summaryrefslogtreecommitdiffstats
path: root/src/import/chips
diff options
context:
space:
mode:
authorBrian Silver <bsilver@us.ibm.com>2016-08-25 09:41:08 -0500
committerChristian R. Geddes <crgeddes@us.ibm.com>2016-09-03 11:57:03 -0400
commit945d73f8dd0053c2a9929d4adabc46b5f3edd819 (patch)
treeb170cc830364031755bd4810c1807353efb64c81 /src/import/chips
parentdda93451aa288f2d4b2c1f96f4e003377588236b (diff)
downloadtalos-hostboot-945d73f8dd0053c2a9929d4adabc46b5f3edd819.tar.gz
talos-hostboot-945d73f8dd0053c2a9929d4adabc46b5f3edd819.zip
Changes related to PHY register review
Remove slew_cal.C as it's not needed in Nimbus Verify sysclk pr is proper when not in sim Add timing values which are needed for PHY SEQ config Aggregate other memory timing parameters into timing.H Change-Id: I4c5374df8693f6a6be7ba0a1d741eaf3929b6f92 Reviewed-on: http://ralgit01.raleigh.ibm.com/gerrit1/29045 Tested-by: Jenkins Server <pfd-jenkins+hostboot@us.ibm.com> Tested-by: Hostboot CI <hostboot-ci+hostboot@us.ibm.com> Reviewed-by: Christian R. Geddes <crgeddes@us.ibm.com> Reviewed-by: Brian R. Silver <bsilver@us.ibm.com> Reviewed-on: http://ralgit01.raleigh.ibm.com/gerrit1/29185 Reviewed-by: Hostboot Team <hostboot@us.ibm.com> Tested-by: FSP CI Jenkins <fsp-CI-jenkins+hostboot@us.ibm.com>
Diffstat (limited to 'src/import/chips')
-rw-r--r--src/import/chips/p9/procedures/hwp/memory/lib/dimm/ddr4/mrs_load_ddr4.C32
-rw-r--r--src/import/chips/p9/procedures/hwp/memory/lib/dimm/rcd_load_ddr4.C31
-rw-r--r--src/import/chips/p9/procedures/hwp/memory/lib/eff_config/timing.H201
-rw-r--r--src/import/chips/p9/procedures/hwp/memory/lib/phy/cal_timers.H2
-rw-r--r--src/import/chips/p9/procedures/hwp/memory/lib/phy/ddr_phy.C36
-rw-r--r--src/import/chips/p9/procedures/hwp/memory/lib/phy/read_cntrl.H8
-rw-r--r--src/import/chips/p9/procedures/hwp/memory/lib/phy/write_cntrl.H2
-rw-r--r--src/import/chips/p9/procedures/hwp/memory/lib/termination/slew_cal.C503
-rw-r--r--src/import/chips/p9/procedures/hwp/memory/lib/utils/conversions.H31
9 files changed, 278 insertions, 568 deletions
diff --git a/src/import/chips/p9/procedures/hwp/memory/lib/dimm/ddr4/mrs_load_ddr4.C b/src/import/chips/p9/procedures/hwp/memory/lib/dimm/ddr4/mrs_load_ddr4.C
index b4ce1a6b7..540ae5b8c 100644
--- a/src/import/chips/p9/procedures/hwp/memory/lib/dimm/ddr4/mrs_load_ddr4.C
+++ b/src/import/chips/p9/procedures/hwp/memory/lib/dimm/ddr4/mrs_load_ddr4.C
@@ -37,6 +37,7 @@
#include <mss.H>
#include <lib/dimm/ddr4/mrs_load_ddr4.H>
+#include <lib/eff_config/timing.H>
using fapi2::TARGET_TYPE_MCBIST;
using fapi2::TARGET_TYPE_DIMM;
@@ -60,31 +61,26 @@ fapi2::ReturnCode mrs_load( const fapi2::Target<TARGET_TYPE_DIMM>& i_target,
{
FAPI_INF("ddr4::mrs_load %s", mss::c_str(i_target));
- // Per DDR4 Full spec update (79-4A) - timing requirements
- constexpr uint64_t tMRD = 8;
- constexpr uint64_t tZQinit = 1024;
- uint64_t l_freq = 0;
- uint64_t tDLLK = 0;
fapi2::buffer<uint16_t> l_cal_steps;
+ uint64_t tDLLK = 0;
static std::vector< mrs_data<TARGET_TYPE_MCBIST> > l_mrs_data =
{
// JEDEC ordering of MRS per DDR4 power on sequence
- { 3, mrs03, mrs03_decode, tMRD },
- { 6, mrs06, mrs06_decode, tMRD },
- { 5, mrs05, mrs05_decode, tMRD },
- { 4, mrs04, mrs04_decode, tMRD },
- { 2, mrs02, mrs02_decode, tMRD },
- { 1, mrs01, mrs01_decode, tMRD },
- { 0, mrs00, mrs00_decode, tMRD },
+ { 3, mrs03, mrs03_decode, mss::tmrd() },
+ { 6, mrs06, mrs06_decode, mss::tmrd() },
+ { 5, mrs05, mrs05_decode, mss::tmrd() },
+ { 4, mrs04, mrs04_decode, mss::tmrd() },
+ { 2, mrs02, mrs02_decode, mss::tmrd() },
+ { 1, mrs01, mrs01_decode, mss::tmrd() },
+
+ // We need to wait either tmod or tmrd before zqcl.
