summaryrefslogtreecommitdiffstats
path: root/src/import/chips/p9/procedures/hwp/memory/lib/dimm/rank.C
blob: 37af40a5bf87cce69d40bd652b63df1d22c727db (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
/* IBM_PROLOG_BEGIN_TAG                                                   */
/* This is an automatically generated prolog.                             */
/*                                                                        */
/* $Source: src/import/chips/p9/procedures/hwp/memory/lib/dimm/rank.C $   */
/*                                                                        */
/* OpenPOWER HostBoot Project                                             */
/*                                                                        */
/* Contributors Listed Below - COPYRIGHT 2015,2019                        */
/* [+] International Business Machines Corp.                              */
/*                                                                        */
/*                                                                        */
/* Licensed under the Apache License, Version 2.0 (the "License");        */
/* you may not use this file except in compliance with the License.       */
/* You may obtain a copy of the License at                                */
/*                                                                        */
/*     http://www.apache.org/licenses/LICENSE-2.0                         */
/*                                                                        */
/* Unless required by applicable law or agreed to in writing, software    */
/* distributed under the License is distributed on an "AS IS" BASIS,      */
/* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or        */
/* implied. See the License for the specific language governing           */
/* permissions and limitations under the License.                         */
/*                                                                        */
/* IBM_PROLOG_END_TAG                                                     */

///
/// @file rank.C
/// @brief Manage DIMM ranks
///
// *HWP HWP Owner: Jacob Harvey <jlharvey@us.ibm.com>
// *HWP HWP Backup: Andre Marin <aamarin@us.ibm.com>
// *HWP Team: Memory
// *HWP Level: 3
// *HWP Consumed by: FSP:HB

#include <fapi2.H>
#include <mss.H>

using fapi2::TARGET_TYPE_MCA;
using fapi2::TARGET_TYPE_DIMM;
using fapi2::FAPI2_RC_SUCCESS;
using fapi2::FAPI2_RC_INVALID_PARAMETER;

namespace mss
{
// Definition of the Nimbus PHY rank_pair0 config registers
const std::vector< uint64_t > rankPairTraits<TARGET_TYPE_MCA, 0>::RANK_PAIR_REGS =
{
    MCA_DDRPHY_PC_RANK_PAIR0_P0,
    MCA_DDRPHY_PC_RANK_PAIR2_P0,
};

// Definition of the Nimbus PHY rank_pair1 config registers
const std::vector< uint64_t > rankPairTraits<TARGET_TYPE_MCA, 1>::RANK_PAIR_REGS =
{
    MCA_DDRPHY_PC_RANK_PAIR0_P0,
    MCA_DDRPHY_PC_RANK_PAIR2_P0,
};

// Definition of the Nimbus PHY rank_pair2 config registers
const std::vector< uint64_t > rankPairTraits<TARGET_TYPE_MCA, 2>::RANK_PAIR_REGS =
{
    MCA_DDRPHY_PC_RANK_PAIR1_P0,
    MCA_DDRPHY_PC_RANK_PAIR3_P0,
};

// Definition of the Nimbus PHY rank_pair3 config registers
const std::vector< uint64_t > rankPairTraits<TARGET_TYPE_MCA, 3>::RANK_PAIR_REGS =
{
    MCA_DDRPHY_PC_RANK_PAIR1_P0,
    MCA_DDRPHY_PC_RANK_PAIR3_P0,
};

// Definition of mappings for which fields (primary, secondary, ...) go into which regs
const std::vector< uint64_t > rankPairTraits<TARGET_TYPE_MCA, 0>::RANK_PAIR_FIELD_MAP = { 0, 0, 1, 1 };
const std::vector< uint64_t > rankPairTraits<TARGET_TYPE_MCA, 1>::RANK_PAIR_FIELD_MAP = { 0, 0, 1, 1 };
const std::vector< uint64_t > rankPairTraits<TARGET_TYPE_MCA, 2>::RANK_PAIR_FIELD_MAP = { 0, 0, 1, 1 };
const std::vector< uint64_t > rankPairTraits<TARGET_TYPE_MCA, 3>::RANK_PAIR_FIELD_MAP = { 0, 0, 1, 1 };

