATE_MAX:
                FAPI_INF("Resonant clock Frequency %d KHz is outside the range that can be represented"
                         " by a Pstate with a base frequency of %d KHz and step size %d KHz",
                         freq_khz,
                         l_ultra_turbo_freq_khz,
                         revle32(i_gppb->frequency_step_khz));
                FAPI_INF("Pstate is set to %X (%d)", pstate);
                break;
        }

        o_resclk_setup->resclk_freq[i] = pstate;
        o_resclk_setup->resclk_index[i] = idx;

        FAPI_DBG("Resclk:  pstate = %d; idx = %d", pstate, idx);
    }

    FAPI_TRY(FAPI_ATTR_GET(fapi2::ATTR_SYSTEM_RESCLK_L3_VALUE, i_target,
                           o_resclk_setup->l3_steparray));

    FAPI_TRY(FAPI_ATTR_GET(fapi2::ATTR_SYSTEM_RESCLK_L3_VOLTAGE_THRESHOLD_MV, i_target,
                           l_l3_threshold_mv));
    o_resclk_setup->l3_threshold_mv = revle16(l_l3_threshold_mv);

    // Resonant Clocking Step array
    FAPI_TRY(FAPI_ATTR_GET(fapi2::ATTR_SYSTEM_RESCLK_VALUE, i_target,
                           l_steparray));

    for (uint8_t i = 0; i < RESCLK_STEPS; i++)
    {
        o_resclk_setup->steparray[i].value = revle16(l_steparray[i]);
    }

fapi_try_exit:
    FAPI_INF("<< proc_res_clock_setup");
    return fapi2::current_err;
}

fapi2::ReturnCode
proc_get_ivrm_parms ( const fapi2::Target<fapi2::TARGET_TYPE_PROC_CHIP>& i_target,
                      const AttributeList* i_attr,
                      IvrmParmBlock* o_ivrmpb,
                      PSTATE_attribute_state* o_state)
{
    FAPI_INF(">> proc_get_ivrm_parms");

    if (i_attr->attr_system_ivrm_disable == fapi2::ENUM_ATTR_SYSTEM_IVRM_DISABLE_OFF)
    {
        const fapi2::Target<fapi2::TARGET_TYPE_SYSTEM> FAPI_SYSTEM;

        FAPI_INF(">> proc_get_ivrm_parms");
        FAPI_TRY(FAPI_ATTR_GET(fapi2::ATTR_IVRM_STRENGTH_LOOKUP, FAPI_SYSTEM,
                               o_ivrmpb->strength_lookup));

        FAPI_TRY(FAPI_ATTR_GET(fapi2::ATTR_IVRM_VIN_MULTIPLIER, FAPI_SYSTEM,
                               o_ivrmpb->vin_multiplier));

        FAPI_TRY(FAPI_ATTR_GET(fapi2::ATTR_IVRM_VIN_MAX_MV, FAPI_SYSTEM,
                               o_ivrmpb->vin_max_mv));

        FAPI_TRY(FAPI_ATTR_GET(fapi2::ATTR_IVRM_STEP_DELAY_NS, FAPI_SYSTEM,
                               o_ivrmpb->step_delay_ns));

        FAPI_TRY(FAPI_ATTR_GET(fapi2::ATTR_IVRM_STABILIZATION_DELAY_NS, FAPI_SYSTEM,
                               o_ivrmpb->stablization_delay_ns));

        FAPI_TRY(FAPI_ATTR_GET(fapi2::ATTR_IVRM_DEADZONE_MV, FAPI_SYSTEM,
                               o_ivrmpb->deadzone_mv));


        // @todo  this is presently hardcoded to FALSE until validation code is in
        // place to ensure turning IVRM on is a good thing.  This attribute write is
        // needed to allocate the HWP attribute in Cronus.

        // Indicate that IVRM is good to be enabled (or not)
        FAPI_INF("   NOTE: This level of code is forcing the iVRM to OFF");
        {
            fapi2::ATTR_IVRM_ENABLED_Type l_ivrm_enabled =
                (fapi2::ATTR_IVRM_ENABLED_Type)fapi2::ENUM_ATTR_IVRM_ENABLED_FALSE;
            FAPI_TRY(FAPI_ATTR_SET(fapi2::ATTR_IVRM_ENABLED, i_target, l_ivrm_enabled));
        }
    }
    else
    {
        FAPI_DBG("   IVRM is diabled.  Skipping IVRM attribute accesses");
        o_state->iv_ivrm_enabled = false;
    }

fapi_try_exit:
    FAPI_INF("<< proc_get_ivrm_parms");
    return fapi2::current_err;

}


// Apply system parameters to a VPD value
uint32_t
sysparm_uplift(const uint32_t i_vpd_mv,
               const uint32_t i_vpd_ma,
               const uint32_t i_loadline_uohm,
               const uint32_t i_distloss_uohm,
               const uint32_t i_distoffset_uohm)
{
    return  revle32(i_vpd_mv +  // mV
                    (
                                // mA*uOhm/1000 -> uV
                      ((i_vpd_ma * (i_loadline_uohm + i_distloss_uohm)) / 1000 +
                                // uv
                      i_distoffset_uohm)
                    ) / 1000);  // uV -> mV
}

// Bias Adjust a voltage data value using a 1/2 percent bias amount.  Value
// is always taken to the higher integer value.
uint32_t
bias_adjust_mv(const uint32_t i_value,
               const int32_t i_bias_0p5pct)
{
    double l_mult = calc_bias(i_bias_0p5pct);
    double l_biased_value = (double)i_value * l_mult;
    FAPI_DBG("  bias_adjust_mv:  i_value=%d; mult=%f; biased value=%f",
                i_value,
                l_mult,
                l_biased_value);
    return revle32((uint32_t)internal_ceil(l_biased_value));
}

// Bias Adjust a frequency data value using a 1/2 percent bias amount.  Value
// is always taken to the lower integer value.
uint32_t
bias_adjust_mhz(const uint32_t i_value,
                const int32_t i_bias_0p5pct)
{
    double l_mult = calc_bias(i_bias_0p5pct);
    double l_biased_value = (double)i_value * l_mult;
    FAPI_DBG("  bias_adjust_mhz: i_value=%d; mult=%f; biased value=%f",
                i_value,
                l_mult,
                l_biased_value);
    return revle32((uint32_t)internal_floor(l_biased_value));
}

//
// p9_pstate_compute_vpd_pts
//
void p9_pstate_compute_vpd_pts(VpdOperatingPoint (*o_operating_points)[NUM_OP_POINTS],
                               GlobalPstateParmBlock* i_gppb,
                               VpdOperatingPoint* i_raw_vpd_pts)
{
    int p = 0;

    uint32_t l_vdd_loadline_uohm    = revle32(i_gppb->vdd_sysparm.loadline_uohm);
    uint32_t l_vdd_distloss_uohm    = revle32(i_gppb->vdd_sysparm.distloss_uohm);
    uint32_t l_vdd_distoffset_uv    = revle32(i_gppb->vdd_sysparm.distoffset_uv);
    uint32_t l_vcs_loadline_uohm    = revle32(i_gppb->vcs_sysparm.loadline_uohm);
    uint32_t l_vcs_distloss_uohm    = revle32(i_gppb->vcs_sysparm.distloss_uohm);
    uint32_t l_vcs_distoffset_uv    = revle32(i_gppb->vcs_sysparm.distoffset_uv);

    //RAW POINTS. We just copy them as is
    for (p = 0; p < NUM_OP_POINTS; p++)
    {
        o_operating_points[VPD_PT_SET_RAW][p].vdd_mv = i_raw_vpd_pts[p].vdd_mv;
        o_operating_points[VPD_PT_SET_RAW][p].vcs_mv = i_raw_vpd_pts[p].vcs_mv;
        o_operating_points[VPD_PT_SET_RAW][p].idd_100ma = i_raw_vpd_pts[p].idd_100ma;
        o_operating_points[VPD_PT_SET_RAW][p].ics_100ma = i_raw_vpd_pts[p].ics_100ma;
        o_operating_points[VPD_PT_SET_RAW][p].frequency_mhz = i_raw_vpd_pts[p].frequency_mhz;
        o_operating_points[VPD_PT_SET_RAW][p].pstate = i_raw_vpd_pts[p].pstate;

        FAPI_DBG("GP: OpPoint=[%d][%d], PS=%3d, Freq=%3X (%4d), Vdd=%3X (%4d)",
                    VPD_PT_SET_RAW, p,
                    o_operating_points[VPD_PT_SET_RAW][p].pstate,
                    revle32(o_operating_points[VPD_PT_SET_RAW][p].frequency_mhz),
                    revle32(o_operating_points[VPD_PT_SET_RAW][p].frequency_mhz),
                    revle32(o_operating_points[VPD_PT_SET_RAW][p].vdd_mv),
                    revle32(o_operating_points[VPD_PT_SET_RAW][p].vdd_mv));
    }

    //SYSTEM PARAMS APPLIED POINTS
    for (p = 0; p < NUM_OP_POINTS; p++)
    {
        uint32_t l_vdd_mv = revle32(i_gppb->operating_points[p].vdd_mv);
        uint32_t l_idd_ma = revle32(i_gppb->operating_points[p].idd_100ma * 100);
        uint32_t l_vcs_mv = revle32(i_gppb->operating_points[p].vcs_mv);
        uint32_t l_ics_ma = revle32(i_gppb->operating_points[p].ics_100ma * 100);

        o_operating_points[VPD_PT_SET_SYSP][p].vdd_mv =
                  sysparm_uplift(l_vdd_mv,
                                 l_idd_ma,
                                 l_vdd_loadline_uohm,
                                 l_vdd_distloss_uohm,
                                 l_vdd_distoffset_uv);


        o_operating_points[VPD_PT_SET_SYSP][p].vcs_mv =
                  sysparm_uplift(l_vcs_mv,
                                 l_ics_ma,
                                 l_vcs_loadline_uohm,
                                 l_vcs_distloss_uohm,
                                 l_vcs_distoffset_uv);

        o_operating_points[VPD_PT_SET_SYSP][p].idd_100ma =
                   i_gppb->operating_points[p].idd_100ma;
        o_operating_points[VPD_PT_SET_SYSP][p].ics_100ma =
                   i_gppb->operating_points[p].ics_100ma;
        o_operating_points[VPD_PT_SET_SYSP][p].frequency_mhz =
                   i_gppb->operating_points[p].frequency_mhz;
        o_operating_points[VPD_PT_SET_SYSP][p].pstate =
                   i_gppb->operating_points[p].pstate;

        FAPI_DBG("SP: OpPoint=[%d][%d], PS=%3d, Freq=%3X (%4d), Vdd=%3X (%4d)",
                    VPD_PT_SET_RAW, p,
                    o_operating_points[VPD_PT_SET_SYSP][p].pstate,
                    revle32(o_operating_points[VPD_PT_SET_SYSP][p].frequency_mhz),
                    revle32(o_operating_points[VPD_PT_SET_SYSP][p].frequency_mhz),
                    revle32(o_operating_points[VPD_PT_SET_SYSP][p].vdd_mv),
                    revle32(o_operating_points[VPD_PT_SET_SYSP][p].vdd_mv));
    }

