/* IBM_PROLOG_BEGIN_TAG */ /* This is an automatically generated prolog. */ /* */ /* $Source: src/usr/hwpf/hwp/build_winkle_images/proc_mailbox_utils/p8_mailbox_utils.C $ */ /* */ /* IBM CONFIDENTIAL */ /* */ /* COPYRIGHT International Business Machines Corp. 2013,2014 */ /* */ /* p1 */ /* */ /* Object Code Only (OCO) source materials */ /* Licensed Internal Code Source Materials */ /* IBM HostBoot Licensed Internal Code */ /* */ /* The source code for this program is not published or otherwise */ /* divested of its trade secrets, irrespective of what has been */ /* deposited with the U.S. Copyright Office. */ /* */ /* Origin: 30 */ /* */ /* IBM_PROLOG_END_TAG */ // -*- mode: C++; c-file-style: "linux"; -*- // $Id: p8_mailbox_utils.C,v 1.4 2014/04/01 21:52:25 jmcgill Exp $ // $Source: /afs/awd/projects/eclipz/KnowledgeBase/.cvsroot/eclipz/chips/p8/working/procedures/ipl/fapi/p8_mailbox_utils.C,v $ //------------------------------------------------------------------------------ // *| // *! (C) Copyright International Business Machines Corp. 2012 // *! All Rights Reserved -- Property of IBM // *! *** IBM Confidential *** // *| // *! TITLE : proc_mailbox_utils.C // *! DESCRIPTION : Functions to calculate the mailbox values // *! // *! OWNER NAME : Jeshua Smith Email: jeshua@us.ibm.com // *! BACKUP NAME : TBD Email: TBD@us.ibm.com // *! // *! Overview: // *! Utility functions to calculate each mailbox value //------------------------------------------------------------------------------ //------------------------------------------------------------------------------ // Includes //------------------------------------------------------------------------------ #include "p8_mailbox_utils.H" //------------------------------------------------------------------------------ // Function definitions //------------------------------------------------------------------------------ extern "C" { using namespace fapi; //------------------------------------------------------------------------------ // function: // Translate a VRM-11 VID code to a voltage value // // // parameters: i_vid_7_0 VRM-11 VID code // o_voltage Voltage in .01mv units // // returns: FAPI_RC_SUCCESS if operation was successful, else error //------------------------------------------------------------------------------ fapi::ReturnCode vid2mv(uint8_t i_vid_7_0, uint32_t &o_voltage) { fapi::ReturnCode l_fapirc; switch(i_vid_7_0) { case 0x1 : o_voltage = 0 ; break; case 0x2 : o_voltage =160000 ; break; case 0x3 : o_voltage =159375 ; break; case 0x4 : o_voltage =158750 ; break; case 0x5 : o_voltage =158125 ; break; case 0x6 : o_voltage =157500 ; break; case 0x7 : o_voltage =156875 ; break; case 0x8 : o_voltage =156250 ; break; case 0x9 : o_voltage =155625 ; break; case 0xA : o_voltage =155000 ; break; case 0xB : o_voltage =154375 ; break; case 0xC : o_voltage =153750 ; break; case 0xD : o_voltage =153125 ; break; case 0xE : o_voltage =152500 ; break; case 0xF : o_voltage =151875 ; break; case 0x10 : o_voltage =151250 ; break; case 0x11 : o_voltage =150625 ; break; case 0x12 : o_voltage =150000 ; break; case 0x13 : o_voltage =149375 ; break; case 0x14 : o_voltage =148750 ; break; case 0x15 : o_voltage =148125 ; break; case 0x16 : o_voltage =147500 ; break; case 0x17 : o_voltage =146875 ; break; case 0x18 : o_voltage =146250 ; break; case 0x19 : o_voltage =145625 ; break; case 0x1A : o_voltage =145000 ; break; case 0x1B : o_voltage =144375 ; break; case 0x1C : o_voltage =143750 ; break; case 0x1D : o_voltage =143125 ; break; case 0x1E : o_voltage =142500 ; break; case 0x1F : o_voltage =141875 ; break; case 0x20 : o_voltage =141250 ; break; case 0x21 : o_voltage =140625 ; break; case 0x22 : o_voltage =140000 ; break; case 0x23 : o_voltage =139375 ; break; case 0x24 : o_voltage =138750 ; break; case 0x25 : o_voltage =138125 ; break; case 0x26 : o_voltage =137500 ; break; case 0x27 : o_voltage =136875 ; break; case 0x28 : o_voltage =136250 ; break; case 0x29 : o_voltage =135625 ; break; case 0x2a : o_voltage =135000 ; break; case 0x2b : o_voltage =134375 ; break; case 0x2c : o_voltage =133750 ; break; case 0x2d : o_voltage =133125 ; break; case 0x2e : o_voltage =132500 ; break; case 0x2f : o_voltage =131875 ; break; case 0x30 : o_voltage =131250 ; break; case 0x31 : o_voltage =130625 ; break; case 0x32 : o_voltage =130000 ; break; case 0x33 : o_voltage =129375 ; break; case 0x34 : o_voltage =128750 ; break; case 0x35 : o_voltage =128125 ; break; case 0x36 : o_voltage =127500 ; break; case 0x37 : o_voltage =126875 ; break; case 0x38 : o_voltage =126250 ; break; case 0x39 : o_voltage =125625 ; break; case 0x3a : o_voltage =125000 ; break; case 0x3b : o_voltage =124375 ; break; case 0x3c : o_voltage =123750 ; break; case 0x3d : o_voltage =123125 ; break; case 0x3e : o_voltage =122500 ; break; case 0x3f : o_voltage =121875 ; break; case 0x40 : o_voltage =121250 ; break; case 0x41 : o_voltage =120625 ; break; case 0x42 : o_voltage =120000 ; break; case 0x43 : o_voltage =119375 ; break; case 0x44 : o_voltage =118750 ; break; case 0x45 : o_voltage =118125 ; break; case 0x46 : o_voltage =117500 ; break; case 0x47 : o_voltage =116875 ; break; case 0x48 : o_voltage =116250 ; break; case 0x49 : o_voltage =115625 ; break; case 0x4a : o_voltage =115000 ; break; case 0x4b : o_voltage =114375 ; break; case 0x4c : o_voltage =113750 ; break; case 0x4d : o_voltage =113125 ; break; case 0x4e : o_voltage =112500 ; break; case 0x4f : o_voltage =111875 ; break; case 0x50 : o_voltage =111250 ; break; case 0x51 : o_voltage =110625 ; break; case 0x52 : o_voltage =110000 ; break; case 0x53 : o_voltage =109375 ; break; case 0x54 : o_voltage =108750 ; break; case 0x55 : o_voltage =108125 ; break; case 0x56 : o_voltage =107500 ; break; case 0x57 : o_voltage =106875 ; break; case 0x58 : o_voltage =106250 ; break; case 0x59 : o_voltage =105625 ; break; case 0x5a : o_voltage =105000 ; break; case 0x5b : o_voltage =104375 ; break; case 0x5c : o_voltage =103750 ; break; case 0x5d : o_voltage =103125 ; break; case 0x5e : o_voltage =102500 ; break; case 0x5f : o_voltage =101875 ; break; case 0x60 : o_voltage =101250 ; break; case 0x61 : o_voltage =100625 ; break; case 0x62 : o_voltage =100000 ; break; case 0x63 : o_voltage = 99375 ; break; case 0x64 : o_voltage = 98750 ; break; case 0x65 : o_voltage = 98125 ; break; case 0x66 : o_voltage = 97500 ; break; case 0x67 : o_voltage = 96875 ; break; case 0x68 : o_voltage = 96250 ; break; case 0x69 : o_voltage = 95625 ; break; case 0x6a : o_voltage = 95000 ; break; case 0x6b : o_voltage = 94375 ; break; case 0x6c : o_voltage = 93750 ; break; case 0x6d : o_voltage = 93125 ; break; case 0x6e : o_voltage = 92500 ; break; case 0x6f : o_voltage = 91875 ; break; case 0x70 : o_voltage = 91250 ; break; case 0x71 : o_voltage = 90625 ; break; case 0x72 : o_voltage = 90000 ; break; case 0x73 : o_voltage = 89375 ; break; case 0x74 : o_voltage = 88750 ; break; case 0x75 : o_voltage = 88125 ; break; case 0x76 : o_voltage = 87500 ; break; case 0x77 : o_voltage = 86875 ; break; case 0x78 : o_voltage = 86250 ; break; case 0x79 : o_voltage = 85625 ; break; case 0x7a : o_voltage = 85000 ; break; case 0x7b : o_voltage = 84375 ; break; case 0x7c : o_voltage = 83750 ; break; case 0x7d : o_voltage = 83125 ; break; case 0x7e : o_voltage = 82500 ; break; case 0x7f : o_voltage = 81875 ; break; case 0x80 : o_voltage = 81250 ; break; case 0x81 : o_voltage = 80625 ; break; case 0x82 : o_voltage = 80000 ; break; case 0x83 : o_voltage = 79375 ; break; case 0x84 : o_voltage = 78750 ; break; case 0x85 : o_voltage = 78125 ; break; case 0x86 : o_voltage = 77500 ; break; case 0x87 : o_voltage = 76875 ; break; case 0x88 : o_voltage = 76250 ; break; case 0x89 : o_voltage = 75625 ; break; case 0x8a : o_voltage = 75000 ; break; case 0x8b : o_voltage = 74375 ; break; case 0x8c : o_voltage = 73750 ; break; case 0x8d : o_voltage = 73125 ; break; case 0x8e : o_voltage = 72500 ; break; case 0x8f : o_voltage = 71875 ; break; case 0x90 : o_voltage = 71250 ; break; case 0x91 : o_voltage = 70625 ; break; case 0x92 : o_voltage = 70000 ; break; case 0x93 : o_voltage = 69375 ; break; case 0x94 : o_voltage = 68750 ; break; case 0x95 : o_voltage = 68125 ; break; case 0x96 : o_voltage = 67500 ; break; case 0x97 : o_voltage = 66875 ; break; case 0x98 : o_voltage = 66250 ; break; case 0x99 : o_voltage = 65625 ; break; case 0x9a : o_voltage = 65000 ; break; case 0x9b : o_voltage = 64375 ; break; case 0x9c : o_voltage = 63750 ; break; case 0x9d : o_voltage = 63125 ; break; case 0x9e : o_voltage = 62500 ; break; case 0x9f : o_voltage = 61875 ; break; case 0xa0 : o_voltage = 61250 ; break; case 0xa1 : o_voltage = 60625 ; break; case 0xa2 : o_voltage = 60000 ; break; case 0xa3 : o_voltage = 59375 ; break; case 0xa4 : o_voltage = 58750 ; break; case 0xa5 : o_voltage = 58125 ; break; case 0xa6 : o_voltage = 57500 ; break; case 0xa7 : o_voltage = 56875 ; break; case 0xa8 : o_voltage = 56250 ; break; case 0xa9 : o_voltage = 55625 ; break; case 0xaa : o_voltage = 55000 ; break; case 0xab : o_voltage = 54375 ; break; case 0xac : o_voltage = 53750 ; break; case 0xad : o_voltage = 53125 ; break; case 0xae : o_voltage = 52500 ; break; case 0xaf : o_voltage = 51875 ; break; case 0xb0 : o_voltage = 51250 ; break; case 0xb1 : o_voltage = 50625 ; break; case 0xb2 : o_voltage = 50000 ; break; case 0xb3 : o_voltage = 49375 ; break; case 0xb4 : o_voltage = 48750 ; break; case 0xb5 : o_voltage = 48125 ; break; case 0xb6 : o_voltage = 47500 ; break; case 0xb7 : o_voltage = 46875 ; break; case 0xb8 : o_voltage = 46250 ; break; case 