namespace rank
{

//
// Static table of rank pair assignments. Some of them won't be valid depending on
// the plug rules (which may be OpenPOWER, IBM, etc.) Some also won't make sense
// -- 3 rank DIMM? -- but it doesn't take up much space and lord knows stranger things
// have happened ... Won't hurt to have this defined JustInCase(tm).
// Index by [DIMM1 rank count][DIMM0 rank count]
// Order and values for the below structure
// Each value represents a rank pair configuration register's proper settings
//  Primary +  secondary 0/1
//  Primary +  secondary 2/3
// Tertiary + quaternary 0/1
// Tertiary + quaternary 2/3
// TODO RTC 160869: Review hard coded values, possibly make into traits?
static const std::vector< std::vector< rank_pair_data > > rank_pair_assignments =
{
    {
        {0x0000, 0x0000, 0x0000, 0x0000}, // 0 ranks DIMM 1, 0 ranks DIMM0
        {0x1000, 0x0000, 0x0000, 0x0000}, // 0 ranks DIMM 1, 1 ranks DIMM0
        {0x1030, 0x0000, 0x0000, 0x0000}, // 0 ranks DIMM 1, 2 ranks DIMM0
        {0x1530, 0x0000, 0x0000, 0x0000}, // 0 ranks DIMM 1, 3 ranks DIMM0
        {0x1537, 0x0000, 0x0000, 0x0000}  // 0 ranks DIMM 1, 4 ranks DIMM0
    },
    {
        {0x0000, 0x9000, 0x0000, 0x0000}, // 1 ranks DIMM 1, 0 ranks DIMM0
        {0x1000, 0x9000, 0x0000, 0x0000}, // 1 ranks DIMM 1, 1 ranks DIMM0
        {0x1030, 0x9000, 0x0000, 0x0000}, // 1 ranks DIMM 1, 2 ranks DIMM0
        {0x1530, 0x9000, 0x0000, 0x0000}, // 1 ranks DIMM 1, 3 ranks DIMM0
        {0x1537, 0x9000, 0x0000, 0x0000}  // 1 ranks DIMM 1, 4 ranks DIMM0
    },
    {
        {0x0000, 0x90B0, 0x0000, 0x0000}, // 2 ranks DIMM 1, 0 ranks DIMM0
        {0x1000, 0x90B0, 0x0000, 0x0000}, // 2 ranks DIMM 1, 1 ranks DIMM0
        {0x1030, 0x90B0, 0x0000, 0x0000}, // 2 ranks DIMM 1, 2 ranks DIMM0
        {0x1530, 0x90B0, 0x0000, 0x0000}, // 2 ranks DIMM 1, 3 ranks DIMM0
        {0x1537, 0x90B0, 0x0000, 0x0000}  // 2 ranks DIMM 1, 4 ranks DIMM0
    },
    {
        {0x0000, 0x9DB0, 0x0000, 0x0000}, // 3 ranks DIMM 1, 0 ranks DIMM0
        {0x1000, 0x9DB0, 0x0000, 0x0000}, // 3 ranks DIMM 1, 1 ranks DIMM0
        {0x1030, 0x9DB0, 0x0000, 0x0000}, // 3 ranks DIMM 1, 2 ranks DIMM0
        {0x1530, 0x9DB0, 0x0000, 0x0000}, // 3 ranks DIMM 1, 3 ranks DIMM0
        {0x1537, 0x9DB0, 0x0000, 0x0000}  // 3 ranks DIMM 1, 4 ranks DIMM0
    },
    {
        {0x0000, 0x9DBF, 0x0000, 0x0000}, // 4 ranks DIMM 1, 0 ranks DIMM0
        {0x1000, 0x9DBF, 0x0000, 0x0000}, // 4 ranks DIMM 1, 1 ranks DIMM0
        {0x1030, 0x9DBF, 0x0000, 0x0000}, // 4 ranks DIMM 1, 2 ranks DIMM0
        {0x1530, 0x9DBF, 0x0000, 0x0000}, // 4 ranks DIMM 1, 3 ranks DIMM0
        {0x1537, 0x9DBF, 0x0000, 0x0000}  // 4 ranks DIMM 1, 4 ranks DIMM0
    },
};

//
// Static table of vectors representing the master ranks, depending on the rank pair
// config. This table maps 1-1 to the table above, and allows us to skip the bit manipulation
// to figure out the master ranks. Note, no ranks means an empty vector ...
//
static const std::vector< std::vector< std::vector< uint64_t > > > primary_rank_pairs =
{
    {
        {},
        {0},
        {0, 1},
        {0, 1},
        {0, 1}
    },
    {
        {NO_RANK, NO_RANK, 4},
        {0, NO_RANK, 4},
        {0, 1, 4},
        {0, 1, 4},
        {0, 1, 4}
    },
    {
        {NO_RANK, NO_RANK, 4, 5},
        {0, NO_RANK, 4, 5},
        {0, 1, 4, 5},
        {0, 1, 4, 5},
        {0, 1, 4, 5}
    },
    {
        {NO_RANK, NO_RANK, 4, 5},
        {0, NO_RANK, 4, 5},
        {0, 1, 4, 5},
        {0, 1, 4, 5},
        {0, 1, 4, 5}
    },
    {
        {NO_RANK, NO_RANK, 4, 5},
        {0, NO_RANK, 4, 5},
        {0, 1, 4, 5},
        {0, 1, 4, 5},
        {0, 1, 4, 5}
    },
};