    //BIASED POINTS
    for (p = 0; p < NUM_OP_POINTS; p++)
    {
        uint32_t l_frequency_mhz = revle32(i_gppb->operating_points[p].frequency_mhz);
        uint32_t l_vdd_mv = revle32(i_gppb->operating_points[p].vdd_mv);
        uint32_t l_vcs_mv = revle32(i_gppb->operating_points[p].vcs_mv);

        o_operating_points[VPD_PT_SET_BIASED][p].vdd_mv =
                    bias_adjust_mv(l_vdd_mv, revle32(i_gppb->ext_biases[p].vdd_ext_hp));

        o_operating_points[VPD_PT_SET_BIASED][p].vcs_mv =
                    bias_adjust_mv(l_vcs_mv, revle32(i_gppb->ext_biases[p].vcs_ext_hp));

        o_operating_points[VPD_PT_SET_BIASED][p].frequency_mhz =
                    bias_adjust_mhz(l_frequency_mhz, revle32(i_gppb->ext_biases[p].frequency_hp));

        o_operating_points[VPD_PT_SET_BIASED][p].idd_100ma =
                    i_gppb->operating_points[p].idd_100ma;
        o_operating_points[VPD_PT_SET_BIASED][p].ics_100ma =
                    i_gppb->operating_points[p].ics_100ma;

    }

    // Now that the ULTRA frequency is known, Pstates can be calculated
    for (p = 0; p < NUM_OP_POINTS; p++)
    {
        o_operating_points[VPD_PT_SET_BIASED][p].pstate =
            (((revle32(o_operating_points[VPD_PT_SET_BIASED][ULTRA].frequency_mhz) -
               revle32(o_operating_points[VPD_PT_SET_BIASED][p].frequency_mhz)) * 1000) /
             revle32(i_gppb->frequency_step_khz));

        FAPI_DBG("Bi: OpPoint=[%d][%d], PS=%3d, Freq=%3X (%4d), Vdd=%3X (%4d), UT Freq=%3X (%4d) Step Freq=%5d",
                    VPD_PT_SET_RAW, p,
                    o_operating_points[VPD_PT_SET_BIASED][p].pstate,
                    revle32(o_operating_points[VPD_PT_SET_BIASED][p].frequency_mhz),
                    revle32(o_operating_points[VPD_PT_SET_BIASED][p].frequency_mhz),
                    revle32(o_operating_points[VPD_PT_SET_BIASED][p].vdd_mv),
                    revle32(o_operating_points[VPD_PT_SET_BIASED][p].vdd_mv),
                    revle32(o_operating_points[VPD_PT_SET_BIASED][ULTRA].frequency_mhz),
                    revle32(o_operating_points[VPD_PT_SET_BIASED][ULTRA].frequency_mhz),
                    revle32(i_gppb->frequency_step_khz));

    }

    //BIASED POINTS and SYSTEM PARMS APPLIED POINTS
    for (p = 0; p < NUM_OP_POINTS; p++)
    {
        uint32_t l_vdd_mv = revle32(o_operating_points[VPD_PT_SET_BIASED][p].vdd_mv);
        uint32_t l_idd_ma = revle32(o_operating_points[VPD_PT_SET_BIASED][p].idd_100ma) * 100;
        uint32_t l_vcs_mv = revle32(o_operating_points[VPD_PT_SET_BIASED][p].vcs_mv);
        uint32_t l_ics_ma = revle32(o_operating_points[VPD_PT_SET_BIASED][p].ics_100ma) * 100;

        o_operating_points[VPD_PT_SET_BIASED_SYSP][p].vdd_mv =
                    sysparm_uplift(l_vdd_mv,
                                   l_idd_ma,
                                   l_vdd_loadline_uohm,
                                   l_vdd_distloss_uohm,
                                   l_vdd_distoffset_uv);


        o_operating_points[VPD_PT_SET_BIASED_SYSP][p].vcs_mv =
                    sysparm_uplift(l_vcs_mv,
                                   l_ics_ma,
                                   l_vcs_loadline_uohm,
                                   l_vcs_distloss_uohm,
                                   l_vcs_distoffset_uv);

        o_operating_points[VPD_PT_SET_BIASED_SYSP][p].idd_100ma =
                    o_operating_points[VPD_PT_SET_BIASED][p].idd_100ma;
        o_operating_points[VPD_PT_SET_BIASED_SYSP][p].ics_100ma =
                    o_operating_points[VPD_PT_SET_BIASED][p].ics_100ma;
        o_operating_points[VPD_PT_SET_BIASED_SYSP][p].frequency_mhz =
                    o_operating_points[VPD_PT_SET_BIASED][p].frequency_mhz;
        o_operating_points[VPD_PT_SET_BIASED_SYSP][p].pstate =
                    o_operating_points[VPD_PT_SET_BIASED][p].pstate;

        FAPI_DBG("BS: OpPoint=[%d][%d], PS=%3d, Freq=%3X (%4d), Vdd=%3X (%4d)",
                    VPD_PT_SET_RAW, p,
                    o_operating_points[VPD_PT_SET_SYSP][p].pstate,
                    revle32(o_operating_points[VPD_PT_SET_SYSP][p].frequency_mhz),
                    revle32(o_operating_points[VPD_PT_SET_SYSP][p].frequency_mhz),
                    revle32(o_operating_points[VPD_PT_SET_SYSP][p].vdd_mv),
                    revle32(o_operating_points[VPD_PT_SET_SYSP][p].vdd_mv));

    }
}

// Slope of m = (y1-y0)/(x1-x0) in 4.12 Fixed-Pt format
int16_t
compute_slope_4_12(uint32_t y1, uint32_t y0, uint32_t x1, uint32_t x0)
{
    return (int16_t)
           (
               // Perform division using floats for maximum precision
               // Store resulting slope in 4.12 Fixed-Pt format
               ((float)(y1 - y0) / (float)(x1 - x0)) * (1 << VID_SLOPE_FP_SHIFT_12)
           );

}

//  Slope of m = (y1-y0)/(x1-x0) in 3.13 Fixed-Pt format
int16_t
compute_slope_3_13(uint32_t y1, uint32_t y0, uint32_t x1, uint32_t x0)
{
    return (int16_t)
           (
               // Perform division using floats for maximum precision
               // Store resulting slope in 3.13 Fixed-Pt format
               ((float)(y1 - y0) / (float)(x1 - x0)) * (1 << VID_SLOPE_FP_SHIFT)
           );
}

//  Slope of m = (y1-y0)/(x1-x0) in 4.12 Fixed-Pt format for thresholds
int16_t
compute_slope_thresh(int32_t y1, int32_t y0, int32_t x1, int32_t x0)
{
    return (int16_t)
           (
               // Perform division using double for maximum precision
               // Store resulting slope in 4.12 Fixed-Pt format
               ((double)(y1 - y0) / (double)(x1 - x0)) * (1 << THRESH_SLOPE_FP_SHIFT)
           );
}

//
// p9_pstate_compute_PsV_slopes
//
// Computes slope of voltage-PState curve and PState-voltage
//
// PState(Frequency) on y-axis, Voltage is on x-axis for VF curve
// Interpolation formula: (y-y0)/(x-x0) = (y1-y0)/(x1-x0)
// m   = (x1-x0)/(y1-y0), then use this to calculate voltage, x = (y-y0)*m + x0
// 1/m = (y1-y0)/(x1-x0) here, then use this to calculate pstate(frequency), y = (x-x0)*m + y0
// Region 0 is b/w POWERSAVE and NOMINAL
// Region 1 is b/w NOMINAL and TURBO
// Region 2 is between TURBO and ULTRA_TURBO
//
// Inflection Point 3 is ULTRA_TURBO
// Inflection Point 2 is TURBO
// Inflection Point 1 is NOMINAL
// Inflection Point 0 is POWERSAVE
//
//\todo: Remove this. RTC: 174743
void p9_pstate_compute_PsV_slopes(VpdOperatingPoint i_operating_points[][4],
                                  GlobalPstateParmBlock* o_gppb)
{

    for(auto pt_set = 0; pt_set < VPD_NUM_SLOPES_SET; ++pt_set)
    {
        FAPI_DBG("PsVSlopes pt_set %d", pt_set);

        // ULTRA TURBO pstate check is not required because its pstate will be 0
        if (!(i_operating_points[pt_set][POWERSAVE].pstate) ||
            !(i_operating_points[pt_set][NOMINAL].pstate) ||
            !(i_operating_points[pt_set][TURBO].pstate))
        {
            FAPI_ERR("Non-UltraTurbo PSTATE value shouldn't be zero for %s (%d)", vpdSetStr[pt_set], pt_set);
            break;
        }

        //Calculate slopes
        for(auto region(REGION_POWERSAVE_NOMINAL); region <= REGION_TURBO_ULTRA; ++region)
        {
            // Pstate value decreases with increasing region.  Thus the values
            // are swapped to result in a positive difference.
            o_gppb->PsVSlopes[pt_set][region] =
                revle16(
                    compute_slope_3_13(revle32(i_operating_points[pt_set][region + 1].vdd_mv),
                                       revle32(i_operating_points[pt_set][region].vdd_mv),
                                       i_operating_points[pt_set][region].pstate,
                                       i_operating_points[pt_set][region + 1].pstate)
                );

            FAPI_DBG("PsVSlopes[%s][%s] 0x%04x %d", vpdSetStr[pt_set], region_names[region],
                     revle16(o_gppb->PsVSlopes[pt_set][region]),
                     revle16(o_gppb->PsVSlopes[pt_set][region]));
        }

        //Calculate inverted slopes
        for(auto region(REGION_POWERSAVE_NOMINAL); region <= REGION_TURBO_ULTRA; ++region)
        {
            // Pstate value decreases with increasing region.  Thus the values
            // are swapped to result in a positive difference.
            o_gppb->VPsSlopes[pt_set][region] =
                revle16(
                    compute_slope_3_13(i_operating_points[pt_set][region].pstate,
                                       i_operating_points[pt_set][region + 1].pstate,
                                       revle32(i_operating_points[pt_set][region + 1].vdd_mv),
                                       revle32(i_operating_points[pt_set][region].vdd_mv))
                );

            FAPI_DBG("VPsSlopes[%s][%s] 0x%04x %d", vpdSetStr[pt_set], region_names[region],
                     revle16(o_gppb->VPsSlopes[pt_set][region]),
                     revle16(o_gppb->VPsSlopes[pt_set][region]));
        }
    }
}

//This fills up the PStateVSlopes and VPStatesSlopes in GlobalParmBlock
//Going forward this method should be retained in favor of the p9_pstate_compute_PsVSlopes
void p9_pstate_compute_PStateV_slope(VpdOperatingPoint i_operating_points[][4],
                                     GlobalPstateParmBlock* o_gppb)
{
    for(auto pt_set = 0; pt_set < NUM_VPD_PTS_SET; ++pt_set)
    {

        // ULTRA TURBO pstate check is not required..because it's pstate will be
        // 0
        if (!(i_operating_points[pt_set][POWERSAVE].pstate) ||
            !(i_operating_points[pt_set][NOMINAL].pstate) ||
            !(i_operating_points[pt_set][TURBO].pstate))
        {
            FAPI_ERR("Non-UltraTurbo PSTATE value shouldn't be zero for %s", vpdSetStr[pt_set]);
            return;
        }

        //Calculate slopes
        for(auto region(REGION_POWERSAVE_NOMINAL); region <= REGION_TURBO_ULTRA; ++region)
        {
            // Pstate value decreases with increasing region.  Thus the values
            // are swapped to result in a positive difference.
            o_gppb->PStateVSlopes[pt_set][region] =
                revle16(
                    compute_slope_4_12(revle32(i_operating_points[pt_set][region + 1].vdd_mv),
                                       revle32(i_operating_points[pt_set][region].vdd_mv),
                                       i_operating_points[pt_set][region].pstate,
                                       i_operating_points[pt_set][region + 1].pstate)
                );

            FAPI_DBG("PStateVSlopes[%s][%s] 0x%04x %d", vpdSetStr[pt_set], region_names[region],
                     revle16(o_gppb->PStateVSlopes[pt_set][region]),
                     revle16(o_gppb->PStateVSlopes[pt_set][region]));
        }