0xb9 : o_voltage = 45625 ; break; case 0xba : o_voltage = 45000 ; break; case 0xbb : o_voltage = 44375 ; break; case 0xbc : o_voltage = 43750 ; break; case 0xbd : o_voltage = 43125 ; break; case 0xbe : o_voltage = 42500 ; break; case 0xbf : o_voltage = 41875 ; break; case 0xc0 : o_voltage = 41250 ; break; case 0xc1 : o_voltage = 40625 ; break; case 0xc2 : o_voltage = 40000 ; break; case 0xc3 : o_voltage = 39375 ; break; case 0xc4 : o_voltage = 38750 ; break; case 0xc5 : o_voltage = 38125 ; break; case 0xc6 : o_voltage = 37500 ; break; case 0xc7 : o_voltage = 36875 ; break; case 0xc8 : o_voltage = 36250 ; break; case 0xc9 : o_voltage = 35625 ; break; case 0xca : o_voltage = 35000 ; break; case 0xcb : o_voltage = 34375 ; break; case 0xcc : o_voltage = 33750 ; break; case 0xcd : o_voltage = 33125 ; break; case 0xce : o_voltage = 32500 ; break; case 0xcf : o_voltage = 31875 ; break; case 0xd0 : o_voltage = 31250 ; break; case 0xd1 : o_voltage = 30625 ; break; case 0xd2 : o_voltage = 30000 ; break; case 0xd3 : o_voltage = 29375 ; break; case 0xd4 : o_voltage = 28750 ; break; case 0xd5 : o_voltage = 28125 ; break; case 0xd6 : o_voltage = 27500 ; break; case 0xd7 : o_voltage = 26875 ; break; case 0xd8 : o_voltage = 26250 ; break; case 0xd9 : o_voltage = 25625 ; break; case 0xda : o_voltage = 25000 ; break; case 0xdb : o_voltage = 24375 ; break; case 0xdc : o_voltage = 23750 ; break; case 0xdd : o_voltage = 23125 ; break; case 0xde : o_voltage = 22500 ; break; case 0xdf : o_voltage = 21875 ; break; case 0xe0 : o_voltage = 21250 ; break; case 0xe1 : o_voltage = 20625 ; break; case 0xe2 : o_voltage = 20000 ; break; case 0xe3 : o_voltage = 19375 ; break; case 0xe4 : o_voltage = 18750 ; break; case 0xe5 : o_voltage = 18125 ; break; case 0xe6 : o_voltage = 17500 ; break; case 0xe7 : o_voltage = 16875 ; break; case 0xe8 : o_voltage = 16250 ; break; case 0xe9 : o_voltage = 15625 ; break; case 0xea : o_voltage = 15000 ; break; case 0xeb : o_voltage = 14375 ; break; case 0xec : o_voltage = 13750 ; break; case 0xed : o_voltage = 13125 ; break; case 0xee : o_voltage = 12500 ; break; case 0xef : o_voltage = 11875 ; break; case 0xf0 : o_voltage = 11250 ; break; case 0xf1 : o_voltage = 10625 ; break; case 0xf2 : o_voltage = 10000 ; break; case 0xf3 : o_voltage = 9375 ; break; case 0xf4 : o_voltage = 8750 ; break; case 0xf5 : o_voltage = 8125 ; break; case 0xf6 : o_voltage = 7500 ; break; case 0xf7 : o_voltage = 6875 ; break; case 0xf8 : o_voltage = 6250 ; break; case 0xf9 : o_voltage = 5625 ; break; case 0xfa : o_voltage = 5000 ; break; case 0xfb : o_voltage = 4375 ; break; case 0xfc : o_voltage = 3750 ; break; case 0xfd : o_voltage = 3125 ; break; //case 0xfe : o_voltage = 0 ; break; //case 0xff : o_voltage = 0 ; break; default : o_voltage = 100000; } return l_fapirc; } //------------------------------------------------------------------------------ // function: // set up sbe configuration values in mbox scratch reg 1 // (standalone_mbox0_value) // // Mailbox scratch 1 (CFAM 2838, SCOM 0x50038) // // Bytes 0,1 Boot frequency // Boot Frequency info (power management def file DPS min (% drop from // nominal), must cross checking between f_vmin and DPS min) // This