// Defines the same rank pair tables but this time for LRDIMM
// Nimbus only allows us to have all LR or all RDIMM plugged on a given port, so we're ok having two tables
// Note: for LRDIMM's we want to have common delay settings for each DIMM (DIMM0 has its settings and DIMM1 has its own settings)
// As such, we setup the rank pairs to have primary/secondary/tertiary/quaternary for each DIMM on a single rank pair
//  Primary +  secondary 0/1
//  Primary +  secondary 2/3
// Tertiary + quaternary 0/1
// Tertiary + quaternary 2/3
static const std::vector< std::vector< rank_pair_data > > lr_rank_pair_assignments =
{
    {
        {0x0000, 0x0000, 0x0000, 0x0000}, // 0 ranks DIMM 1, 0 ranks DIMM0
        {0x1000, 0x0000, 0x0000, 0x0000}, // 0 ranks DIMM 1, 1 ranks DIMM0
        {0x1300, 0x0000, 0x0000, 0x0000}, // 0 ranks DIMM 1, 2 ranks DIMM0
        {0x1300, 0x0000, 0x5000, 0x0000}, // 0 ranks DIMM 1, 3 ranks DIMM0
        {0x1300, 0x0000, 0x5700, 0x0000}, // 0 ranks DIMM 1, 4 ranks DIMM0
    },
    {
        {0x0000, 0x9000, 0x0000, 0x0000}, // 1 ranks DIMM 1, 0 ranks DIMM0
        {0x1000, 0x9000, 0x0000, 0x0000}, // 1 ranks DIMM 1, 1 ranks DIMM0
        {0x1300, 0x9000, 0x0000, 0x0000}, // 1 ranks DIMM 1, 2 ranks DIMM0
        {0x1300, 0x9000, 0x5000, 0x0000}, // 1 ranks DIMM 1, 3 ranks DIMM0
        {0x1300, 0x9000, 0x5700, 0x0000}, // 1 ranks DIMM 1, 4 ranks DIMM0
    },
    {
        {0x0000, 0x9B00, 0x0000, 0x0000}, // 2 ranks DIMM 1, 0 ranks DIMM0
        {0x1000, 0x9B00, 0x0000, 0x0000}, // 2 ranks DIMM 1, 1 ranks DIMM0
        {0x1300, 0x9B00, 0x0000, 0x0000}, // 2 ranks DIMM 1, 2 ranks DIMM0
        {0x1300, 0x9B00, 0x5000, 0x0000}, // 2 ranks DIMM 1, 3 ranks DIMM0
        {0x1300, 0x9B00, 0x5700, 0x0000}, // 2 ranks DIMM 1, 4 ranks DIMM0
    },
    {
        {0x0000, 0x9B00, 0x0000, 0xD000}, // 3 ranks DIMM 1, 0 ranks DIMM0
        {0x1000, 0x9B00, 0x0000, 0xD000}, // 3 ranks DIMM 1, 1 ranks DIMM0
        {0x1300, 0x9B00, 0x0000, 0xD000}, // 3 ranks DIMM 1, 2 ranks DIMM0
        {0x1300, 0x9B00, 0x5000, 0xD000}, // 3 ranks DIMM 1, 3 ranks DIMM0
        {0x1300, 0x9B00, 0x5700, 0xD000}, // 3 ranks DIMM 1, 4 ranks DIMM0
    },
    {
        {0x0000, 0x9B00, 0x0000, 0xDF00}, // 4 ranks DIMM 1, 0 ranks DIMM0
        {0x1000, 0x9B00, 0x0000, 0xDF00}, // 4 ranks DIMM 1, 1 ranks DIMM0
        {0x1300, 0x9B00, 0x0000, 0xDF00}, // 4 ranks DIMM 1, 2 ranks DIMM0
        {0x1300, 0x9B00, 0x5000, 0xDF00}, // 4 ranks DIMM 1, 3 ranks DIMM0
        {0x1300, 0x9B00, 0x5700, 0xDF00}, // 4 ranks DIMM 1, 4 ranks DIMM0
    },
};

//
// Static table of vectors representing the master ranks, depending on the rank pair
// config. This table maps 1-1 to the table above, and allows us to skip the bit manipulation
// to figure out the master ranks. Note, no ranks means an empty vector ...
// Note: for LRDIMM's we want to have common delay settings for each DIMM (DIMM0 has its settings and DIMM1 has its own settings)
// As such, we setup the rank pairs to have primary/secondary/tertiary/quaternary for each DIMM on a single rank pair
static const std::vector< std::vector< std::vector< uint64_t > > > lr_primary_rank_pairs =
{
    {
        {},
        {0},
        {0},
        {0},
        {0}
    },
    {
        {NO_RANK, NO_RANK, 4},
        {0, NO_RANK, 4},
        {0, NO_RANK, 4},
        {0, NO_RANK, 4},
        {0, NO_RANK, 4}
    },
    {
        {NO_RANK, NO_RANK, 4},
        {0, NO_RANK, 4},
        {0, NO_RANK, 4},
        {0, NO_RANK, 4},
        {0, NO_RANK, 4}
    },
    {
        {NO_RANK, NO_RANK, 4},
        {0, NO_RANK, 4},
        {0, NO_RANK, 4},
        {0, NO_RANK, 4},
        {0, NO_RANK, 4}
    },
    {
        {NO_RANK, NO_RANK, 4},
        {0, NO_RANK, 4},
        {0, NO_RANK, 4},
        {0, NO_RANK, 4},
        {0, NO_RANK, 4}
    },
};

//
// Static table of vectors representing ranks on a single DIMM
// Note: std::vector< uint64_t > v = single_dimm_ranks[mss::index(dimm)][ranks on dimm];
//
static const std::vector< std::vector< std::vector< uint64_t > > > single_dimm_ranks =
{
    { {},           {0},          {0, 1},       {0, 1, 2},    {0, 1, 2, 3} },
    { {},           {4},          {4, 5},       {4, 5, 6},    {4, 5, 6, 7} },
};

///
/// @brief Returns values based upon LRDIMM type or not
/// @tparam T Type of value to return
/// @param[in] i_dimm_type DIMM type to check
/// @param[in] i_lr input to pass back for LRDIMM
/// @param[in] i_r input to pass back for RDIMM
/// @return returns LR or R inputted values dependent upon LRDIMM type
///
template<typename T>
inline const T& dimm_type_value_select(const uint8_t i_dimm_type,
                                       const T& i_lr,
                                       const T& i_r)
{
    return (i_dimm_type == fapi2::ENUM_ATTR_EFF_DIMM_TYPE_LRDIMM) ? i_lr : i_r;
}

///
/// @brief Return true iff this rank is on thie DIMM
/// @param[in] i_target representing the DIMM
/// @param[in] i_rank the rank number.
/// @return true iff i_rank is a rank on i_target
///
bool is_rank_on_dimm(const fapi2::Target<TARGET_TYPE_DIMM>& i_target, const uint64_t i_rank)
{
    // DIMM[0] has ranks 0:3, DIMM[1] has ranks 4:7 - if there are not 4 ranks
    // on a DIMM, there are holes. That is, the first rank on DIMM[1] is always
    // rank #4.

    if (i_rank > 7)
    {
        FAPI_ERR("seeing rank %d? %s", i_rank, mss::c_str(i_target));
        return false;
    }

    if ((i_rank < RANK_MID_POINT) && (mss::index(i_target) == 0))
    {
        return true;
    }

    if ((i_rank >= RANK_MID_POINT) && (mss::index(i_target) == 1))
    {
        return true;
    }

    return false;
}

///
/// @brief Return the *port relative position* of the DIMM which posesses this rank
/// @param[in] i_rank the rank number.
/// @return the relative position of the DIMM which contains this rank.
///
size_t get_dimm_from_rank(const uint64_t i_rank)
{
    // DIMM[0] has ranks 0:3, DIMM[1] has ranks 4:7 - if there are not 4 ranks
    // on a DIMM, there are holes. That is, the first rank on DIMM[1] is always
    // rank #4.