        //Calculate inverted slopes
        for(auto region(REGION_POWERSAVE_NOMINAL); region <= REGION_TURBO_ULTRA; ++region)
        {
            // Pstate value decreases with increasing region.  Thus the values
            // are swapped to result in a positive difference.
            o_gppb->VPStateSlopes[pt_set][region] =
                revle16(
                    compute_slope_4_12(i_operating_points[pt_set][region].pstate,
                                       i_operating_points[pt_set][region + 1].pstate,
                                       revle32(i_operating_points[pt_set][region + 1].vdd_mv),
                                       revle32(i_operating_points[pt_set][region].vdd_mv))
                );

            FAPI_DBG("VPStateSlopes[%s][%s] 0x%04x %d", vpdSetStr[pt_set], region_names[region],
                     revle16(o_gppb->VPStateSlopes[pt_set][region]),
                     revle16(o_gppb->VPStateSlopes[pt_set][region]));
        }
    }
}

/// Print a GlobalPstateParameterBlock structure on a given stream
///
/// \param gppb The Global Pstate Parameter Block print

void
gppb_print(GlobalPstateParmBlock* i_gppb)
{
    static const uint32_t   BUFFSIZE = 256;
    char                    l_buffer[BUFFSIZE];
    char                    l_temp_buffer[BUFFSIZE];
    const char*     pv_op_str[NUM_OP_POINTS] = PV_OP_ORDER_STR;
    const char*     thresh_op_str[NUM_THRESHOLD_POINTS] = VPD_THRESHOLD_ORDER_STR;
    const char*     slope_region_str[VPD_NUM_SLOPES_REGION] = VPD_OP_SLOPES_REGION_ORDER_STR;
    // Put out the endian-corrected scalars
    FAPI_INF("---------------------------------------------------------------------------------------");
    FAPI_INF("Global Pstate Parameter Block @ %p", i_gppb);
    FAPI_INF("---------------------------------------------------------------------------------------");

//    sprintf(l_buffer, "Magic:               %llu", revle64(i_gppb->magic));
    FAPI_INF("Options:             %X", revle32(i_gppb->options.options));
    FAPI_INF("Reference Frequency: %X (%d)",
             revle32(i_gppb->reference_frequency_khz), revle32(i_gppb->reference_frequency_khz));
    FAPI_INF("Frequency Step Size: %X (%d)",
             revle32(i_gppb->frequency_step_khz), revle32(i_gppb->frequency_step_khz));

    FAPI_INF("Operating Points:  Frequency     VDD(mV)    IDD(100mA)     VCS(mV)    ICS(100mA)");

    for (uint32_t i = 0; i < NUM_OP_POINTS; i++)
    {
        sprintf(l_buffer, "                 ");
        sprintf(l_temp_buffer, " %04X (%4d) ",
                revle32(i_gppb->operating_points[i].frequency_mhz),
                revle32(i_gppb->operating_points[i].frequency_mhz));
        strcat(l_buffer, l_temp_buffer);

        sprintf(l_temp_buffer, " %04X (%4d) ",
                revle32(i_gppb->operating_points[i].vdd_mv),
                revle32(i_gppb->operating_points[i].vdd_mv));
        strcat(l_buffer, l_temp_buffer);

        sprintf(l_temp_buffer, " %04X (%4d) ",
                revle32(i_gppb->operating_points[i].idd_100ma),
                revle32(i_gppb->operating_points[i].idd_100ma));
        strcat(l_buffer, l_temp_buffer);

        sprintf(l_temp_buffer, " %04X (%4d) ",
                revle32(i_gppb->operating_points[i].vcs_mv),
                revle32(i_gppb->operating_points[i].vcs_mv));
        strcat(l_buffer, l_temp_buffer);

        sprintf(l_temp_buffer, " %04X (%3d) ",
                revle32(i_gppb->operating_points[i].ics_100ma),
                revle32(i_gppb->operating_points[i].ics_100ma));
        strcat(l_buffer, l_temp_buffer);
        FAPI_INF("%s", l_buffer);
    }

    FAPI_INF("System Parameters:             VDD         VCS         VDN");
    sprintf(l_buffer, "   Load line (uOhm)        ");
    sprintf(l_temp_buffer, " %04X (%3d) ",
            revle32(i_gppb->vdd_sysparm.loadline_uohm),
            revle32(i_gppb->vdd_sysparm.loadline_uohm));
    strcat(l_buffer, l_temp_buffer);

    sprintf(l_temp_buffer, " %04X (%3d) ",
            revle32(i_gppb->vcs_sysparm.loadline_uohm),
            revle32(i_gppb->vcs_sysparm.loadline_uohm));
    strcat(l_buffer, l_temp_buffer);

    sprintf(l_temp_buffer, " %04X (%3d) ",
            revle32(i_gppb->vdn_sysparm.loadline_uohm),
            revle32(i_gppb->vdn_sysparm.loadline_uohm));
    strcat(l_buffer, l_temp_buffer);
    FAPI_INF("%s", l_buffer);

    sprintf(l_buffer, "   Distribution Loss (uOhm)");
    sprintf(l_temp_buffer, " %04X (%3d) ",
            revle32(i_gppb->vdd_sysparm.distloss_uohm),
            revle32(i_gppb->vdd_sysparm.distloss_uohm));
    strcat(l_buffer, l_temp_buffer);

    sprintf(l_temp_buffer, " %04X (%3d) ",
            revle32(i_gppb->vcs_sysparm.distloss_uohm),
            revle32(i_gppb->vcs_sysparm.distloss_uohm));
    strcat(l_buffer, l_temp_buffer);

    sprintf(l_temp_buffer, " %04X (%3d) ",
            revle32(i_gppb->vdn_sysparm.distloss_uohm),
            revle32(i_gppb->vdn_sysparm.distloss_uohm));
    strcat(l_buffer, l_temp_buffer);
    FAPI_INF("%s", l_buffer);

    sprintf(l_buffer, "   Offset (uV)             ");
    sprintf(l_temp_buffer, " %04X (%3d) ",
            revle32(i_gppb->vdd_sysparm.distoffset_uv),
            revle32(i_gppb->vdd_sysparm.distoffset_uv));
    strcat(l_buffer, l_temp_buffer);

    sprintf(l_temp_buffer, " %04X (%3d) ",
            revle32(i_gppb->vcs_sysparm.distoffset_uv),
            revle32(i_gppb->vcs_sysparm.distoffset_uv));
    strcat(l_buffer, l_temp_buffer);

    sprintf(l_temp_buffer, " %04X (%3d) ",
            revle32(i_gppb->vdn_sysparm.distoffset_uv),
            revle32(i_gppb->vdn_sysparm.distoffset_uv));
    strcat(l_buffer, l_temp_buffer);
    FAPI_INF("%s", l_buffer);

    FAPI_INF("Safe Parameters:");
    FAPI_INF("   Frequency  %04X (%3d) ",
             revle32(i_gppb->safe_frequency_khz),
             revle32(i_gppb->safe_frequency_khz));
    FAPI_INF("   Voltage    %04X (%3d)",
             revle32(i_gppb->safe_voltage_mv),
             revle32(i_gppb->safe_voltage_mv));

    FAPI_INF("Pstate Stepping Parameters:");
    FAPI_INF("   Delay range exponent %04X (%3d) ",
             revle32(i_gppb->vrm_stepdelay_range),
             revle32(i_gppb->vrm_stepdelay_range));
    FAPI_INF("   Significand  %04X (%3d)",
             revle32(i_gppb->vrm_stepdelay_value),
             revle32(i_gppb->vrm_stepdelay_value));

    FAPI_INF("External VRM Parameters:");
    FAPI_INF("   VRM Transition Start %04X (%3d)",
             revle32(i_gppb->ext_vrm_transition_start_ns),
             revle32(i_gppb->ext_vrm_transition_start_ns));
    FAPI_INF("   VRM Transition Rate - Rising %04X (%3d) (uv/us)",
             revle32(i_gppb->ext_vrm_transition_rate_inc_uv_per_us),
             revle32(i_gppb->ext_vrm_transition_rate_inc_uv_per_us));
    FAPI_INF("   VRM Transition Rate - Falling (uv/us) %04X (%3d)",
             revle32(i_gppb->ext_vrm_transition_rate_dec_uv_per_us),
             revle32(i_gppb->ext_vrm_transition_rate_dec_uv_per_us));
    FAPI_INF("   VRM Settling Time (us) %04X (%3d)",
             revle32(i_gppb->ext_vrm_transition_rate_dec_uv_per_us),
             revle32(i_gppb->ext_vrm_transition_rate_dec_uv_per_us));
    FAPI_INF("   VRM Transition Step Size (mV) %04X (%3d)",
             revle32(i_gppb->ext_vrm_step_size_mv),
             revle32(i_gppb->ext_vrm_step_size_mv));

    FAPI_INF("Nest Frequency: %04X (%3d)",
             revle32(i_gppb->nest_frequency_mhz),
             revle32(i_gppb->nest_frequency_mhz));

    // 2 Slope sets

    sprintf(l_buffer, "PsVSlopes:");
    sprintf( l_temp_buffer,  "%9s", "");
    strcat(l_buffer, l_temp_buffer);
    for (auto  j = 0; j < VPD_NUM_SLOPES_REGION; ++j)
    {
        sprintf(l_temp_buffer, " %s  ", prt_region_names[j]);
        strcat(l_buffer, l_temp_buffer);
    }
    FAPI_INF("%s", l_buffer);
    for (auto i = 0; i < VPD_NUM_SLOPES_SET; ++i)
    {
        sprintf(l_buffer, " %-16s : ", vpdSetStr[i]);
        for (auto j = 0; j < VPD_NUM_SLOPES_REGION; ++j)
        {
            sprintf(l_temp_buffer, "%6s%04X%7s ",
                    " ",revle16(i_gppb->PsVSlopes[i][j])," ");
            strcat(l_buffer, l_temp_buffer);
        }
        FAPI_INF("%s", l_buffer);
    }

    sprintf(l_buffer, "VPsSlopes:");
    sprintf( l_temp_buffer,  "%9s", "");
    strcat(l_buffer, l_temp_buffer);
    for (auto j = 0; j < VPD_NUM_SLOPES_REGION; ++j)
    {
        sprintf(l_temp_buffer, " %s  ", prt_region_names[j]);
        strcat(l_buffer, l_temp_buffer);
    }
    FAPI_INF("%s", l_buffer);
    for (auto i = 0; i < VPD_NUM_SLOPES_SET; ++i)
    {
        sprintf(l_buffer, " %-16s : ", vpdSetStr[i]);
        for (auto j = 0; j < VPD_NUM_SLOPES_REGION; ++j)
        {
            sprintf(l_temp_buffer, "%6s%04X%7s ",
                    " ",revle16(i_gppb->VPsSlopes[i][j])," ");
            strcat(l_buffer, l_temp_buffer);
        }
        FAPI_INF("%s", l_buffer);
    }