+ { 0, mrs00, mrs00_decode, std::max(mss::tmrd(), mss::tmod(i_target)) },
};
std::vector< uint64_t > l_ranks;
FAPI_TRY( mss::ranks(i_target, l_ranks) );
-
- // Calculate tDLLK from our frequency. Magic numbers (in clocks) from the DDR4 spec
- FAPI_TRY( mss::freq(mss::find_target<TARGET_TYPE_MCBIST>(i_target), l_freq) );
- tDLLK = (l_freq < fapi2::ENUM_ATTR_MSS_FREQ_MT2133) ? 597 : 768;
+ FAPI_TRY( mss::tdllk(i_target, tDLLK) );
// Load MRS
for (const auto& d : l_mrs_data)
@@ -141,9 +137,9 @@ fapi2::ReturnCode mrs_load( const fapi2::Target<TARGET_TYPE_DIMM>& i_target,
l_inst_b_side = mss::address_invert(l_inst_a_side);
l_inst_a_side.arr1.insertFromRight<MCBIST_CCS_INST_ARR1_00_IDLES,
- MCBIST_CCS_INST_ARR1_00_IDLES_LEN>(tDLLK + tZQinit);
+ MCBIST_CCS_INST_ARR1_00_IDLES_LEN>(tDLLK + mss::tzqinit());
l_inst_b_side.arr1.insertFromRight<MCBIST_CCS_INST_ARR1_00_IDLES,
- MCBIST_CCS_INST_ARR1_00_IDLES_LEN>(tDLLK + tZQinit);
+ MCBIST_CCS_INST_ARR1_00_IDLES_LEN>(tDLLK + mss::tzqinit());
// There's nothing to decode here.
FAPI_INF("ZQCL 0x%016llx:0x%016llx %s:rank %d a-side",
diff --git a/src/import/chips/p9/procedures/hwp/memory/lib/dimm/rcd_load_ddr4.C b/src/import/chips/p9/procedures/hwp/memory/lib/dimm/rcd_load_ddr4.C
index ef7f77392..a1f57e489 100644
--- a/src/import/chips/p9/procedures/hwp/memory/lib/dimm/rcd_load_ddr4.C
+++ b/src/import/chips/p9/procedures/hwp/memory/lib/dimm/rcd_load_ddr4.C
@@ -59,28 +59,29 @@ fapi2::ReturnCode rcd_load_ddr4( const fapi2::Target<TARGET_TYPE_DIMM>& i_target
{
FAPI_INF("rcd_load_ddr4 %s", mss::c_str(i_target));
- // Per DDR4RCD02 table 104 - timing requirements
- static const uint64_t tMRD = 8;
- static const uint64_t tMRD_L = 16;
-
- // Per DDR4RCD02, tSTAB is 5us. We want this in cycles for the CCS.
- const uint64_t tSTAB = mss::us_to_cycles(i_target, 5);
+ // Per DDR4RCD02, tSTAB is us. We want this in cycles for the CCS.