    if (i_rank > 7)
    {
        FAPI_ERR("seeing rank %d?", i_rank);
        fapi2::Assert(false);
    }

    return (i_rank < RANK_MID_POINT) ? 0 : 1;
}

///
/// @brief Return the DIMM target which posesses this rank on a given port
/// @param[in] i_target the MCA port target
/// @param[in] i_rank the rank number
/// @param[out] o_dimm the DIMM target
/// @return FAPI2_RC_SUCCESS iff all is ok, FAPI2_RC_INVALID_PARAMETER otherwise
///
template<>
fapi2::ReturnCode get_dimm_target_from_rank(const fapi2::Target<TARGET_TYPE_MCA>& i_target,
        const uint64_t i_rank,
        fapi2::Target<TARGET_TYPE_DIMM>& o_dimm)
{
    const size_t l_dimm_idx = get_dimm_from_rank(i_rank);
    const auto l_dimms = mss::find_targets<TARGET_TYPE_DIMM>(i_target);
    bool l_got_one = false;

    // Make sure we get a valid DIMM index. If not, this is a programming error.
    FAPI_ASSERT( (l_dimm_idx < l_dimms.size() ),
                 fapi2::MSS_BAD_DIMM_INDEX_FOR_GIVEN_RANK()
                 .set_RANK(i_rank)
                 .set_DIMM_INDEX(l_dimm_idx)
                 .set_MCA_TARGET(i_target),
                 "Invalid DIMM index (%d) found for provided rank (%d) in get_dimm_target_from_rank: %s",
                 l_dimm_idx,
                 i_rank,
                 mss::c_str(i_target));

    for (const auto& l_dimm : l_dimms)
    {
        if (mss::index(l_dimm) == l_dimm_idx)
        {
            FAPI_DBG("Found DIMM target for rank %d: %s", i_rank, mss::c_str(l_dimm));
            o_dimm = l_dimm;
            l_got_one = true;
        }
    }

    if (l_got_one)
    {
        return fapi2::FAPI2_RC_SUCCESS;
    }

    // Assert if we don't have a DIMM configured that matches the DIMM index (this shouldn't happen)
    FAPI_ASSERT( false,
                 fapi2::MSS_NO_DIMM_FOR_GIVEN_DIMM_INDEX()
                 .set_RANK(i_rank)
                 .set_DIMM_INDEX(l_dimm_idx)
                 .set_MCA_TARGET(i_target),
                 "Couldn't find a DIMM to match given rank (%d) and DIMM position (%d): %s",
                 i_rank,
                 l_dimm_idx,
                 mss::c_str(i_target));

fapi_try_exit:
    return fapi2::current_err;
}

///
/// @brief Return a vector of rank numbers which represent the primary rank pairs for this port
/// @param[in] i_target  TARGET_TYPE_MCA
/// @param[out] o_rps a vector of rank_pairs
/// @return FAPI2_RC_SUCCESS iff all is ok
///
template<>
fapi2::ReturnCode primary_ranks( const fapi2::Target<TARGET_TYPE_MCA>& i_target, std::vector< uint64_t >& o_rps )
{
    FAPI_INF("get the primary ranks for %s", mss::c_str(i_target));

    // Get the count of rank pairs for both DIMM on the port
    std::vector<uint8_t> l_rank_count(MAX_DIMM_PER_PORT, 0);

    for (const auto& d : mss::find_targets<fapi2::TARGET_TYPE_DIMM>(i_target))
    {
        FAPI_TRY( mss::eff_num_master_ranks_per_dimm(d, l_rank_count[mss::index(d)]) );
    }

    FAPI_DBG("%s ranks: %d, %d", mss::c_str(i_target), l_rank_count[0], l_rank_count[1]);

    o_rps.clear();

    {
        uint8_t l_dimm_type[MAX_DIMM_PER_PORT] = {};

        // Gets the DIMM type
        FAPI_TRY( mss::eff_dimm_type(i_target, &l_dimm_type[0]));
        const auto& l_primary_rank_pairs = dimm_type_value_select(l_dimm_type[0], lr_primary_rank_pairs, primary_rank_pairs);

        // Walk through rank pair table and skip empty pairs
        for (const auto l_rank : l_primary_rank_pairs[l_rank_count[1]][l_rank_count[0]])
        {
            if (l_rank != NO_RANK)
            {
                o_rps.push_back(l_rank);
            }
        }
    }

    // Returning success in case no DIMM's are configured
    return fapi2::FAPI2_RC_SUCCESS;

fapi_try_exit:
    return fapi2::current_err;
}

///
/// @brief Return a vector of rank numbers which represent the primary rank pairs for this dimm
/// @param[in] i_target TARGET_TYPE_DIMM
/// @param[out] o_rps a vector of rank_pairs
/// @return FAPI2_RC_SUCCESS iff all is ok
///
template<>
fapi2::ReturnCode primary_ranks( const fapi2::Target<TARGET_TYPE_DIMM>& i_target, std::vector< uint64_t >& o_rps )
{
    FAPI_INF("get the primary ranks for %s", mss::c_str(i_target));

    std::vector< uint64_t > l_prs;
    FAPI_TRY( primary_ranks(i_target.getParent<TARGET_TYPE_MCA>(), l_prs) );

    o_rps.clear();

    for (const auto r : l_prs)
    {
        if (is_rank_on_dimm(i_target, r))
        {
            o_rps.push_back(r);
        }
    }