is a multiplier of the processor refclk frequency based on the // the DPLL DIVIDER. // // Bytes 2,3 EX Gard records // FSP provides a vector for SBE to communicate the guareded EX chiplets // Bits 0..3 4..7 8..11 12..15 16..19 20..23 24..27 28..31 // 0x0000 EX guard bits // One Guard bit per EX chiplet, bit location aligned to chiplet ID // (bit 16: EX00, bit 17: EX01, bit 18: EX02 ... bit 31: EX15) // Guarded EX chiplets are marked by a '0'. // // parameters: i_target Reference to the processor chip target // o_set_data The 32-bit mailbox value // returns: FAPI_RC_SUCCESS if operation was successful, else error //------------------------------------------------------------------------------ fapi::ReturnCode p8_mailbox_utils_get_mbox1( const fapi::Target &i_target, uint32_t & o_set_data ) { fapi::ReturnCode l_fapirc; const uint32_t BOOT_FREQ_BIT_POSITION = 0; const uint32_t BOOT_FREQ_BIT_LENGTH = 16; const uint32_t EX_GARD_BITS_BIT_POSITION = 16; const uint32_t EX_GARD_BITS_BIT_LENGTH = 16; do { o_set_data = 0; // boot freq should have been calculated earlier // and stored in system attribute ATTR_BOOT_FREQ_MHZ fapi::ATTR_BOOT_FREQ_MHZ_Type l_boot_freq = 0 ; l_fapirc = FAPI_ATTR_GET( ATTR_BOOT_FREQ_MHZ, NULL, l_boot_freq ); if (l_fapirc ) { FAPI_ERR("fapiGetAttribute of ATTR_BOOT_FREQ_MHZ failed"); break; } FAPI_INF( "ATTR_BOOT_FREQ_MHZ = 0x%08x => %dMHz", l_boot_freq, l_boot_freq); uint32_t l_refclk_freq = 0; l_fapirc = FAPI_ATTR_GET( ATTR_FREQ_PROC_REFCLOCK, NULL, l_refclk_freq ); if (l_fapirc ) { FAPI_ERR("fapiGetAttribute of ATTR_FREQ_PROC_REFCLOCK failed"); break; } FAPI_INF( "ATTR_FREQ_PROC_REFCLOCK = 0x%08x => %dMHz", l_refclk_freq, l_refclk_freq ); if (!l_refclk_freq) { FAPI_ERR("Attribute ATTR_FREQ_PROC_REFCLOCK failed must be non-zero"); uint32_t & REF_FREQ = l_refclk_freq; FAPI_SET_HWP_ERROR(l_fapirc, RC_P8_MAILBOX_UTILS_PROC_REFCLK_ZERO_ERROR); break; } uint32_t l_dpll_divider = 4; FAPI_DBG("Setting DPLL divider to %01x", l_dpll_divider); l_fapirc = FAPI_ATTR_SET(ATTR_PROC_DPLL_DIVIDER, &i_target, l_dpll_divider ); if (l_fapirc ) { FAPI_ERR("fapiSetAttribute of ATTR_PROC_DPLL_DIVIDER failed"); break; } // Calculate the multiplier that is stored into the mailbox // Check bounds and avoid unnecessary fp math // uint32_t l_freq_mult = (uint32_t)floor( // ( float)l_boot_freq / // ((float)l_refclk_freq / l_dpll_divider)); uint64_t l_result = (((uint64_t)l_dpll_divider)*l_boot_freq)/l_refclk_freq; if( l_result >> BOOT_FREQ_BIT_LENGTH ) { FAPI_ERR("DPLL multiplier (%lld) won't fit in the bit field (%i bits max)", l_result, BOOT_FREQ_BIT_LENGTH); uint32_t & BOOT_FREQ = l_boot_freq; uint32_t & REF_FREQ = l_refclk_freq; uint32_t & DPLL_DIV = l_dpll_divider; uint64_t & FREQ_MULT = l_result; const uint32_t & MAX_BITS = BOOT_FREQ_BIT_LENGTH; FAPI_SET_HWP_ERROR(l_fapirc, RC_P8_MAILBOX_UTILS_FREQ_MULT_OOB_ERROR); break; } uint32_t l_freq_mult = (uint32_t)l_result; FAPI_DBG("Boot frequency multiplier %04x", l_freq_mult); o_set_data = l_freq_mult << (sizeof(o_set_data)*8 - BOOT_FREQ_BIT_POSITION - BOOT_FREQ_BIT_LENGTH); // Calculate the gard record here, ATTR_EX_GARD_BITS is probably not // needed. uint32_t l_ex_gard_bits = 0x0000ffff; std::vector