+ const uint64_t tSTAB = mss::us_to_cycles(i_target, mss::tstab());
static std::vector< rcd_data > l_rcd_4bit_data =
{
- { 0, eff_dimm_ddr4_rc00, tMRD }, { 1, eff_dimm_ddr4_rc01, tMRD }, { 2, eff_dimm_ddr4_rc02, tSTAB },
- { 3, eff_dimm_ddr4_rc03, tMRD_L}, { 4, eff_dimm_ddr4_rc04, tMRD_L}, { 5, eff_dimm_ddr4_rc05, tMRD_L},
- { 6, eff_dimm_ddr4_rc06_07, tMRD }, { 8, eff_dimm_ddr4_rc08, tMRD }, { 9, eff_dimm_ddr4_rc09, tMRD },
- { 10, eff_dimm_ddr4_rc10, tSTAB }, { 11, eff_dimm_ddr4_rc11, tMRD }, { 12, eff_dimm_ddr4_rc12, tMRD },
- { 13, eff_dimm_ddr4_rc13, tMRD }, { 14, eff_dimm_ddr4_rc14, tMRD }, { 15, eff_dimm_ddr4_rc15, tMRD },
+ { 0, eff_dimm_ddr4_rc00, mss::tmrd() }, { 1, eff_dimm_ddr4_rc01, mss::tmrd() },
+ { 2, eff_dimm_ddr4_rc02, tSTAB }, { 3, eff_dimm_ddr4_rc03, mss::tmrd_l() },
+ { 4, eff_dimm_ddr4_rc04, mss::tmrd_l() }, { 5, eff_dimm_ddr4_rc05, mss::tmrd_l() },
+ { 6, eff_dimm_ddr4_rc06_07, mss::tmrd() }, { 8, eff_dimm_ddr4_rc08, mss::tmrd() },
+ { 9, eff_dimm_ddr4_rc09, mss::tmrd() }, { 10, eff_dimm_ddr4_rc10, tSTAB },
+ { 11, eff_dimm_ddr4_rc11, mss::tmrd() }, { 12, eff_dimm_ddr4_rc12, mss::tmrd() },
+ { 13, eff_dimm_ddr4_rc13, mss::tmrd() }, { 14, eff_dimm_ddr4_rc14, mss::tmrd() },
+ { 15, eff_dimm_ddr4_rc15, mss::tmrd() },
};
static std::vector< rcd_data > l_rcd_8bit_data =
{
- { 1, eff_dimm_ddr4_rc_1x, tMRD }, { 2, eff_dimm_ddr4_rc_2x, tMRD }, { 3, eff_dimm_ddr4_rc_3x, tSTAB },
- { 4, eff_dimm_ddr4_rc_4x, tMRD }, { 5, eff_dimm_ddr4_rc_5x, tMRD }, { 6, eff_dimm_ddr4_rc_6x, tMRD },
- { 7, eff_dimm_ddr4_rc_7x, tMRD }, { 8, eff_dimm_ddr4_rc_8x, tMRD }, { 9, eff_dimm_ddr4_rc_9x, tMRD },
- { 10, eff_dimm_ddr4_rc_ax, tMRD }, { 11, eff_dimm_ddr4_rc_bx, tMRD_L}
+ { 1, eff_dimm_ddr4_rc_1x, mss::tmrd() }, { 2, eff_dimm_ddr4_rc_2x, mss::tmrd() },
+ { 3, eff_dimm_ddr4_rc_3x, tSTAB }, { 4, eff_dimm_ddr4_rc_4x, mss::tmrd() },
+ { 5, eff_dimm_ddr4_rc_5x, mss::tmrd() }, { 6, eff_dimm_ddr4_rc_6x, mss::tmrd() },
+ { 7, eff_dimm_ddr4_rc_7x, mss::tmrd() }, { 8, eff_dimm_ddr4_rc_8x, mss::tmrd() },
+ { 9, eff_dimm_ddr4_rc_9x, mss::tmrd() }, { 10, eff_dimm_ddr4_rc_ax, mss::tmrd() },
+ { 11, eff_dimm_ddr4_rc_bx, mss::tmrd_l() }
};
fapi2::buffer<uint8_t> l_value;
diff --git a/src/import/chips/p9/procedures/hwp/memory/lib/eff_config/timing.H b/src/import/chips/p9/procedures/hwp/memory/lib/eff_config/timing.H
index 894205480..88024e7a0 100644
--- a/src/import/chips/p9/procedures/hwp/memory/lib/eff_config/timing.H
+++ b/src/import/chips/p9/procedures/hwp/memory/lib/eff_config/timing.H
@@ -145,6 +145,7 @@ fapi_try_exit:
return fapi2::current_err;
}
+///
/// @brief Calculates refresh interval time
/// @param[in] i_mode fine refresh rate mode
/// @param[in] i_temp_refresh_range temperature refresh range
@@ -155,6 +156,7 @@ fapi2::ReturnCode calc_trefi( const refresh_rate i_mode,
const uint8_t i_temp_refresh_range,
int64_t& o_timing );
+///