fapi_try_exit:
    return fapi2::current_err;
}

///
/// @brief Return a vector of rank numbers which represent the ranks for this dimm
/// @param[in] i_target TARGET_TYPE_DIMM
/// @param[out] o_ranks a vector of ranks (numbers)
/// @return FAPI2_RC_SUCCESS iff all is ok
///
template<>
fapi2::ReturnCode ranks( const fapi2::Target<TARGET_TYPE_DIMM>& i_target, std::vector< uint64_t >& o_ranks )
{
    uint8_t l_ranks = 0;
    FAPI_TRY( eff_num_master_ranks_per_dimm(i_target, l_ranks) );

    o_ranks = single_dimm_ranks[mss::index(i_target)][l_ranks];

fapi_try_exit:
    return fapi2::current_err;
}

///
/// @brief Return a vector of rank numbers which represent the ranks for this dimm
/// @param[in] i_target TARGET_TYPE_MCA
/// @param[out] o_ranks a vector of ranks (numbers)
/// @return FAPI2_RC_SUCCESS iff all is ok
///
template<>
fapi2::ReturnCode ranks( const fapi2::Target<TARGET_TYPE_MCA>& i_target, std::vector< uint64_t >& o_ranks )
{
    // Note: Isn't there a better way to do this?
    std::vector< uint64_t > l_ranks;
    o_ranks.clear();

    for (const auto& d : mss::find_targets<fapi2::TARGET_TYPE_DIMM>(i_target))
    {
        FAPI_TRY( ranks(d, l_ranks) );
        o_ranks.insert(o_ranks.end(), l_ranks.begin(), l_ranks.end());
    }

    // Lets make sure the ranks are in order - we don't know if the child vector is in position
    // order, but its easy to get the ranks in order by sorting them.
    std::sort(o_ranks.begin(), o_ranks.end());

fapi_try_exit:
    return fapi2::current_err;
}

///
/// @brief Given a target, get the rank pair assignments, based on DIMMs
/// @param[in] i_target the target (MCA or MBA?)
/// @param[out] o_registers the register settings for the appropriate rank pairs
/// @return FAPI2_RC_SUCCESS if and only if ok
///
template<>
fapi2::ReturnCode get_rank_pair_assignments(const fapi2::Target<TARGET_TYPE_MCA>& i_target,
        rank_pair_data& o_registers)
{
    // TODO RTC:160869 add enum for rank pair 0 when it gets created
    typedef rankPairTraits<fapi2::TARGET_TYPE_MCA, 0> RPT;

    std::vector<uint8_t> l_rank_count(MAX_DIMM_PER_PORT, 0);
    uint16_t l_regs[RPT::NUM_RANK_PAIR_REGS] = {0};
    uint8_t l_dimm_type[MAX_DIMM_PER_PORT] = {};

    for (const auto& d : mss::find_targets<fapi2::TARGET_TYPE_DIMM>(i_target))
    {
        FAPI_TRY( mss::eff_num_master_ranks_per_dimm(d, l_rank_count[mss::index(d)]) );
    }

    // Gets the DIMM type
    FAPI_TRY( mss::eff_dimm_type(i_target, &l_dimm_type[0]));

    // Get the override attribute setting
    FAPI_TRY( mss::eff_rank_group_override(i_target, l_regs) );

    // If the override attribute is zero, use the default assignments that correspond to the rank count.
    // Need only to check the first array entry since we need a valid primary rank in RP0 due to plug rules.
    {
        // If we're LRDIMM use lr_default rank_pair_assignments as the default vector, otherwise go with rank_pair_assignments
        const auto& l_default_table = dimm_type_value_select(l_dimm_type[0], lr_rank_pair_assignments, rank_pair_assignments);
        o_registers = (l_regs[0] == 0) ?
                      l_default_table[l_rank_count[1]][l_rank_count[0]] :
                      rank_pair_data(l_regs[0], l_regs[1], 0, 0);
    }

    FAPI_DBG("rank pair assignments for %s. [%d,%d] (RP0:0x%04x, RP1:0x%04x, RP2:0x%04x, RP3:0x%04x)",
             mss::c_str(i_target), l_rank_count[1], l_rank_count[0],
             o_registers.iv_rp_reg0, o_registers.iv_rp_reg1, o_registers.iv_rp_reg2, o_registers.iv_rp_reg3);

fapi_try_exit:
    return fapi2::current_err;
}

///
/// @brief Setup the rank information in the port
/// @param[in] i_target the target (MCA)
/// @return FAPI2_RC_SUCCESS if and only if ok
///
template<>
fapi2::ReturnCode set_rank_pairs(const fapi2::Target<TARGET_TYPE_MCA>& i_target)
{
    fapi2::buffer<uint64_t> l_rp_reg;
    fapi2::buffer<uint64_t> l_rank_group;
    fapi2::buffer<uint64_t> l_rank_group_ext;

    // If a memory system consists of four or less ranks, each Rank Pair must contain one rank. Each rank has
    // unique configuration registers, calibration registers, and registers to store delay values. When a system
    // contains four or less ranks, each rank number used by the system must be loaded into one of the Primary
    // Rank fields.