    // 4 Slope sets
    sprintf(l_buffer, "PstateVSlopes:");
    sprintf( l_temp_buffer,  "%5s", "");
    strcat(l_buffer, l_temp_buffer);
    for (auto  j = 0; j < VPD_NUM_SLOPES_REGION; ++j)
    {
        sprintf(l_temp_buffer, " %s  ", prt_region_names[j]);
        strcat(l_buffer, l_temp_buffer);
    }
    FAPI_INF("%s", l_buffer);
    for (auto i = 0; i < NUM_VPD_PTS_SET; ++i)
    {
        sprintf(l_buffer, " %-16s : ", vpdSetStr[i]);
        for (auto j = 0; j < VPD_NUM_SLOPES_REGION; ++j)
        {
            sprintf(l_temp_buffer, "%6s%04X%7s ",
                    " ",revle16(i_gppb->PStateVSlopes[i][j])," ");
            strcat(l_buffer, l_temp_buffer);
        }
        FAPI_INF("%s", l_buffer);
    }

    sprintf(l_buffer, "VPstateSlopes:");
    sprintf( l_temp_buffer,  "%5s", "");
    strcat(l_buffer, l_temp_buffer);
    for (auto j = 0; j < VPD_NUM_SLOPES_REGION; ++j)
    {
        sprintf(l_temp_buffer, " %s  ", prt_region_names[j]);
        strcat(l_buffer, l_temp_buffer);
    }
    FAPI_INF("%s", l_buffer);
    for (auto i = 0; i < NUM_VPD_PTS_SET; ++i)
    {
        sprintf(l_buffer, " %-16s : ", vpdSetStr[i]);
        for (auto j = 0; j < VPD_NUM_SLOPES_REGION; ++j)
        {
            sprintf(l_temp_buffer, "%6s%04X%7s ",
                    " ",revle16(i_gppb->VPStateSlopes[i][j])," ");
            strcat(l_buffer, l_temp_buffer);
        }
        FAPI_INF("%s", l_buffer);
    }
    FAPI_INF ("VID OPERATING POINTS");

    for (uint8_t i = 0; i < NUM_OP_POINTS; ++i)
    {
        sprintf (l_buffer, " %s :  %02X ",pv_op_str[i], i_gppb->vid_point_set[i]);
        FAPI_INF("%s", l_buffer);
    }


    FAPI_INF ("THESHOLD OPERATING POINTS");
    for (uint8_t i = 0; i < NUM_OP_POINTS; ++i)
    {
        strcpy(l_buffer,"");
        sprintf (l_temp_buffer, " %s  ",pv_op_str[i]);
        FAPI_INF("%s", l_temp_buffer);
        for (uint8_t j = 0; j < NUM_THRESHOLD_POINTS; ++j)
        {
            sprintf (l_temp_buffer, "%s :  %02X   ",thresh_op_str[j], i_gppb->threshold_set[i][j]);
            strcat (l_buffer,l_temp_buffer);
        }
        FAPI_INF("%s", l_buffer);
    }

    strcpy(l_buffer,"");
    FAPI_INF ("VID COMPARE SLOPES");
    for (uint8_t i = 0; i < VPD_NUM_SLOPES_REGION; ++i)
    {
        sprintf (l_buffer, " %s :  %02X ",slope_region_str[i], i_gppb->PsVIDCompSlopes[i]);
        FAPI_INF("%s", l_buffer);
    }
    FAPI_INF ("VDM THRESHOLD SLOPES");

    for (uint8_t i = 0; i < VPD_NUM_SLOPES_REGION; ++i)
    {
        strcpy(l_buffer,"");
        sprintf (l_temp_buffer, " %s  ",slope_region_str[i]);
        FAPI_INF("%s", l_temp_buffer);
        for (uint8_t j = 0; j < NUM_THRESHOLD_POINTS; ++j)
        {
            sprintf (l_temp_buffer, " %s :  %02X   ",thresh_op_str[j], i_gppb->PsVDMThreshSlopes[i][j]);
            strcat (l_buffer, l_temp_buffer);
        }
        FAPI_INF("%s", l_buffer);
    }
    FAPI_INF ("VDM JUMP SLOPES");

    for (uint8_t i = 0; i < VPD_NUM_SLOPES_REGION; ++i)
    {
        strcpy(l_buffer,"");
        sprintf (l_temp_buffer, " %s  ",slope_region_str[i]);
        FAPI_INF("%s", l_temp_buffer);
        for (uint8_t j = 0; j < NUM_JUMP_VALUES; ++j)
        {
            sprintf (l_temp_buffer, " %s :  %02X   ",thresh_op_str[j], i_gppb->PsVDMJumpSlopes[i][j]);
            strcat (l_buffer, l_temp_buffer);
        }
        FAPI_INF("%s", l_buffer);
    }

    // Resonant Clocking
    FAPI_DBG("Resonant Clocking Setup:");
    FAPI_DBG("Pstates ResClk Index");

    for (auto i = 0; i < RESCLK_FREQ_REGIONS; ++i)
    {
        FAPI_DBG("    %03d           %02d", i_gppb->resclk.resclk_freq[i],
                 i_gppb->resclk.resclk_index[i]);
    }

    FAPI_INF("---------------------------------------------------------------------------------------");
}

/// Print an OCCPstateParameterBlock structure on a given stream
///
/// \param oppb The OCC Pstate Parameter Block print

void
oppb_print(OCCPstateParmBlock* i_oppb)
{
    static const uint32_t   BUFFSIZE = 256;
    char                    l_buffer[BUFFSIZE];
    char                    l_temp_buffer[BUFFSIZE];

    // Put out the endian-corrected scalars

    FAPI_INF("---------------------------------------------------------------------------------------");
    FAPI_INF("OCC Pstate Parameter Block @ %p", i_oppb);
    FAPI_INF("---------------------------------------------------------------------------------------");

//    fprintf(stream, "Magic:               %llu\n", revle64(i_oppb->magic));
    FAPI_INF("Operating Points:  Frequency     VDD(mV)    IDD(100mA)     VCS(mV)    ICS(100mA)");

    for (uint32_t i = 0; i < NUM_OP_POINTS; i++)
    {
        sprintf(l_buffer, "                 ");
        sprintf(l_temp_buffer, " %04X (%4d) ",
                revle32(i_oppb->operating_points[i].frequency_mhz),
                revle32(i_oppb->operating_points[i].frequency_mhz));
        strcat(l_buffer, l_temp_buffer);

        sprintf(l_temp_buffer, " %04X (%4d) ",
                revle32(i_oppb->operating_points[i].vdd_mv),
                revle32(i_oppb->operating_points[i].vdd_mv));
        strcat(l_buffer, l_temp_buffer);

        sprintf(l_temp_buffer, " %04X (%4d) ",
                revle32(i_oppb->operating_points[i].idd_100ma),
                revle32(i_oppb->operating_points[i].idd_100ma));
        strcat(l_buffer, l_temp_buffer);

        sprintf(l_temp_buffer, " %04X (%4d) ",
                revle32(i_oppb->operating_points[i].vcs_mv),
                revle32(i_oppb->operating_points[i].vcs_mv));
        strcat(l_buffer, l_temp_buffer);

        sprintf(l_temp_buffer, " %04X (%3d) ",
                revle32(i_oppb->operating_points[i].ics_100ma),
                revle32(i_oppb->operating_points[i].ics_100ma));
        strcat(l_buffer, l_temp_buffer);
        FAPI_INF("%s", l_buffer);
    }

    FAPI_INF("System Parameters:             VDD         VCS         VDN");
    sprintf(l_buffer, "   Load line (uOhm)        ");
    sprintf(l_temp_buffer, " %04X (%3d) ",
            revle32(i_oppb->vdd_sysparm.loadline_uohm),
            revle32(i_oppb->vdd_sysparm.loadline_uohm));
    strcat(l_buffer, l_temp_buffer);

    sprintf(l_temp_buffer, " %04X (%3d) ",
            revle32(i_oppb->vcs_sysparm.loadline_uohm),
            revle32(i_oppb->vcs_sysparm.loadline_uohm));
    strcat(l_buffer, l_temp_buffer);

    sprintf(l_temp_buffer, " %04X (%3d) ",
            revle32(i_oppb->vdn_sysparm.loadline_uohm),
            revle32(i_oppb->vdn_sysparm.loadline_uohm));
    strcat(l_buffer, l_temp_buffer);
    FAPI_INF("%s", l_buffer);

    sprintf(l_buffer, "   Distribution Loss (uOhm)");
    sprintf(l_temp_buffer, " %04X (%3d) ",
            revle32(i_oppb->vdd_sysparm.distloss_uohm),
            revle32(i_oppb->vdd_sysparm.distloss_uohm));
    strcat(l_buffer, l_temp_buffer);

    sprintf(l_temp_buffer, " %04X (%3d) ",
            revle32(i_oppb->vcs_sysparm.distloss_uohm),
            revle32(i_oppb->vcs_sysparm.distloss_uohm));
    strcat(l_buffer, l_temp_buffer);

    sprintf(l_temp_buffer, " %04X (%3d) ",
            revle32(i_oppb->vdn_sysparm.distloss_uohm),
            revle32(i_oppb->vdn_sysparm.distloss_uohm));
    strcat(l_buffer, l_temp_buffer);
    FAPI_INF("%s", l_buffer);

    sprintf(l_buffer, "   Offset (uV)             ");
    sprintf(l_temp_buffer, " %04X (%3d) ",
            revle32(i_oppb->vdd_sysparm.distoffset_uv),
            revle32(i_oppb->vdd_sysparm.distoffset_uv));
    strcat(l_buffer, l_temp_buffer);

    sprintf(l_temp_buffer, " %04X (%3d) ",
            revle32(i_oppb->vcs_sysparm.distoffset_uv),
            revle32(i_oppb->vcs_sysparm.distoffset_uv));
    strcat(l_buffer, l_temp_buffer);

    sprintf(l_temp_buffer, " %04X (%3d) ",
            revle32(i_oppb->vdn_sysparm.distoffset_uv),
            revle32(i_oppb->vdn_sysparm.distoffset_uv));
    strcat(l_buffer, l_temp_buffer);
    FAPI_INF("%s", l_buffer);

    FAPI_INF("Frequency Minumum (kHz):     %04X (%3d)",
             revle32(i_oppb->frequency_min_khz),
             revle32(i_oppb->frequency_min_khz));

    FAPI_INF("Frequency Maximum (kHz):     %04X (%3d)",
             revle32(i_oppb->frequency_max_khz),
             revle32(i_oppb->frequency_max_khz));

    FAPI_INF("Frequency Step (kHz):        %04X (%3d)",
             revle32(i_oppb->frequency_step_khz),
             revle32(i_oppb->frequency_step_khz));

    FAPI_INF("Pstate of Minimum Frequency: %02X (%3d)",
             i_oppb->pstate_min,
             i_oppb->pstate_min);

    FAPI_INF("---------------------------------------------------------------------------------------");
}



// Convert frequency to Pstate number
///
/// \param stream The output stream

int
freq2pState (const GlobalPstateParmBlock* gppb,
             const uint32_t freq_khz,
             Pstate* pstate)
{
    int rc = 0;
    float pstate32 = 0;

    // ----------------------------------
    // compute pstate for given frequency
    // ----------------------------------
    pstate32 = ((float)(revle32(gppb->reference_frequency_khz) - (float)freq_khz)) /
               (float)revle32(gppb->frequency_step_khz);
    // @todo Bug fix from Characterization team to deal with VPD not being
    // exactly in step increments
    //       - not yet included to separate changes
    // As higher Pstate numbers represent lower frequencies, the pstate must be
    // snapped to the nearest *higher* integer value for safety.  (e.g. slower
    // frequencies are safer).
    //*pstate  = (Pstate)internal_ceil(pstate32);
    *pstate  = (Pstate)pstate32;

    // ------------------------------
    // perform pstate bounds checking
    // ------------------------------
    if (pstate32 < PSTATE_MIN)
    {
        rc = -PSTATE_LT_PSTATE_MIN;
        *pstate = PSTATE_MIN;
    }

    if (pstate32 > PSTATE_MAX)
    {
        rc = -PSTATE_GT_PSTATE_MAX;
        *pstate = PSTATE_MAX;
    }

    return rc;
}


fapi2::ReturnCode
proc_get_mvpd_poundw(const fapi2::Target<fapi2::TARGET_TYPE_PROC_CHIP>& i_target,
                     uint8_t       i_poundv_bucketId,
                     LP_VDMParmBlock* o_vdmpb,
                     PoundW_data* o_data,
                     fapi2::voltageBucketData_t i_poundv_data,
                     PSTATE_attribute_state* o_state)
{
    std::vector<fapi2::Target<fapi2::TARGET_TYPE_EQ>> l_eqChiplets;
    fapi2::vdmData_t l_vdmBuf;
    uint8_t    j                = 0;
    uint8_t    bucket_id        = 0;
    const uint16_t VDM_VOLTAGE_IN_MV = 512;
    const uint16_t VDM_GRANULARITY = 4;