/// @brief Calculates Minimum Refresh Recovery Delay Time (different logical rank)
/// @param[in] i_mode fine refresh rate mode
/// @param[in] i_density SDRAM density
@@ -165,5 +167,204 @@ fapi2::ReturnCode calc_trfc_dlr( const uint8_t i_refresh_mode,
const uint8_t i_density,
uint64_t& o_trfc_in_ps );
+///
+/// @brief DLL locking time
+/// @tparam T the fapi2::TargetType of i_target
+/// @tparam OT the type of the output location
+/// @param[in] i_target a target for attributes
+/// @param[out] o_value reference to space into which to store the output
+/// @return fapi2::FAPI2_RC_SUCCESS iff okay
+///
+template< fapi2::TargetType T, typename OT = uint64_t >
+inline fapi2::ReturnCode tdllk( const fapi2::Target<T>& i_target, OT& o_value )
+{
+ uint64_t l_freq = 0;
+
+ // Calculate tDLLK from our MT/s. Magic numbers (in clocks) from the DDR4 spec
+ FAPI_TRY( mss::freq(mss::find_target<fapi2::TARGET_TYPE_MCBIST>(i_target), l_freq) );
+ o_value = (l_freq < fapi2::ENUM_ATTR_MSS_FREQ_MT2133) ? 597 : 768;
+ return fapi2::FAPI2_RC_SUCCESS;
+
+fapi_try_exit:
+ return fapi2::current_err;
+}
+
+///
+/// @brief Mode Register Set Command Cycle Time
+/// @return constexpr value of 8 clocks
+///
+constexpr uint64_t tmrd()
+{
+ // Per DDR4 Full spec update (79-4A) - timing requirements
+ return 8;
+}
+
+///
+/// @brief Control word to control word delay
+/// @return constexpr value of 16 clocks
+///
+constexpr uint64_t tmrd_l()
+{
+ // Per DDR4RCD02 Spec Rev 0.85
+ return 16;
+}
+
+///
+/// @brief Stabilization time
+/// @return constexpr value of 5 us
+///
+constexpr uint64_t tstab()
+{
+ // Per DDR4RCD02 Spec Rev 0.85 CK_t stable
+ return 5;
+}
+
+///
+/// @brief Power-up and RESET calibration time
+/// @return constexpr value of 1024 clocks
+///
+constexpr uint64_t tzqinit()
+{
+ // Per DDR4 Full spec update (79-4A) - timing requirements
+ return 1024;
+}
+
+///
+/// @brief Normal operation Full calibration time
+/// @return constexpr value of 512 clocks
+///
+constexpr uint64_t tzqoper()
+{
+ // Per DDR4 Full spec update (79-4A) - timing requirements
+ return 512;
+}
+
+///
+/// @brief Normal operation Short calibration time
+/// @return constexpr value of 128 clocks
+///
+constexpr uint64_t tzqcs()
+{
+ // Per DDR4 Full spec update (79-4A) - timing requirements
+ return 128;
+}
+
+///
+/// @brief DQS_t/DQS_n delay after write leveling mode is programmed
+/// @return constexpr value of 25 clocks
+///
+constexpr uint64_t twldqsen()
+{
+ // Per DDR4 Full spec update (79-4A) - timing requirements
+ return 25;
+}
+
+///
+/// @brief First DQS_t/DQS_n rising edge after write leveling mode is programmed
+/// @return constexpr value of 40 clocks
+///
+constexpr uint64_t twlmrd()
+{
+ // Per DDR4 Full spec update (79-4A) - timing requirements
+ return 40;
+}
+
+///
+/// @brief Calculate TWLO_TWLOE
+/// @tparam T fapi2::TargetType of the target used to calculate cycles from ns
+/// @param[in] i_target the target used to get DIMM clocks