    // Set the CSID to all 'unused' and we'll reset them as we configure rank pairs.
    // Note: Centaur configured this as 0xff00 all the time - it's unclear if we need
    // to set only the bits for the rank pairs configured, or whether 0xff00 will suffice. BRS
    // Updating for DD2 0xF000, as bits 4-7 (in terms of the phy reg) are removed
    constexpr uint64_t DD1_CSID = 0xff00;
    constexpr uint64_t DD2_CSID = 0xf000;
    const fapi2::buffer<uint64_t> l_csid_data = mss::chip_ec_nimbus_lt_2_0(i_target) ? DD1_CSID : DD2_CSID;

    // Gets the rankpairs
    rank_pair_data l_rp_registers;
    FAPI_TRY( get_rank_pair_assignments(i_target, l_rp_registers) );

    FAPI_DBG("setting rank pairs for %s. 0x%04x, 0x%04x 0x%04x, 0x%04x, csid: 0x%016llx",
             mss::c_str(i_target), l_rp_registers.iv_rp_reg0, l_rp_registers.iv_rp_reg1,
             l_rp_registers.iv_rp_reg2, l_rp_registers.iv_rp_reg3, l_csid_data);

    // Need an extra pair of parens to make FAPI_TRY parsing work correctly
    FAPI_TRY( (mss::rank::write_rank_pair_reg< 0, 0 >(i_target, l_rp_registers.iv_rp_reg0)) );
    FAPI_TRY( (mss::rank::write_rank_pair_reg< 2, 0 >(i_target, l_rp_registers.iv_rp_reg1)) );
    FAPI_TRY( (mss::rank::write_rank_pair_reg< 0, 1 >(i_target, l_rp_registers.iv_rp_reg2)) );
    FAPI_TRY( (mss::rank::write_rank_pair_reg< 2, 1 >(i_target, l_rp_registers.iv_rp_reg3)) );
    FAPI_TRY( mss::putScom(i_target, MCA_DDRPHY_PC_CSID_CFG_P0, l_csid_data) );

    // Register 0 contains RP0/1's primary/secondary ranks - these are controlled by the rank group register
    l_rp_reg = l_rp_registers.iv_rp_reg0;
    FAPI_TRY( mss::rank::set_mirror_bits<0>(i_target, l_rp_reg, l_rank_group) );
    FAPI_TRY( mss::rank::set_mirror_bits<1>(i_target, l_rp_reg, l_rank_group) );

    // Register 1 contains RP2/3's primary/secondary ranks - these are controlled by the rank group register
    l_rp_reg = l_rp_registers.iv_rp_reg1;
    FAPI_TRY( mss::rank::set_mirror_bits<2>(i_target, l_rp_reg, l_rank_group) );
    FAPI_TRY( mss::rank::set_mirror_bits<3>(i_target, l_rp_reg, l_rank_group) );

    // Register 2 contains RP0/1's tertiary/quaternary ranks - these are controlled by the rank group extension register
    l_rp_reg = l_rp_registers.iv_rp_reg2;
    FAPI_TRY( mss::rank::set_mirror_bits<0>(i_target, l_rp_reg, l_rank_group_ext) );
    FAPI_TRY( mss::rank::set_mirror_bits<1>(i_target, l_rp_reg, l_rank_group_ext) );

    // Register 3 contains RP2/3's tertiary/quaternary ranks - these are controlled by the rank group extension register
    l_rp_reg = l_rp_registers.iv_rp_reg3;
    FAPI_TRY( mss::rank::set_mirror_bits<2>(i_target, l_rp_reg, l_rank_group_ext) );
    FAPI_TRY( mss::rank::set_mirror_bits<3>(i_target, l_rp_reg, l_rank_group_ext) );

    // Configure the bits to be mirrored
    l_rank_group.setBit<MCA_DDRPHY_PC_RANK_GROUP_P0_ADDR_MIRROR_A3_A4>();
    l_rank_group.setBit<MCA_DDRPHY_PC_RANK_GROUP_P0_ADDR_MIRROR_A5_A6>();
    l_rank_group.setBit<MCA_DDRPHY_PC_RANK_GROUP_P0_ADDR_MIRROR_A7_A8>();
    l_rank_group.setBit<MCA_DDRPHY_PC_RANK_GROUP_P0_ADDR_MIRROR_A11_A13>();
    l_rank_group.setBit<MCA_DDRPHY_PC_RANK_GROUP_P0_ADDR_MIRROR_BA0_BA1>();
    l_rank_group.setBit<MCA_DDRPHY_PC_RANK_GROUP_P0_ADDR_MIRROR_BG0_BG1>();
    FAPI_TRY( write_rank_group(i_target, l_rank_group) );
    FAPI_TRY( write_rank_group_ext(i_target, l_rank_group_ext) );

fapi_try_exit:
    return fapi2::current_err;
}

///
/// @brief Set rank mirror bits in RANK_GROUP register
/// @tparam RP rank pair (group) index
/// @tparam T fapi2 Target Type - derived from i_target's type
/// @tparam TT traits type defaults to rankPairTraits<T, RP>
/// @param[in] i_target the fapi2 target of the mc
/// @param[in] i_rp_reg_value value of RANK_PAIR register
/// @param[in, out] io_data the register value
/// @return fapi2::ReturnCode FAPI2_RC_SUCCESS if ok
///
template< uint64_t RP, fapi2::TargetType T, typename TT = rankPairTraits<T, RP> >
fapi2::ReturnCode set_mirror_bits( const fapi2::Target<T>& i_target,
                                   const fapi2::buffer<uint64_t>& i_rp_reg_value,
                                   fapi2::buffer<uint64_t>& io_data )
{
    uint64_t l_rank = 0;
    bool l_mirrored = false;