    FAPI_INF(">> proc_get_mvpd_poundw");

    do
    {
         FAPI_DBG("proc_get_mvpd_poundw: VDM enable = %d, WOF enable %d",
                    is_vdm_enabled(), is_wof_enabled());

        // Exit if both VDM and WOF is disabled
        if (!is_vdm_enabled() && !is_wof_enabled())
        {
            FAPI_INF("   proc_get_mvpd_poundw: BOTH VDM and WOF are disabled.  Skipping remaining checks");
            o_state->iv_vdm_enabled = false;
            o_state->iv_wof_enabled = false;
            break;
        }

        // Below fields for Nominal, Powersave, Turbo, Ultra Turbo
        // I-VDD Nominal TDP AC current  2B
        // I-VDD Nominal TDP DC current 2B
        // Overvolt Threshold 0.5  Upper nibble of byte
        // Small Threshold 0.5  Lower nibble of byte
        // Large Threshold 0.5  Upper nibble of byte
        // eXtreme Threshold 0.5 Lower nibble of byte
        // Small Frequency Drop  1B
        // Large Frequency Drop 1B
        // -----------------------------------------------------------------
        l_eqChiplets = i_target.getChildren<fapi2::TARGET_TYPE_EQ>(fapi2::TARGET_STATE_FUNCTIONAL);

        for (j = 0; j < l_eqChiplets.size(); j++)
        {
            uint8_t l_chipNum = 0xFF;

            FAPI_TRY(FAPI_ATTR_GET(fapi2::ATTR_CHIP_UNIT_POS, l_eqChiplets[j], l_chipNum));

            FAPI_INF("Chip Number => %u", l_chipNum);

            // clear out buffer to known value before calling fapiGetMvpdField
            memset(&l_vdmBuf, 0, sizeof(l_vdmBuf));

            FAPI_TRY(p9_pm_get_poundw_bucket(l_eqChiplets[j], l_vdmBuf));

            bucket_id = l_vdmBuf.bucketId;

            FAPI_INF("#W chiplet = %u bucket id = %u", l_chipNum, bucket_id);

            //if we match with the bucket id, then we don't need to continue
            if (i_poundv_bucketId == bucket_id)
            {
                break;
            }
        }

        // The rest of the processing here is all checking of the VDM content
        // within #W.  If VDMs are not enabled (or supported), skip all of it
        if (!is_vdm_enabled())
        {
            FAPI_INF("   proc_get_mvpd_poundw: VDM is disabled.  Skipping remaining checks");
            o_state->iv_vdm_enabled = false;
            break;
        }

        uint8_t l_poundw_static_data = 0;
        const fapi2::Target<fapi2::TARGET_TYPE_SYSTEM> FAPI_SYSTEM;
        FAPI_TRY(FAPI_ATTR_GET(fapi2::ATTR_POUND_W_STATIC_DATA_ENABLE,
                               FAPI_SYSTEM,
                               l_poundw_static_data),
                 "Error from FAPI_ATTR_GET for attribute ATTR_POUND_W_STATIC_DATA_ENABLE");

        if (l_poundw_static_data)
        {
            FAPI_INF("attribute ATTR_POUND_W_STATIC_DATA_ENABLE is set");
            // copy the data to the pound w structure from a hardcoded table
            memcpy (o_data, &g_vpdData, sizeof (g_vpdData));
        }
        else
        {
            FAPI_INF("attribute ATTR_POUND_W_STATIC_DATA_ENABLE is NOT set");
            // copy the data to the pound w structure from the actual VPD image
            memcpy (o_data, l_vdmBuf.vdmData, sizeof (l_vdmBuf.vdmData));
        }

        //Re-ordering to Natural order
        // When we read the data from VPD image the order will be N,PS,T,UT.
        // But we need the order PS,N,T,UT.. hence we are swapping the data
        // between PS and Nominal.
        poundw_entry_t l_tmp_data;
        memcpy (&l_tmp_data, &(o_data->poundw[VPD_PV_NOMINAL]), sizeof (poundw_entry_t));
        memcpy(&(o_data->poundw[VPD_PV_NOMINAL]), &(o_data->poundw[VPD_PV_POWERSAVE]), sizeof(poundw_entry_t));
        memcpy (&(o_data->poundw[VPD_PV_POWERSAVE]), &l_tmp_data, sizeof(poundw_entry_t));

        FAPI_INF("POWERSAVE.vdm_vid_compare_ivid %d",o_data->poundw[POWERSAVE].vdm_vid_compare_ivid);
        FAPI_INF("NOMINAL.vdm_vid_compare_ivid %d",o_data->poundw[NOMINAL].vdm_vid_compare_ivid);
        FAPI_INF("TURBO.vdm_vid_compare_ivid %d",o_data->poundw[TURBO].vdm_vid_compare_ivid);
        FAPI_INF("ULTRA_TURBO.vdm_vid_compare_ivid %d",o_data->poundw[ULTRA].vdm_vid_compare_ivid);
        //Validation of VPD Data
        //
        //If all VID compares are zero then use #V VDD voltage to populate local
        //data structure..So that we make progress in lab with early hardware
        if ( !(o_data->poundw[NOMINAL].vdm_vid_compare_ivid) &&
             !(o_data->poundw[POWERSAVE].vdm_vid_compare_ivid) &&
             !(o_data->poundw[TURBO].vdm_vid_compare_ivid) &&
             !(o_data->poundw[ULTRA].vdm_vid_compare_ivid))
        {
            //vdm_vid_compare_ivid will be in ivid units (eg HEX((Compare
            //Voltage (mv) - 512mV)/4mV).
            o_data->poundw[NOMINAL].vdm_vid_compare_ivid    =
                (i_poundv_data.VddNomVltg    - VDM_VOLTAGE_IN_MV) / VDM_GRANULARITY;
            o_data->poundw[POWERSAVE].vdm_vid_compare_ivid  =
                (i_poundv_data.VddPSVltg     - VDM_VOLTAGE_IN_MV ) / VDM_GRANULARITY;
            o_data->poundw[TURBO].vdm_vid_compare_ivid      =
                (i_poundv_data.VddTurboVltg  - VDM_VOLTAGE_IN_MV ) / VDM_GRANULARITY;
            o_data->poundw[ULTRA].vdm_vid_compare_ivid =
                (i_poundv_data.VddUTurboVltg - VDM_VOLTAGE_IN_MV) / VDM_GRANULARITY;
        }//if any one of the VID compares are zero, then need to fail because of BAD VPD image.
        else if ( !(o_data->poundw[NOMINAL].vdm_vid_compare_ivid) ||
                  !(o_data->poundw[POWERSAVE].vdm_vid_compare_ivid) ||
                  !(o_data->poundw[TURBO].vdm_vid_compare_ivid) ||
                  !(o_data->poundw[ULTRA].vdm_vid_compare_ivid))
        {
            o_state->iv_vdm_enabled = false;
            FAPI_ASSERT_NOEXIT(false,
                               fapi2::PSTATE_PB_POUND_W_INVALID_VID_VALUE(fapi2::FAPI2_ERRL_SEV_RECOVERED)
                               .set_CHIP_TARGET(i_target)
                               .set_NOMINAL_VID_COMPARE_IVID_VALUE(o_data->poundw[NOMINAL].vdm_vid_compare_ivid)
                               .set_POWERSAVE_VID_COMPARE_IVID_VALUE(o_data->poundw[POWERSAVE].vdm_vid_compare_ivid)
                               .set_TURBO_VID_COMPARE_IVID_VALUE(o_data->poundw[TURBO].vdm_vid_compare_ivid)
                               .set_ULTRA_VID_COMPARE_IVID_VALUE(o_data->poundw[ULTRA].vdm_vid_compare_ivid),
                               "Pstate Parameter Block #W : one of the VID compare value is zero");
            fapi2::current_err = fapi2::FAPI2_RC_SUCCESS;
            break;
        }

        FAPI_INF("POWERSAVE.vdm_vid_compare_ivid %d",o_data->poundw[POWERSAVE].vdm_vid_compare_ivid);
        FAPI_INF("NOMINAL.vdm_vid_compare_ivid %d",o_data->poundw[NOMINAL].vdm_vid_compare_ivid);
        FAPI_INF("TURBO.vdm_vid_compare_ivid %d",o_data->poundw[TURBO].vdm_vid_compare_ivid);
        FAPI_INF("ULTRA_TURBO.vdm_vid_compare_ivid %d",o_data->poundw[ULTRA].vdm_vid_compare_ivid);

        // validate vid values
        bool l_compare_vid_value_state = 1;
        VALIDATE_VID_VALUES (o_data->poundw[POWERSAVE].vdm_vid_compare_ivid,
                             o_data->poundw[NOMINAL].vdm_vid_compare_ivid,
                             o_data->poundw[TURBO].vdm_vid_compare_ivid,
                             o_data->poundw[ULTRA].vdm_vid_compare_ivid,
                             l_compare_vid_value_state);

        if (!l_compare_vid_value_state)
        {
            o_state->iv_vdm_enabled = false;
            FAPI_ASSERT_NOEXIT(false,
                               fapi2::PSTATE_PB_POUND_W_INVALID_VID_ORDER(fapi2::FAPI2_ERRL_SEV_RECOVERED)
                               .set_CHIP_TARGET(i_target)
                               .set_NOMINAL_VID_COMPARE_IVID_VALUE(o_data->poundw[NOMINAL].vdm_vid_compare_ivid)
                               .set_POWERSAVE_VID_COMPARE_IVID_VALUE(o_data->poundw[POWERSAVE].vdm_vid_compare_ivid)
                               .set_TURBO_VID_COMPARE_IVID_VALUE(o_data->poundw[TURBO].vdm_vid_compare_ivid)
                               .set_ULTRA_VID_COMPARE_IVID_VALUE(o_data->poundw[ULTRA].vdm_vid_compare_ivid),
                               "Pstate Parameter Block #W VID compare data are not in increasing order");
            fapi2::current_err = fapi2::FAPI2_RC_SUCCESS;
            break;
        }