l_fapiCores; l_fapirc = fapiGetChildChiplets( i_target, fapi::TARGET_TYPE_EX_CHIPLET, l_fapiCores, fapi::TARGET_STATE_FUNCTIONAL ); if (l_fapirc ) { FAPI_ERR("fapiGetChildChiplets failed"); break; } FAPI_INF( "Found %d EX cores", l_fapiCores.size() ); // Note: Functional chips are marked with a 0 bit; NOT a one bit. // CLEAR a bit for all functional EX chiplets in the vector: // (bit 16: EX00, bit 17: EX01, bit 18: EX02 ... bit 31: EX15) // HWAS will eventually take into account Mfg Partial Good, // Mfg Core Overrride, and Gard data records from previous fails; // we should only have to filter for functional chips here. for ( uint32_t l_coreNum=0; l_coreNum> l_unit )); } // endfor if ( l_fapirc ) { FAPI_ERR( "FAILED to retrieve ATTR_CHIP_UNIT_POS" ); break; } FAPI_INF( "l_ex_gard_bits = 0x%08x", l_ex_gard_bits ); o_set_data |= l_ex_gard_bits << (sizeof(o_set_data)*8 - EX_GARD_BITS_BIT_POSITION - EX_GARD_BITS_BIT_LENGTH); FAPI_INF( "Return Mailbox 1 value (standalone_mbox0_value) = 0x%08x", o_set_data ); } while (0); return l_fapirc; } //------------------------------------------------------------------------------ // function: // set up sbe configuration values in mbox scratch reg 2 // (standalone_mbox1_value) // // Bit 0 in this register is used to indicate a MPIPL // - The MPI flag will be evaluated by proc_sbe_ipl_seeprom to distinguish // between a normal and a memory preserving IPL // - attribute ATTR_IS_MPIPL will indicate MPIPL or not. // FSP provides a MPI (Memory Preserving IPL) flag and settings for the I2C // master bus speed calculation // Bits | 0 | 1 2 3 | 4..7 8..11 12..15 | // | MPI | 000 | PIB I2C master Bit Rate Divisor (@refclock) | // // | 16..19 20..23 24..27 28..31 | // | PIB I2C master Bit Rate Divisor (@PLL) | // // parameters: i_target Reference to the chip target // o_set_data The 32-bit mailbox value // returns: FAPI_RC_SUCCESS if operation was successful, else error //------------------------------------------------------------------------------ fapi::ReturnCode p8_mailbox_utils_get_mbox2( const fapi::Target &i_target, uint32_t & o_set_data ) { fapi::ReturnCode l_fapirc; const uint32_t PIB_I2C_REFCLOCK_BIT_POSITION = 4; const uint32_t PIB_I2C_REFCLOCK_BIT_LENGTH = 12; const uint32_t PIB_I2C_NEST_PLL_BIT_POSITION = 16; const uint32_t PIB_I2C_NEST_PLL_BIT_LENGTH = 16; do { // get system attribute ATTR_IS_MPIPL fapi::ATTR_IS_MPIPL_Type l_isMpIpl = 0x00; l_fapirc = FAPI_ATTR_GET( ATTR_IS_MPIPL, NULL, l_isMpIpl ); if (l_fapirc ) { FAPI_ERR("fapiGetAttribute of ATTR_IS_MPIPL failed"); break; } FAPI_INF( "ATTR_IS_MPIPL=0x%08x", l_isMpIpl ); if ( l_isMpIpl ) { o_set_data = 1 << (sizeof(o_set_data)*8 - 1); } else { o_set_data = 0; } // get system attribute ATTR_PIB_I2C_REFCLOCK fapi::ATTR_PIB_I2C_REFCLOCK_Type l_pib_i2c_refclock = 0; l_fapirc = FAPI_ATTR_GET( ATTR_PIB_I2C_REFCLOCK, NULL, l_pib_i2c_refclock ); if (l_fapirc ) { FAPI_ERR("fapiGetAttribute of ATTR_PIB_I2C_REFCLOCK failed"); break; } FAPI_INF( "ATTR_PIB_I2C_REFCLOCK=0x%08x", l_pib_i2c_refclock ); // get system attribute ATTR_PIB_I2C_NEST_PLL fapi::ATTR_PIB_I2C_NEST_PLL_Type l_pib_i2c_nest_pll = 0; l_fapirc = FAPI_ATTR_GET( ATTR_PIB_I2C_NEST_PLL, NULL, l_pib_i2c_nest_pll ); if (l_fapirc ) { FAPI_ERR("fapiGetAttribute of ATTR_PIB_I2C_NEST_PLL failed"); break; } FAPI_INF( "ATTR_PIB_I2C_NEST_PLL=0x%08x", l_pib_i2c_nest_pll ); //For normal IPLs set initial SBE I2C freq to ref clock //For MPIPL set initial SBE I2C freq to nest clock if ( !l_isMpIpl ) { o_set_data |= l_pib_i2c_refclock << (sizeof(o_set_data)*8 - PIB_I2C_REFCLOCK_BIT_POSITION - PIB_I2C_REFCLOCK_BIT_LENGTH); } else { o_set_data |= l_pib_i2c_nest_pll << (sizeof(o_set_data)*8 - PIB_I2C_REFCLOCK_BIT_POSITION - PIB_I2C_REFCLOCK_BIT_LENGTH); } //Nest ref clock is the same between Normal and MPIPLs o_set_data |= l_pib_i2c_nest_pll << (sizeof(o_set_data)*8 - PIB_I2C_NEST_PLL_BIT_POSITION - PIB_I2C_NEST_PLL_BIT_LENGTH ); FAPI_INF( "Return Mailbox 2 value (standalone_mbox1_value) = 0x%08x", o_set_data ); } while (0); return l_fapirc; } //------------------------------------------------------------------------------ // function: // set up sbe configuration values in mbox scratch reg 3 // (standalone_mbox2_value) // // 32bit address of location of Hostboot image header (first block of data) // This is offset using an algorithm to compensate for ECC - // see Feature 862671 (fips810): hb pnor offset // // parameters: i_target Reference to the chip target // o_set_data The 32-bit mailbox value // returns: FAPI_RC_SUCCESS if operation was successful, else error //------------------------------------------------------------------------------ fapi::ReturnCode p8_mailbox_utils_get_mbox3( const fapi::Target &i_target, uint32_t & o_set_data ) { fapi::ReturnCode l_fapirc; const uint32_t SBE_IMAGE_OFFSET_BIT_POSITION = 0; const uint32_t SBE_IMAGE_OFFSET_BIT_LENGTH = 32; do { // get system attribute ATTR_SBE_IMAGE_OFFSET fapi::ATTR_SBE_IMAGE_OFFSET_Type l_sbe_image_offset = 0 ; l_fapirc = FAPI_ATTR_GET( ATTR_SBE_IMAGE_OFFSET, NULL, l_sbe_image_offset ); if (l_fapirc ) { FAPI_ERR("fapiGetAttribute of ATTR_SBE_IMAGE_OFFSET failed"); break; } FAPI_INF( "ATTR_SBE_IMAGE_OFFSET=0x%08x", l_sbe_image_offset ); o_set_data = l_sbe_image_offset << (sizeof(o_set_data)*8 - SBE_IMAGE_OFFSET_BIT_POSITION - SBE_IMAGE_OFFSET_BIT_LENGTH ); FAPI_INF( "Return Mailbox 3 (standalone_mbox2_value) = 0x%08x", o_set_data ); } while (0); return l_fapirc; } //------------------------------------------------------------------------------ // function: // set up sbe configuration values in mbox scratch reg 4 // // Write Boot Voltage info to scratch pad 4 // // 0:2 -> port enables (3b - system design based: // port 0 for non-redundant systems (100); all ports for non-redundant (111)) // 3 -> Unused // - current recommended default = 1000b // 4:7 -> phase enables (4b - defined by the system power design) // - current recommended default = 0000b // 8:15 -> VDD voltage (1B in VRM-11 encoded form - 6.25mV increments) // note: VPD is in 5mV increments // - current recommended default = 0x52 // 16:23 -> VCS voltage (1B in VRM-11 encoded form - 6.25mV increments) // note: VPD is in 5mV increments // -current recommended default = 0x4a // 24:27 -> Unused = 0x00 // 28 -> Fabric wrap test = MNFG wrap test attribute // 29:31 -> Fabric node ID = Node ID attribute // // parameters: i_target