    // Even vs odd rank pairs are located in different parts of the register, so we check if we're dealing with an even or an odd rankpair
    if (mss::is_odd(RP))
    {
        i_rp_reg_value.extractToRight<ODD_PRIMARY_RANK, RANK_LEN>(l_rank);
        FAPI_TRY( is_mirrored(i_target, l_rank, i_rp_reg_value.getBit<ODD_PRIMARY_VALID>(), l_mirrored) );
        io_data.writeBit<TT::ADDR_MIRROR[0]>(l_mirrored);

        i_rp_reg_value.extractToRight<ODD_SECONDARY_RANK, RANK_LEN>(l_rank);
        FAPI_TRY( is_mirrored(i_target, l_rank, i_rp_reg_value.getBit<ODD_SECONDARY_VALID>(), l_mirrored) );
        io_data.writeBit<TT::ADDR_MIRROR[1]>(l_mirrored);
    }
    else
    {
        i_rp_reg_value.extractToRight<EVEN_PRIMARY_RANK, RANK_LEN>(l_rank);
        FAPI_TRY( is_mirrored(i_target, l_rank, i_rp_reg_value.getBit<EVEN_PRIMARY_VALID>(), l_mirrored) );
        io_data.writeBit<TT::ADDR_MIRROR[0]>(l_mirrored);

        i_rp_reg_value.extractToRight<EVEN_SECONDARY_RANK, RANK_LEN>(l_rank);
        FAPI_TRY( is_mirrored(i_target, l_rank, i_rp_reg_value.getBit<EVEN_SECONDARY_VALID>(), l_mirrored) );
        io_data.writeBit<TT::ADDR_MIRROR[1]>(l_mirrored);
    }

    return fapi2::FAPI2_RC_SUCCESS;

fapi_try_exit:
    return fapi2::current_err;
}

///
/// @brief Get a vector of configured rank pairs.
/// Returns a vector of ordinal values of the configured rank pairs. e.g., for a 2R DIMM, {0, 1}
/// @param[in]i_target  the target (MCA or MBA?)
/// @param[out] o_pairs std::vector of rank pairs configured
/// @return FAPI2_RC_SUCCESS if and only if ok
///
template<>
fapi2::ReturnCode get_rank_pairs(const fapi2::Target<TARGET_TYPE_MCA>& i_target, std::vector<uint64_t>& o_pairs)
{
    // TODO RTC:160869 add enum for rank pair 0 when it gets created
    typedef rankPairTraits<fapi2::TARGET_TYPE_MCA, 0> RPT;

    uint64_t l_index = 0;
    std::vector<uint64_t> l_prs;
    uint16_t l_regs[RPT::NUM_RANK_PAIR_REGS] = {0};

    o_pairs.clear();

    // Get the count of rank pairs for both DIMM on the port
    std::vector<uint8_t> l_rank_count(MAX_DIMM_PER_PORT, 0);
    uint8_t l_dimm_type[MAX_DIMM_PER_PORT] = {};

    // Gets the DIMM type
    FAPI_TRY( mss::eff_dimm_type(i_target, &l_dimm_type[0]));

    for (const auto& d : mss::find_targets<fapi2::TARGET_TYPE_DIMM>(i_target))
    {
        FAPI_TRY( mss::eff_num_master_ranks_per_dimm(d, l_rank_count[mss::index(d)]) );
    }

    // Get the override attribute setting
    FAPI_TRY( mss::eff_rank_group_override(i_target, l_regs) );

    // If the override attribute is zero, use the default assignments that correspond to the rank count
    if (l_regs[0] == 0)
    {
        const auto& l_primary_rank_pairs = dimm_type_value_select(l_dimm_type[0], lr_primary_rank_pairs, primary_rank_pairs);
        l_prs = l_primary_rank_pairs[l_rank_count[1]][l_rank_count[0]];

        // Walk through rank pair table and skip empty pairs
        // Can't use for (auto rp : l_prs) as rp is unused. BRS
        for (auto rp_iter = l_prs.begin(); rp_iter != l_prs.end(); ++rp_iter)
        {
            if (*rp_iter != NO_RANK)
            {
                o_pairs.push_back(l_index);
            }

            l_index += 1;
        }
    }
    // Else we have to derive the assignments from the override
    else
    {
        // Check RP0
        if (fapi2::buffer<uint64_t>(l_regs[0]).getBit<EVEN_PRIMARY_VALID>())
        {
            o_pairs.push_back(0);
        }

        // Check RP1
        if (fapi2::buffer<uint64_t>(l_regs[0]).getBit<ODD_PRIMARY_VALID>())
        {
            o_pairs.push_back(1);
        }

        // Check RP2
        if (fapi2::buffer<uint64_t>(l_regs[1]).getBit<EVEN_PRIMARY_VALID>())
        {
            o_pairs.push_back(2);
        }

        // Check RP3
        if (fapi2::buffer<uint64_t>(l_regs[1]).getBit<ODD_PRIMARY_VALID>())
        {
            o_pairs.push_back(3);
        }
    }

fapi_try_exit:
    return fapi2::current_err;
}

///
/// @brief Get a rank-pair id from a physical rank
/// Returns a number representing which rank-pair this rank is a part of
/// @param[in] i_target  the target (MCA or MBA?)
/// @param[in] i_rank the physical rank number
/// @param[out] o_pairs the rank pair
/// @return FAPI2_RC_SUCCESS if and only if ok, FAPI2_RC_INVALID_PARAMETER if the rank isn't found
///
template<>
fapi2::ReturnCode get_pair_from_rank(const fapi2::Target<TARGET_TYPE_MCA>& i_target,
                                     uint64_t i_rank,
                                     uint64_t& o_pair)
{
    // Sort of brute-force, but no real good other way to do it. Given the
    // rank-pair configuration we walk the config looking for our rank, and
    // return the pair. This is always a small 'search' as there are only
    // 4 possible rank pair registers

    fapi2::buffer<uint64_t> l_rank_valid;
    uint64_t l_rank_pri = 0;
    uint64_t l_rank_sec = 0;
    uint64_t l_rank_ter = 0;
    uint64_t l_rank_qua = 0;
    rank_pair_data l_rp_registers;
    FAPI_TRY( get_rank_pair_assignments(i_target, l_rp_registers), "%s failed get_rank_pair_assignments",
              mss::c_str(i_target) );