        // validate threshold values
        bool l_threshold_value_state = 1;

        for (uint8_t p = 0; p < NUM_OP_POINTS; ++p)
        {
            FAPI_INF("o_data->poundw[%d].vdm_overvolt_thresholds %d",p,(o_data->poundw[p].vdm_overvolt_small_thresholds >> 4) & 0x0F);
            FAPI_INF("o_data->poundw[%d].vdm_small_thresholds %d",p,(o_data->poundw[p].vdm_overvolt_small_thresholds ) & 0x0F);
            FAPI_INF("o_data->poundw[%d].vdm_large_thresholds %d",p,(o_data->poundw[p].vdm_large_extreme_thresholds >> 4) & 0x0F);
            FAPI_INF("o_data->poundw[%d].vdm_extreme_thresholds %d",p,(o_data->poundw[p].vdm_large_extreme_thresholds) & 0x0F);
            VALIDATE_THRESHOLD_VALUES(((o_data->poundw[p].vdm_overvolt_small_thresholds >> 4) & 0x0F), // overvolt
                                      ((o_data->poundw[p].vdm_overvolt_small_thresholds) & 0x0F), //small
                                      ((o_data->poundw[p].vdm_large_extreme_thresholds >> 4) & 0x0F), //large
                                      ((o_data->poundw[p].vdm_large_extreme_thresholds) & 0x0F), //extreme
                                      l_threshold_value_state);

            if (!l_threshold_value_state)
            {
                o_state->iv_vdm_enabled = false;
                FAPI_ASSERT_NOEXIT(false,
                                   fapi2::PSTATE_PB_POUND_W_INVALID_THRESHOLD_VALUE(fapi2::FAPI2_ERRL_SEV_RECOVERED)
                                   .set_CHIP_TARGET(i_target)
                                   .set_OP_POINT_TYPE(p)
                                   .set_VDM_OVERVOLT((o_data->poundw[p].vdm_overvolt_small_thresholds >> 4) & 0x0F)
                                   .set_VDM_SMALL(o_data->poundw[p].vdm_overvolt_small_thresholds & 0x0F)
                                   .set_VDM_EXTREME((o_data->poundw[p].vdm_large_extreme_thresholds >> 4) & 0x0F)
                                   .set_VDM_LARGE((o_data->poundw[p].vdm_large_extreme_thresholds) & 0x0F),
                                   "Pstate Parameter Block #W VDM threshold data are invalid");
                fapi2::current_err = fapi2::FAPI2_RC_SUCCESS;
                break;
            }
        }

        bool l_frequency_value_state = 1;

        for (uint8_t p = 0; p < NUM_OP_POINTS; ++p)
        {
            // These fields are 4 bits wide, and stored in a uint8, hence the shifting
            // N_S, N_L, L_S, S_N
            FAPI_INF("o_data->poundw[%d] VDM_FREQ_DROP N_S = %d", p, ((o_data->poundw[p].vdm_small_large_normal_freq >> 4) & 0x0F));
            FAPI_INF("o_data->poundw[%d] VDM_FREQ_DROP N_L = %d", p, ((o_data->poundw[p].vdm_small_large_normal_freq) & 0x0F));
            FAPI_INF("o_data->poundw[%d] VDM_FREQ_DROP L_S = %d", p, ((o_data->poundw[p].vdm_large_small_normal_freq >> 4) & 0x0F));
            FAPI_INF("o_data->poundw[%d] VDM_FREQ_DROP S_N = %d", p, ((o_data->poundw[p].vdm_large_small_normal_freq) & 0x0F));

            VALIDATE_FREQUENCY_DROP_VALUES(((o_data->poundw[p].vdm_small_large_normal_freq) & 0x0F), //N_L
                                           ((o_data->poundw[p].vdm_small_large_normal_freq >> 4) & 0x0F), // N_S
                                           ((o_data->poundw[p].vdm_large_small_normal_freq >> 4) & 0x0F), //L_S
                                           ((o_data->poundw[p].vdm_large_small_normal_freq) & 0x0F), //S_N
                                           l_frequency_value_state);

            if (!l_frequency_value_state)
            {
                o_state->iv_vdm_enabled = false;
                FAPI_ASSERT_NOEXIT(false,
                                   fapi2::PSTATE_PB_POUND_W_INVALID_FREQ_DROP_VALUE(fapi2::FAPI2_ERRL_SEV_RECOVERED)
                                   .set_CHIP_TARGET(i_target)
                                   .set_OP_POINT_TYPE(p)
                                   .set_VDM_NORMAL_SMALL((o_data->poundw[p].vdm_small_large_normal_freq >> 4) & 0x0F)
                                   .set_VDM_NORMAL_LARGE(o_data->poundw[p].vdm_small_large_normal_freq & 0x0F)
                                   .set_VDM_LARGE_SMALL((o_data->poundw[p].vdm_large_small_normal_freq >> 4) & 0x0F)
                                   .set_VDM_SMALL_NORMAL((o_data->poundw[p].vdm_large_small_normal_freq) & 0x0F),
                                   "Pstate Parameter Block #W VDM frequency drop data are invalid");
                fapi2::current_err = fapi2::FAPI2_RC_SUCCESS;
                break;
            }
        }

        //Biased compare vid data
        fapi2::ATTR_VDM_VID_COMPARE_BIAS_0P5PCT_Type l_bias_value;


        FAPI_TRY(FAPI_ATTR_GET(fapi2::ATTR_VDM_VID_COMPARE_BIAS_0P5PCT,
                               i_target,
                               l_bias_value),
                 "Error from FAPI_ATTR_GET for attribute ATTR_VDM_VID_COMPARE_BIAS_0P5PCT");

        float l_pound_w_points[NUM_OP_POINTS];

        for (uint8_t i = 0; i < NUM_OP_POINTS; i++)
        {
            l_pound_w_points[i]  = calc_bias(l_bias_value[i]);
            o_data->poundw[i].vdm_vid_compare_ivid = (uint32_t)(o_data->poundw[i].vdm_vid_compare_ivid * l_pound_w_points[i]);

            FAPI_INF ("vdm_vid_compare_ivid %x %x, %x", o_data->poundw[i].vdm_vid_compare_ivid,
                      o_data->poundw[i].vdm_vid_compare_ivid, l_pound_w_points[i]);
        }


        memcpy(&(o_vdmpb->vpd_w_data), o_data, sizeof(o_vdmpb->vpd_w_data));
    }
    while(0);


fapi_try_exit:

    // Given #W has both VDM and WOF content, a failure needs to disable both
    if (fapi2::current_err != fapi2::FAPI2_RC_SUCCESS)
    {
        o_state->iv_vdm_enabled = false;
        o_state->iv_wof_enabled = false;
    }
    FAPI_INF("<< proc_get_mvpd_poundw");
    return fapi2::current_err;

}


fapi2::ReturnCode
proc_set_resclk_table_attrs(const fapi2::Target<fapi2::TARGET_TYPE_PROC_CHIP>& i_target,
                      PSTATE_attribute_state* o_state)
{
    uint8_t l_resclk_freq_index[RESCLK_FREQ_REGIONS];
    uint8_t l_l3_steparray[RESCLK_L3_STEPS];
    uint16_t l_resclk_freq_regions[RESCLK_FREQ_REGIONS];
    uint16_t l_resclk_value[RESCLK_STEPS];
    uint16_t l_l3_threshold_mv;
    o_state->iv_resclk_enabled = true;

    do
    {
        // Perform some basic sanity checks on the header data structures (since
        // the header values are provided by another team)
        FAPI_ASSERT_NOEXIT((p9_resclk_defines::RESCLK_INDEX_VEC.size() == RESCLK_FREQ_REGIONS),
                fapi2::PSTATE_PB_RESCLK_INDEX_ERROR(fapi2::FAPI2_ERRL_SEV_RECOVERED)
                .set_FREQ_REGIONS(RESCLK_FREQ_REGIONS)
                .set_INDEX_VEC_SIZE(p9_resclk_defines::RESCLK_INDEX_VEC.size()),
                "p9_resclk_defines.h RESCLK_INDEX_VEC.size() mismatch");

        FAPI_ASSERT_NOEXIT((p9_resclk_defines::RESCLK_TABLE_VEC.size() == RESCLK_STEPS),
                fapi2::PSTATE_PB_RESCLK_TABLE_ERROR(fapi2::FAPI2_ERRL_SEV_RECOVERED)
                    .set_STEPS(RESCLK_STEPS)
                    .set_TABLE_VEC_SIZE(p9_resclk_defines::RESCLK_TABLE_VEC.size()),
                    "p9_resclk_defines.h RESCLK_TABLE_VEC.size() mismatch");

        FAPI_ASSERT_NOEXIT((p9_resclk_defines::L3CLK_TABLE_VEC.size() == RESCLK_L3_STEPS),
                    fapi2::PSTATE_PB_RESCLK_L3_TABLE_ERROR(fapi2::FAPI2_ERRL_SEV_RECOVERED)
                    .set_L3_STEPS(RESCLK_L3_STEPS)
                    .set_L3_VEC_SIZE(p9_resclk_defines::L3CLK_TABLE_VEC.size()),
                    "p9_resclk_defines.h L3CLK_TABLE_VEC.size() mismatch");
        //FAPI_ASSERT_NOEXIT will log an error with recoverable.. but rc won't be
        //cleared.. So we are initializing again to continue further
        if (fapi2::current_err != fapi2::FAPI2_RC_SUCCESS)
        {
            o_state->iv_resclk_enabled = false;
            fapi2::current_err = fapi2::FAPI2_RC_SUCCESS;
            break;
        }


        FAPI_TRY(FAPI_ATTR_GET(fapi2::ATTR_SYSTEM_RESCLK_L3_VALUE, i_target,
                               l_l3_steparray));
        FAPI_TRY(FAPI_ATTR_GET(fapi2::ATTR_SYSTEM_RESCLK_FREQ_REGIONS, i_target,
                               l_resclk_freq_regions));
        FAPI_TRY(FAPI_ATTR_GET(fapi2::ATTR_SYSTEM_RESCLK_FREQ_REGION_INDEX, i_target,
                               l_resclk_freq_index));
        FAPI_TRY(FAPI_ATTR_GET(fapi2::ATTR_SYSTEM_RESCLK_VALUE, i_target,
                               l_resclk_value));
        FAPI_TRY(FAPI_ATTR_GET(fapi2::ATTR_SYSTEM_RESCLK_L3_VOLTAGE_THRESHOLD_MV, i_target,
                               l_l3_threshold_mv));

        for (uint8_t i = 0; i < RESCLK_FREQ_REGIONS; ++i)
        {
            if (l_resclk_freq_regions[i] == 0)
            {
                l_resclk_freq_regions[i] = p9_resclk_defines::RESCLK_INDEX_VEC.at(i).freq;
            }

            if (l_resclk_freq_index[i] == 0)
            {
                l_resclk_freq_index[i] = p9_resclk_defines::RESCLK_INDEX_VEC.at(i).idx;
            }
        }

        for (uint8_t i = 0; i < RESCLK_STEPS; ++i)
        {
            if (l_resclk_value[i] == 0)
            {
                l_resclk_value[i] = p9_resclk_defines::RESCLK_TABLE_VEC.at(i);
            }
        }

        for (uint8_t i = 0; i < RESCLK_L3_STEPS; ++i)
        {
            if (l_l3_steparray[i] == 0)
            {
                l_l3_steparray[i] = p9_resclk_defines::L3CLK_TABLE_VEC.at(i);
            }
        }

        if(l_l3_threshold_mv == 0)
        {
            l_l3_threshold_mv = p9_resclk_defines::L3_VOLTAGE_THRESHOLD_MV;
        }

        FAPI_TRY(FAPI_ATTR_SET(fapi2::ATTR_SYSTEM_RESCLK_L3_VALUE, i_target,
                               l_l3_steparray));
        FAPI_TRY(FAPI_ATTR_SET(fapi2::ATTR_SYSTEM_RESCLK_FREQ_REGIONS, i_target,
                               l_resclk_freq_regions));
        FAPI_TRY(FAPI_ATTR_SET(fapi2::ATTR_SYSTEM_RESCLK_FREQ_REGION_INDEX, i_target,
                               l_resclk_freq_index));
        FAPI_TRY(FAPI_ATTR_SET(fapi2::ATTR_SYSTEM_RESCLK_VALUE, i_target,
                               l_resclk_value));
        FAPI_TRY(FAPI_ATTR_SET(fapi2::ATTR_SYSTEM_RESCLK_L3_VOLTAGE_THRESHOLD_MV, i_target,
                               l_l3_threshold_mv));
    }while(0);

fapi_try_exit:
    return fapi2::current_err;
}

//@brief Initialize HOMER VFRT data
void p9_pstate_update_vfrt(const GlobalPstateParmBlock* i_gppb,
                           uint8_t* i_pBuffer,
                           HomerVFRTLayout_t* o_vfrt_data,
                           uint32_t i_reference_freq)
{
    uint32_t l_index_0 = 0;
    uint32_t l_index_1 = 0;
    uint8_t  l_type = 0;
    uint32_t l_freq_khz = 0;
    uint32_t l_step_freq_khz;
    Pstate   l_ps;

    l_step_freq_khz = revle32(i_gppb->frequency_step_khz);