+/// @return uint64_t, TWLO_TWLOE in cycles
+///
+template< fapi2::TargetType T >
+inline uint64_t twlo_twloe(const fapi2::Target<T>& i_target)
+{
+ return 12 + mss::ns_to_cycles(i_target, tWLO - tWLOE);
+}
+
+///
+/// @brief Mode Register Set command update delay
+/// @tparam T fapi2::TargetType of the target used to calculate cycles from ns
+/// @param[in] i_target the target used to get clocks
+/// @return max(24nCK,15ns) in clocks
+///
+template< fapi2::TargetType T >
+inline uint64_t tmod( const fapi2::Target<T>& i_target )
+{
+ // Per DDR4 Full spec update (79-4A) - timing requirements
+ return mss::max_ck_ns( i_target, 24, 15 );
+}
+
+///
+/// @brief Refresh cycle time
+/// @param[in] i_target the DIMM target used to get clocks (needed to know the stack type)
+/// @param[out] o_trfc the trfc *in clocks*
+/// @return FAPI2_RC_SUCCESS iff ok
+///
+inline fapi2::ReturnCode trfc( const fapi2::Target<fapi2::TARGET_TYPE_DIMM>& i_target, uint16_t& o_trfc )
+{
+ // Pull down the 3DS attribute. If we have a stack we need to use
+ // tRFC_DLR if not we pull down TRFC and use that.
+ uint8_t l_stack = 0;
+
+ FAPI_TRY( mss::eff_prim_stack_type(i_target, l_stack) );
+
+ if (l_stack == fapi2::ENUM_ATTR_EFF_PRIM_STACK_TYPE_3DS)
+ {
+ uint8_t l_value = 0;
+ FAPI_TRY( mss::eff_dram_trfc_dlr(i_target, l_value) );
+ o_trfc = l_value;
+ }
+ else
+ {
+ FAPI_TRY( mss::eff_dram_trfc(i_target, o_trfc) );
+ }
+
+ return fapi2::FAPI2_RC_SUCCESS;
+
+fapi_try_exit:
+ return fapi2::current_err;
+}
+
+///
+/// @brief Direct ODT turn on Latency
+/// @param[in] i_target the DIMM target used to get attributes
+/// @param[out] o_dodt *in clocks*
+/// @return FAPI2_RC_SUCCESS iff ok
+///
+inline fapi2::ReturnCode dodt_on( const fapi2::Target<fapi2::TARGET_TYPE_DIMM>& i_target, uint8_t& o_dodt )
+{
+ // CWL + AL + PL - 2.0 per DDR4 Full spec update(79-4B)
+
+ uint8_t l_ca_parity_latency = 0;
+ uint8_t l_al = 0;
+ uint8_t l_cwl = 0;
+
+ FAPI_TRY( mss::eff_ca_parity_latency(i_target, l_ca_parity_latency) );
+ FAPI_TRY( mss::eff_dram_al(i_target, l_al) );
+ FAPI_TRY( mss::eff_dram_cwl(i_target, l_cwl) );
+
+ o_dodt = l_cwl + l_al + l_ca_parity_latency - 2;
+ return fapi2::FAPI2_RC_SUCCESS;
+
+fapi_try_exit:
+ return fapi2::current_err;
+}
+
+///
+/// @brief Direct ODT turn off Latency
+/// @param[in] i_target the DIMM target used to get attributes
+/// @param[out] o_dodt *in clocks*
+/// @return FAPI2_RC_SUCCESS iff ok
+///
+inline fapi2::ReturnCode dodt_off( const fapi2::Target<fapi2::TARGET_TYPE_DIMM>& i_target, uint8_t& o_dodt )
+{
+ // Same for all frequencies of DDR4; DDR4 Full spec update(79-4B)
+ return dodt_on(i_target, o_dodt);
+}
+
+// TK RODTon - The use would be for the ODT in the PHY, but the max RODT is equal to or less than
+// the max DODTon/off so it would really never be used anyway there anyway. We can implement it if
+// we find another need for it.