Reference to the chip target // o_set_data The 32-bit mailbox value // i_write_fbc_data True if the mailbox value should include fabric wrap // test/node ID information // returns: FAPI_RC_SUCCESS if operation was successful, else error //------------------------------------------------------------------------------ fapi::ReturnCode p8_mailbox_utils_get_mbox4( const fapi::Target &i_target, uint32_t & o_set_data, bool i_write_fbc_data) { fapi::ReturnCode l_fapirc; const uint32_t BOOT_VOLTAGE_INFO_BIT_POSITION = 0; const uint32_t BOOT_VOLTAGE_INFO_BIT_LENGTH = 32; const uint32_t WRAP_TEST_BIT = 28; const uint32_t NODE_ID_BIT_POSITION = 29; const uint32_t NODE_ID_BIT_LENGTH = 3; do { // get system attribute ATTR_PROC_BOOT_VOLTAGE_VID fapi::ATTR_PROC_BOOT_VOLTAGE_VID_Type l_boot_voltage_info = 0 ; l_fapirc = FAPI_ATTR_GET( ATTR_PROC_BOOT_VOLTAGE_VID, &i_target, l_boot_voltage_info ); if (l_fapirc ) { FAPI_ERR("fapiGetAttribute of ATTR_PROC_BOOT_VOLTAGE_VID failed"); break; } FAPI_INF( "ATTR_PROC_BOOT_VOLTAGE_VID=0x%08x", l_boot_voltage_info ); o_set_data = l_boot_voltage_info << (sizeof(o_set_data)*8 - BOOT_VOLTAGE_INFO_BIT_POSITION - BOOT_VOLTAGE_INFO_BIT_LENGTH ); // Decode the value for those interested uint32_t l_vdd_mv; uint32_t l_vcs_mv; uint8_t l_vdd_vid; uint8_t l_vcs_vid; // Extract the VID l_vdd_vid = (uint8_t)(l_boot_voltage_info >> 16 & 0xFF); // Translate to voltage l_fapirc = vid2mv(l_vdd_vid, l_vdd_mv); if (l_fapirc ) { FAPI_ERR("Translate of VDD VID to Voltage Failed"); break; } // Extract the VID l_vcs_vid = (uint8_t)(l_boot_voltage_info >> 8 & 0xFF); // Translate to voltage l_fapirc = vid2mv(l_vcs_vid, l_vcs_mv); if (l_fapirc ) { FAPI_ERR("Translate of VCS VID to Voltage Failed"); break; } FAPI_INF("Boot VRM-11 VIDs: VDD = %02X, VCS = %02X", l_vdd_vid, l_vcs_vid); FAPI_INF("Boot Voltage: VDD = %1.2f mV, VCS = %1.2f mV", (float)l_vdd_mv / 100, (float)l_vcs_mv / 100); if (i_write_fbc_data) { // set wrap test flag (FSP boot) fapi::ATTR_MNFG_FLAGS_Type l_mnfg_flags = 0; l_fapirc = FAPI_ATTR_GET( ATTR_MNFG_FLAGS, NULL, l_mnfg_flags ); if (l_fapirc ) { FAPI_ERR("fapiGetAttribute of ATTR_MNFG_FLAGS failed"); break; } FAPI_INF( "ATTR_MNFG_FLAGS => %016llX", l_mnfg_flags); // get chip type // TODO RTC 102992 fapi::ATTR_NAME_Type l_chip_type; l_fapirc = FAPI_ATTR_GET_PRIVILEGED(ATTR_NAME, &i_target, l_chip_type); if (l_fapirc) { FAPI_ERR("fapiGetAttribute (Privildged) of ATTR_NAME failed"); break; } if (((l_mnfg_flags & fapi::ENUM_ATTR_MNFG_FLAGS_MNFG_BRAZOS_WRAP_CONFIG) == fapi::ENUM_ATTR_MNFG_FLAGS_MNFG_BRAZOS_WRAP_CONFIG) || (l_chip_type == fapi::ENUM_ATTR_NAME_MURANO)) { o_set_data |= 1 << (sizeof(o_set_data)*8 - WRAP_TEST_BIT - 1); } // set node ID (FSP boot) fapi::ATTR_FABRIC_NODE_ID_Type l_node_id = 0 ; l_fapirc = FAPI_ATTR_GET( ATTR_FABRIC_NODE_ID, &i_target, l_node_id ); if (l_fapirc ) { FAPI_ERR("fapiGetAttribute of ATTR_FABRIC_NODE_ID failed"); break; } FAPI_INF( "ATTR_FABRIC_NODE_ID => %d", l_node_id); o_set_data |= l_node_id << (sizeof(o_set_data)*8 - NODE_ID_BIT_POSITION - NODE_ID_BIT_LENGTH ); } FAPI_INF( "Return Mailbox 4 value (standalone_mbox3_value) = 0x%08x", o_set_data ); } while (0); return l_fapirc; } } // extern "C"