    //Initialize VFRT header
    o_vfrt_data->vfrtHeader.magic_number = revle16(UINT16_GET(i_pBuffer));
    i_pBuffer += 2;
    o_vfrt_data->vfrtHeader.reserved     = revle16(UINT16_GET(i_pBuffer));
    i_pBuffer += 2;
    o_vfrt_data->vfrtHeader.type_version = *i_pBuffer;
    i_pBuffer++;
    o_vfrt_data->vfrtHeader.res_vdnId    = *i_pBuffer;  // @todo this name is not accurate
    i_pBuffer++;
    o_vfrt_data->vfrtHeader.VddId_QAId   = *i_pBuffer;  // @todo this name is not accurate
    i_pBuffer++;
    o_vfrt_data->vfrtHeader.rsvd_QAId    = *i_pBuffer;
    i_pBuffer++;


    //find type
    l_type = (o_vfrt_data->vfrtHeader.type_version) >> 4;

    // @todo RTC 175631
    // This doesn't have the correct error checking in place!!!!!
    // This function should exit if the input type is not "SYSTEM"
    // Correct in Level 3 update.

    char            l_buffer_str[256];   // Temporary formatting string buffer
    char            l_line_str[256];     // Formatted output line string

    strcpy(l_line_str, "VFRT:");
    sprintf(l_buffer_str, " %X Ver/Type %X B5 %X B6 %X  B7 %X",
            revle16(o_vfrt_data->vfrtHeader.magic_number),
            revle16(o_vfrt_data->vfrtHeader.type_version),
            o_vfrt_data->vfrtHeader.res_vdnId,   /// BUG:  this should be VDN!!!
            o_vfrt_data->vfrtHeader.VddId_QAId,    /// BUG:  this should be VDD!!!
            o_vfrt_data->vfrtHeader.rsvd_QAId);  /// BUG:  this should be resvQID!!!
    strcat(l_line_str, l_buffer_str);
    FAPI_INF("%s", l_line_str);

    //Initialize VFRT data part
    for (l_index_0 = 0; l_index_0 < VFRT_FRATIO_SIZE; ++l_index_0)
    {
        strcpy(l_buffer_str, "");
        strcpy(l_line_str, "    ");

        for (l_index_1 = 0; l_index_1 < VFRT_VRATIO_SIZE; ++l_index_1)
        {
            // Offset MHz*1000 (khz) + step (khz) * sysvalue
            l_freq_khz = 1000 * 1000 + (l_step_freq_khz * (*i_pBuffer));

            // Translate to Pstate.  The called function will clip to the
            // legal range.  The rc is only interesting if we care that
            // the pstate was clipped;  in this case, we don't.
            freq2pState(i_gppb, l_freq_khz, &l_ps);

            o_vfrt_data->vfrt_data[l_index_0][l_index_1] = l_ps;

            sprintf(l_buffer_str, "[%2d][%2d] %2d %4d; ",
                    l_index_0, l_index_1,
                    l_ps,  l_freq_khz / 1000);
            strcat(l_line_str, l_buffer_str);

            // Trace the first 8 values of the 24 for debug. As this is
            // in a loop that is processing over 1000 tables, the first
            // 8 gives a view that can correlate that the input data read
            // is correct without overfilling the HB trace buffer.
            if (!((l_index_1 + 1) % 8))
            {
                FAPI_INF("%s", l_line_str);
                strcpy(l_buffer_str, "");
                strcpy(l_line_str, "    ");
            }

            i_pBuffer++;
        }

//        FAPI_INF("%s", l_line_str);
    }

    // Flip the type from System (0) to HOMER (1)
    l_type = 1;
    o_vfrt_data->vfrtHeader.type_version |=  l_type << 4;

}

/// Get IAC VDN vlue
uint16_t get_iac_vdn_value (uint16_t i_vpd_vdn_mv,
                            IddqTable i_iddq,
                            uint8_t nest_leakage_percent,
                            uint16_t i_vpd_idn_100ma)
{
    uint16_t l_ac_vdn_value = 0;
    uint8_t l_iddq_index = 0;
    const uint8_t MIN_IDDQ_VALUE = 6; //considering 0.6 as 6 here for easy math
    const uint16_t IDDQ_MIN_VOLT_LEVEL = 600;
    uint8_t l_measured_temp_C[2] = {0};
    uint8_t l_Ivdnq_5ma[2] = {0};
    float l_scaled_leakage_ma[2] = {0};
    uint16_t l_Ivdnq_vpd_ma = 0;
    uint8_t i = 0;
    uint8_t j = 0;

    //check bonunding is required or not
    uint16_t l_bounding_value = i_vpd_vdn_mv % 100;
    //Index to read from IDDQ table
    //Assumption here i_vpd_vdn_mv value will be greater than 600 and lesser
    //than 1100 mv
    l_iddq_index = (i_vpd_vdn_mv / 100) - MIN_IDDQ_VALUE;
    i = l_iddq_index;
    j = l_iddq_index + 1;
    uint16_t l_iq_mv[2] = {0};
    l_iq_mv[0] = IDDQ_MIN_VOLT_LEVEL + (100 * i);
    l_iq_mv[1] = IDDQ_MIN_VOLT_LEVEL + (100 * (i + 1));
    uint8_t l_diff_value = 0;
    do
    {
        if (!l_bounding_value)
        {
            //Read measured temp
            l_measured_temp_C[0] = i_iddq.avgtemp_vdn[i];

            if ((l_measured_temp_C[0] == 0))
            {
                FAPI_INF("Non Bounded measured temp value is 0");
                break;
            }
            else if (l_measured_temp_C[0] < nest_leakage_percent)
            {
                l_diff_value = nest_leakage_percent - l_measured_temp_C[0];
            }
            else
            {
                l_diff_value = l_measured_temp_C[0] - nest_leakage_percent;
            }

            //Read ivdnq_5ma
            l_Ivdnq_5ma[0] = i_iddq.ivdn[i];

            //Scale each bounding Ivdnq_5ma value to 75C in mA

            l_scaled_leakage_ma[0] = l_Ivdnq_5ma[0] * 5 * pow (1.3, (l_diff_value / 10));

            l_Ivdnq_vpd_ma = l_scaled_leakage_ma[0];

            l_ac_vdn_value = (i_vpd_idn_100ma * 10) - (l_Ivdnq_vpd_ma * 10);
        }
        else
        {
            //Read measured temp
            l_measured_temp_C[0] = i_iddq.avgtemp_vdn[i];
            l_measured_temp_C[1] = i_iddq.avgtemp_vdn[i + 1];

            //Read ivdnq_5ma
            l_Ivdnq_5ma[0] = i_iddq.ivdn[i];
            l_Ivdnq_5ma[1] = i_iddq.ivdn[i + 1];

            //Scale each bounding Ivdnq_5ma value to 75C in mA

            for (j = 0; j < 2; j++)
            {
                if ((l_measured_temp_C[j] == 0))
                {
                    FAPI_INF("Bounded measured temp value is 0");
                    break;
                }
                else if (l_measured_temp_C[j] < nest_leakage_percent)
                {
                    l_diff_value = nest_leakage_percent - l_measured_temp_C[j];
                }
                else
                {
                    l_diff_value = l_measured_temp_C[j] - nest_leakage_percent;
                }

                l_scaled_leakage_ma[j] = l_Ivdnq_5ma[j] * 5 * pow (1.3, (l_diff_value / 10));
            }

            //Interpolate between scaled_leakage_ma[i] and scaled_leakage_ma[i+1]
            //using the same ratio as the VPD voltage is to the bounding volages) to
            //arrive at  Ivdnq_vpd_ma
            l_Ivdnq_vpd_ma = l_scaled_leakage_ma[i] + roundUp((i_vpd_vdn_mv - 600 + (100 * i)) / ((l_iq_mv[1] - l_iq_mv[0]) *
                             (l_scaled_leakage_ma[1] - l_scaled_leakage_ma[0])));

            l_ac_vdn_value = (i_vpd_idn_100ma * 10) - (l_Ivdnq_vpd_ma * 10);
        }
    }while(0);

    return l_ac_vdn_value;
}
/**
 * calculate_effective_capacitance
 *
 * Description: Generic function to perform the effective capacitance
 *              calculations.
 *              C_eff = I / (V^1.3 * F)
 *
 *              I is the AC component of Idd in 0.01 Amps (or10 mA)
 *              V is the silicon voltage in 100 uV
 *              F is the frequency in MHz
 *
 *              Note: Caller must ensure they check for a 0 return value
 *                    and disable wof if that is the case
 *
 * Param[in]: i_iAC - the AC component
 * Param[in]: i_voltage - the voltage component in 100uV
 * Param[in]: i_frequency - the frequency component
 *
 * Return: The calculated effective capacitance
 */
uint16_t pstate_calculate_effective_capacitance( uint16_t i_iAC,
        uint16_t i_voltage,
        uint16_t i_frequency )
{

    // Compute V^1.3 using a best-fit equation
    // (V^1.3) = (21374 * (voltage in 100uV) - 50615296)>>10
    uint32_t v_exp_1_dot_3 = (21374 * i_voltage - 50615296) >> 10;

    // Compute I / (V^1.3)
    uint32_t I = i_iAC << 14; // * 16384

    // Prevent divide by zero
    if( v_exp_1_dot_3 == 0 )
    {
        // Return 0 causing caller to disable wof.
        return 0;
    }

    uint32_t c_eff = (I / v_exp_1_dot_3);
    c_eff = c_eff << 14; // * 16384

    // Divide by frequency and return the final value.
    // (I / (V^1.3 * F)) == I / V^1.3 /F
    return c_eff / i_frequency;

}

uint16_t roundUp(float i_value)
{
    return ((uint16_t)(i_value == (uint16_t)i_value ? i_value : i_value + 1));
}
//
// p9_pstate_compute_vdm_threshold_pts
//
void p9_pstate_compute_vdm_threshold_pts(PoundW_data i_data,
        LocalPstateParmBlock* io_lppb)
{
    int p = 0;

    //VID POINTS
    for (p = 0; p < NUM_OP_POINTS; p++)
    {
        io_lppb->vid_point_set[p] = i_data.poundw[p].vdm_vid_compare_ivid;
        FAPI_INF("Bi:VID=%x", io_lppb->vid_point_set[p]);
    }

    // Threshold points
    for (p = 0; p < NUM_OP_POINTS; p++)
    {
        // overvolt threshold
        io_lppb->threshold_set[p][0] = g_GreyCodeIndexMapping[(i_data.poundw[p].vdm_overvolt_small_thresholds >> 4) & 0x0F];

        FAPI_INF("Bi: OV TSHLD =%d", io_lppb->threshold_set[p][0]);
        // small threshold
        io_lppb->threshold_set[p][1] = (g_GreyCodeIndexMapping[i_data.poundw[p].vdm_overvolt_small_thresholds  & 0x0F]);

        FAPI_INF("Bi: SM TSHLD =%d", io_lppb->threshold_set[p][1]);
        // large threshold
        io_lppb->threshold_set[p][2] =  (g_GreyCodeIndexMapping[(i_data.poundw[p].vdm_large_extreme_thresholds >> 4) & 0x0F]);