    FAPI_DBG("%s seeing rank pair registers: RP0:0x%016lx RP1:0x%016lx RP2:0x%016lx RP3:0x%016lx, rank %d",
             mss::c_str(i_target), l_rp_registers.iv_rp_reg0, l_rp_registers.iv_rp_reg1,
             l_rp_registers.iv_rp_reg2, l_rp_registers.iv_rp_reg3, i_rank);

    // Check RP0
    l_rank_valid = l_rp_registers.iv_rp_reg0;
    l_rank_valid.extractToRight<EVEN_PRIMARY_RANK, RANK_LEN>(l_rank_pri);
    l_rank_valid.extractToRight<EVEN_SECONDARY_RANK, RANK_LEN>(l_rank_sec);

    if (((l_rank_valid.getBit<EVEN_PRIMARY_VALID>()) && (l_rank_pri == i_rank)) ||
        ((l_rank_valid.getBit<EVEN_SECONDARY_VALID>()) && (l_rank_sec == i_rank)))
    {
        o_pair = 0;
        return FAPI2_RC_SUCCESS;
    }

    l_rank_valid = l_rp_registers.iv_rp_reg2;
    l_rank_valid.extractToRight<EVEN_TERTIARY_RANK, RANK_LEN>(l_rank_ter);
    l_rank_valid.extractToRight<EVEN_QUATERNARY_RANK, RANK_LEN>(l_rank_qua);

    if (((l_rank_valid.getBit<EVEN_TERTIARY_VALID>()) && (l_rank_ter == i_rank)) ||
        ((l_rank_valid.getBit<EVEN_QUATERNARY_VALID>()) && (l_rank_qua == i_rank)))
    {
        o_pair = 0;
        return FAPI2_RC_SUCCESS;
    }

    // Check RP1
    l_rank_valid = l_rp_registers.iv_rp_reg0;
    l_rank_valid.extractToRight<ODD_PRIMARY_RANK, RANK_LEN>(l_rank_pri);
    l_rank_valid.extractToRight<ODD_SECONDARY_RANK, RANK_LEN>(l_rank_sec);

    if (((l_rank_valid.getBit<ODD_PRIMARY_VALID>()) && (l_rank_pri == i_rank)) ||
        ((l_rank_valid.getBit<ODD_SECONDARY_VALID>()) && (l_rank_sec == i_rank)))
    {
        o_pair = 1;
        return FAPI2_RC_SUCCESS;
    }

    l_rank_valid = l_rp_registers.iv_rp_reg2;
    l_rank_valid.extractToRight<ODD_TERTIARY_RANK, RANK_LEN>(l_rank_ter);
    l_rank_valid.extractToRight<ODD_QUATERNARY_RANK, RANK_LEN>(l_rank_qua);

    if (((l_rank_valid.getBit<ODD_TERTIARY_VALID>()) && (l_rank_ter == i_rank)) ||
        ((l_rank_valid.getBit<ODD_QUATERNARY_VALID>()) && (l_rank_qua == i_rank)))
    {
        o_pair = 1;
        return FAPI2_RC_SUCCESS;
    }

    // Check RP2
    l_rank_valid = l_rp_registers.iv_rp_reg1;
    l_rank_valid.extractToRight<EVEN_PRIMARY_RANK, RANK_LEN>(l_rank_pri);
    l_rank_valid.extractToRight<EVEN_SECONDARY_RANK, RANK_LEN>(l_rank_sec);

    if (((l_rank_valid.getBit<EVEN_PRIMARY_VALID>()) && (l_rank_pri == i_rank)) ||
        ((l_rank_valid.getBit<EVEN_SECONDARY_VALID>()) && (l_rank_sec == i_rank)))
    {
        o_pair = 2;
        return FAPI2_RC_SUCCESS;
    }

    l_rank_valid = l_rp_registers.iv_rp_reg3;
    l_rank_valid.extractToRight<EVEN_TERTIARY_RANK, RANK_LEN>(l_rank_ter);
    l_rank_valid.extractToRight<EVEN_QUATERNARY_RANK, RANK_LEN>(l_rank_qua);

    if (((l_rank_valid.getBit<EVEN_TERTIARY_VALID>()) && (l_rank_ter == i_rank)) ||
        ((l_rank_valid.getBit<EVEN_QUATERNARY_VALID>()) && (l_rank_qua == i_rank)))
    {
        o_pair = 2;
        return FAPI2_RC_SUCCESS;
    }

    // Check RP3
    l_rank_valid = l_rp_registers.iv_rp_reg1;
    l_rank_valid.extractToRight<ODD_PRIMARY_RANK, RANK_LEN>(l_rank_pri);
    l_rank_valid.extractToRight<ODD_SECONDARY_RANK, RANK_LEN>(l_rank_sec);

    if (((l_rank_valid.getBit<ODD_PRIMARY_VALID>()) && (l_rank_pri == i_rank)) ||
        ((l_rank_valid.getBit<ODD_SECONDARY_VALID>()) && (l_rank_sec == i_rank)))
    {
        o_pair = 3;
        return FAPI2_RC_SUCCESS;
    }

    l_rank_valid = l_rp_registers.iv_rp_reg3;
    l_rank_valid.extractToRight<ODD_TERTIARY_RANK, RANK_LEN>(l_rank_ter);
    l_rank_valid.extractToRight<ODD_QUATERNARY_RANK, RANK_LEN>(l_rank_qua);

    if (((l_rank_valid.getBit<ODD_TERTIARY_VALID>()) && (l_rank_ter == i_rank)) ||
        ((l_rank_valid.getBit<ODD_QUATERNARY_VALID>()) && (l_rank_qua == i_rank)))
    {
        o_pair = 3;
        return FAPI2_RC_SUCCESS;
    }

    // Rank not found
    return FAPI2_RC_INVALID_PARAMETER;

fapi_try_exit:
    return fapi2::current_err;
}

} // namespace rank

} // namespace mss
OpenPOWER on IntegriCloud