        FAPI_INF("Bi: LG TSHLD =%d", io_lppb->threshold_set[p][2]);
        // extreme threshold
        io_lppb->threshold_set[p][3] =  (g_GreyCodeIndexMapping[i_data.poundw[p].vdm_large_extreme_thresholds & 0x0F]);

        FAPI_INF("Bi: EX TSHLD =%d", io_lppb->threshold_set[p][3]);

    }
    // Jump value points
    for (p = 0; p < NUM_OP_POINTS; p++)
    {
        // N_L value
        io_lppb->jump_value_set[p][0] = (i_data.poundw[p].vdm_small_large_normal_freq >> 4) & 0x0F;

        FAPI_INF("Bi: N_S =%d", io_lppb->jump_value_set[p][0]);
        // N_S value
        io_lppb->jump_value_set[p][1] = i_data.poundw[p].vdm_small_large_normal_freq & 0x0F;

        FAPI_INF("Bi: N_L =%d", io_lppb->jump_value_set[p][1]);
        // L_S value
        io_lppb->jump_value_set[p][2] =  (i_data.poundw[p].vdm_large_small_normal_freq >> 4) & 0x0F;

        FAPI_INF("Bi: L_S =%d", io_lppb->jump_value_set[p][2]);
        // S_L value
        io_lppb->jump_value_set[p][3] =  i_data.poundw[p].vdm_large_small_normal_freq & 0x0F;

        FAPI_INF("Bi: S_L =%d", io_lppb->jump_value_set[p][3]);
    }
}
//
//
// p9_pstate_compute_PsVIDCompSlopes_slopes
//
void p9_pstate_compute_PsVIDCompSlopes_slopes(PoundW_data i_data,
        LocalPstateParmBlock* io_lppb,
        uint8_t* i_pstate)
{
    do
    {
        char const* region_names[] = { "REGION_POWERSAVE_NOMINAL",
                                       "REGION_NOMINAL_TURBO",
                                       "REGION_TURBO_ULTRA"
                                     };

        // ULTRA TURBO pstate check is not required..because its pstate will be
        // 0
        if (!(i_pstate[POWERSAVE]) ||
            !(i_pstate[NOMINAL]) ||
            !(i_pstate[TURBO]))
        {
            FAPI_ERR("Non-UltraTurbo PSTATE value shouldn't be zero");
            break;
        }

        for(auto region(REGION_POWERSAVE_NOMINAL); region <= REGION_TURBO_ULTRA; ++region)
        {
            io_lppb->PsVIDCompSlopes[region] =
                revle16(
                    compute_slope_4_12( io_lppb->vid_point_set[region + 1],
                                        io_lppb->vid_point_set[region],
                                        i_pstate[region],
                                        i_pstate[region + 1])
                );

            FAPI_DBG("PsVIDCompSlopes[%s] 0x%04x %d", region_names[region],
                     revle16(io_lppb->PsVIDCompSlopes[region]),
                     revle16(io_lppb->PsVIDCompSlopes[region]));
        }
    }
    while(0);
}

//
//
// p9_pstate_compute_PsVDMThreshSlopes
//
void p9_pstate_compute_PsVDMThreshSlopes(
    LocalPstateParmBlock* io_lppb,
    uint8_t* i_pstate)
{
    do
    {
        // ULTRA TURBO pstate check is not required..because its pstate will be
        // 0
        if (!(i_pstate[POWERSAVE]) ||
            !(i_pstate[NOMINAL]) ||
            !(i_pstate[TURBO]))
        {
            FAPI_ERR("Non-UltraTurbo PSTATE value shouldn't be zero");
            break;
        }

        for(auto region(REGION_POWERSAVE_NOMINAL); region <= REGION_TURBO_ULTRA; ++region)
        {
            for (uint8_t i = 0; i < NUM_THRESHOLD_POINTS; ++i)
            {
                io_lppb->PsVDMThreshSlopes[region][i] =
                  revle16(
                        compute_slope_thresh(io_lppb->threshold_set[region+1][i],
                                             io_lppb->threshold_set[region][i],
                                             i_pstate[region],
                                             i_pstate[region+1])
                    );

                FAPI_INF("PsVDMThreshSlopes %s %x TH_N %d TH_P %d PS_P %d PS_N %d",
                         prt_region_names[region],
                         revle16(io_lppb->PsVDMThreshSlopes[region][i]),
                         io_lppb->threshold_set[region+1][i],
                         io_lppb->threshold_set[region][i],
                         i_pstate[region],
                         i_pstate[region+1]);
            }
        }
    }
    while(0);
}

//
// p9_pstate_compute_PsVDMJumpSlopes
//
void p9_pstate_compute_PsVDMJumpSlopes(
    LocalPstateParmBlock* io_lppb,
    uint8_t* i_pstate)
{
    do
    {
        // ULTRA TURBO pstate check is not required..because its pstate will be
        // 0
        if (!(i_pstate[POWERSAVE]) ||
            !(i_pstate[NOMINAL]) ||
            !(i_pstate[TURBO]))
        {
            FAPI_ERR("Non-UltraTurbo PSTATE value shouldn't be zero");
            break;
        }

        //Calculate slopes
        //
        for(auto region(REGION_POWERSAVE_NOMINAL); region <= REGION_TURBO_ULTRA; ++region)
        {
            for (uint8_t i = 0; i < NUM_JUMP_VALUES; ++i)
            {
                io_lppb->PsVDMJumpSlopes[region][i] =
                  revle16(
                        compute_slope_thresh(io_lppb->jump_value_set[region+1][i],
                                             io_lppb->jump_value_set[region][i],
                                             i_pstate[region],
                                             i_pstate[region+1])
                    );

                FAPI_INF("PsVDMJumpSlopes %s %x N_S %d N_L %d L_S %d S_N %d",
                         prt_region_names[region],
                         revle16(io_lppb->PsVDMJumpSlopes[region][i]),
                         io_lppb->jump_value_set[region+1][i],
                         io_lppb->jump_value_set[region][i],
                         i_pstate[region],
                         i_pstate[region+1]);
            }
        }
    }
    while(0);
}
// p9_pstate_set_global_feature_attributes
fapi2::ReturnCode
p9_pstate_set_global_feature_attributes(const fapi2::Target<fapi2::TARGET_TYPE_PROC_CHIP>& i_target,
                                        PSTATE_attribute_state i_state,
                                        QuadManagerFlags* o_qm_flags)
{
    // Quad Manager Flags
    fapi2::buffer<uint16_t> l_data16;

    fapi2::ATTR_PSTATES_ENABLED_Type l_ps_enabled =
        (fapi2::ATTR_PSTATES_ENABLED_Type)fapi2::ENUM_ATTR_PSTATES_ENABLED_FALSE;

    fapi2::ATTR_RESCLK_ENABLED_Type l_resclk_enabled =
        (fapi2::ATTR_RESCLK_ENABLED_Type)fapi2::ENUM_ATTR_RESCLK_ENABLED_FALSE;

    fapi2::ATTR_VDM_ENABLED_Type l_vdm_enabled =
        (fapi2::ATTR_VDM_ENABLED_Type)fapi2::ENUM_ATTR_VDM_ENABLED_FALSE;

    fapi2::ATTR_IVRM_ENABLED_Type l_ivrm_enabled =
        (fapi2::ATTR_IVRM_ENABLED_Type)fapi2::ENUM_ATTR_IVRM_ENABLED_FALSE;

    fapi2::ATTR_WOF_ENABLED_Type l_wof_enabled =
        (fapi2::ATTR_WOF_ENABLED_Type)fapi2::ENUM_ATTR_WOF_ENABLED_FALSE;

    if (i_state.iv_pstates_enabled)
    {
        l_ps_enabled = (fapi2::ATTR_PSTATES_ENABLED_Type)fapi2::ENUM_ATTR_PSTATES_ENABLED_TRUE;
    }

    if (i_state.iv_resclk_enabled)
    {
        l_resclk_enabled = (fapi2::ATTR_RESCLK_ENABLED_Type)fapi2::ENUM_ATTR_RESCLK_ENABLED_TRUE;
    }

    if (i_state.iv_vdm_enabled)
    {
        l_vdm_enabled = (fapi2::ATTR_VDM_ENABLED_Type)fapi2::ENUM_ATTR_VDM_ENABLED_TRUE;
    }

    if (i_state.iv_ivrm_enabled)
    {
        l_ivrm_enabled = (fapi2::ATTR_IVRM_ENABLED_Type)fapi2::ENUM_ATTR_IVRM_ENABLED_TRUE;
    }

    if (i_state.iv_wof_enabled)
    {
        l_wof_enabled = (fapi2::ATTR_WOF_ENABLED_Type)fapi2::ENUM_ATTR_WOF_ENABLED_TRUE;
    }

    FAPI_TRY(FAPI_ATTR_SET(fapi2::ATTR_PSTATES_ENABLED, i_target, l_ps_enabled));
    FAPI_TRY(FAPI_ATTR_SET(fapi2::ATTR_RESCLK_ENABLED, i_target, l_resclk_enabled));
    FAPI_TRY(FAPI_ATTR_SET(fapi2::ATTR_VDM_ENABLED, i_target, l_vdm_enabled));
    FAPI_TRY(FAPI_ATTR_SET(fapi2::ATTR_IVRM_ENABLED, i_target, l_ivrm_enabled));
    FAPI_TRY(FAPI_ATTR_SET(fapi2::ATTR_WOF_ENABLED, i_target, l_wof_enabled));


    // ----------------
    // set CME QM flags
    // ----------------
    l_data16.flush<0>();

    l_data16.insertFromRight<0, 1>(l_resclk_enabled);
    l_data16.insertFromRight<1, 1>(l_ivrm_enabled);
    l_data16.insertFromRight<2, 1>(l_vdm_enabled);
    l_data16.insertFromRight<3, 1>(l_wof_enabled);


    // DROOP_PROTECT          -> DPLL Mode 3
    // DROOP_PROTECT_OVERVOLT -> DPLL Mode 3.5
    // DYNAMIC                -> DPLL Mode 4
    // DYNAMIC_PROTECT        -> DPLL Mode 5

    //                     enable_fmin    enable_fmax   enable_jump
    // DPLL Mode  2             0              0             0
    // DPLL Mode  3             0              0             1
    // DPLL Mode  4             X              1             0
    // DPLL Mode  4             1              X             0
    // DPLL Mode  3.5           0              1             1
    // DPLL Mode  5             1              X             1

    switch (attr.attr_dpll_vdm_response)
    {
        case fapi2::ENUM_ATTR_DPLL_VDM_RESPONSE_DROOP_PROTECT:
            l_data16 |= CME_QM_FLAG_SYS_JUMP_PROTECT;
            break;
        case fapi2::ENUM_ATTR_DPLL_VDM_RESPONSE_DROOP_PROTECT_OVERVOLT:
            l_data16 |= CME_QM_FLAG_SYS_DYN_FMAX_ENABLE;
            l_data16 |= CME_QM_FLAG_SYS_JUMP_PROTECT;
            break;
        case fapi2::ENUM_ATTR_DPLL_VDM_RESPONSE_DYNAMIC:
            l_data16 |= CME_QM_FLAG_SYS_DYN_FMIN_ENABLE;
            l_data16 |= CME_QM_FLAG_SYS_DYN_FMAX_ENABLE;
            break;
        case fapi2::ENUM_ATTR_DPLL_VDM_RESPONSE_DYNAMIC_PROTECT:
            l_data16 |= CME_QM_FLAG_SYS_DYN_FMIN_ENABLE;
            l_data16 |= CME_QM_FLAG_SYS_JUMP_PROTECT;
            break;
    }

    o_qm_flags->value = revle16(l_data16);

fapi_try_exit:
    return fapi2::current_err;
}
// *INDENT-ON*
OpenPOWER on IntegriCloud