+
} // mss
#endif
diff --git a/src/import/chips/p9/procedures/hwp/memory/lib/phy/cal_timers.H b/src/import/chips/p9/procedures/hwp/memory/lib/phy/cal_timers.H
index e2b2e316a..898154c93 100644
--- a/src/import/chips/p9/procedures/hwp/memory/lib/phy/cal_timers.H
+++ b/src/import/chips/p9/procedures/hwp/memory/lib/phy/cal_timers.H
@@ -38,7 +38,7 @@
#include <fapi2.H>
#include <lib/shared/mss_const.H>
-#include <lib/utils/conversions.H>
+#include <lib/eff_config/timing.H>
#include <lib/utils/poll.H>
namespace mss
diff --git a/src/import/chips/p9/procedures/hwp/memory/lib/phy/ddr_phy.C b/src/import/chips/p9/procedures/hwp/memory/lib/phy/ddr_phy.C
index 0333ed464..78dbc776e 100644
--- a/src/import/chips/p9/procedures/hwp/memory/lib/phy/ddr_phy.C
+++ b/src/import/chips/p9/procedures/hwp/memory/lib/phy/ddr_phy.C
@@ -188,15 +188,14 @@ fapi_try_exit:
fapi2::ReturnCode setup_phase_rotator_control_registers( const fapi2::Target<TARGET_TYPE_MCBIST>& i_target,
const states i_state )
{
- uint8_t is_sim = 0;
+ // From the DDR PHY workbook
+ constexpr uint64_t CONTINUOUS_UPDATE = 0x8004;
+ constexpr uint64_t SIM_OVERRIDE = 0x8080;
+ constexpr uint64_t PHASE_CNTL_EN = 0x8020;
- // Per Bialas, we don't want to do true alignment in the cycle sim as we have
- // a chance of being off one-tick (which is detrimental.) Per his recomendations,
- // we write 0's to the control registers and then configure them with 0x8080. We'll
- // over write l_update's values with a getScom to the correct h/w initiialized values
- // if we're not in sim
+ uint8_t is_sim = 0;
- fapi2::buffer<uint64_t> l_update( i_state == mss::ON ? 0x0 : 0x8080 );
+ fapi2::buffer<uint64_t> l_update( i_state == mss::ON ? CONTINUOUS_UPDATE : PHASE_CNTL_EN );
const auto l_mca = find_targets<TARGET_TYPE_MCA>(i_target);
std::vector<uint64_t> addrs(
@@ -212,15 +211,17 @@ fapi2::ReturnCode setup_phase_rotator_control_registers( const fapi2::Target<TAR
FAPI_TRY( FAPI_ATTR_GET(fapi2::ATTR_IS_SIMULATION, fapi2::Target<TARGET_TYPE_SYSTEM>(), is_sim) );
- if (! is_sim)
+ if (is_sim)
{
- // All the MCA (and both registers) will be in the same state, so we can get the first and use it to create the
- // values for the others.
- FAPI_TRY( mss::getScom(l_mca[0], MCA_DDRPHY_ADR_SYSCLK_CNTL_PR_P0_ADR32S0, l_update) );
- l_update.setBit<MCA_DDRPHY_ADR_SYSCLK_CNTL_PR_P0_ADR32S0_ADR0_PHASE_EN>();
- l_update.writeBit<MCA_DDRPHY_ADR_SYSCLK_CNTL_PR_P0_ADR32S0_ADR0_CONTINUOUS_UPDATE>(i_state);
+ // Per Bialas, we don't want to do true alignment in the cycle sim as we have
+ // a chance of being off one-tick (which is detrimental.) Per his recomendations,
+ // we write 0's to the control registers and then configure them with 0x8080.
+ l_update = (i_state == mss::ON) ? 0x0 : SIM_OVERRIDE;
}
+ // All the MCA (and both registers) will be in the same state, so we can get the first and use it to create the
+ // values for the others.
+
FAPI_INF("Write 0x%lx into the ADR SysClk Phase Rotator Control Regs", l_update);
// WRCLK Phase rotators are taken care of in the phy initfile. BRS 6/16.
@@ -734,6 +735,7 @@ fapi2::ReturnCode setup_cal_config( const fapi2::Target<fapi2::TARGET_TYPE_MCA>&
{
fapi2::buffer<uint64_t> l_cal_config;
fapi2::buffer<uint64_t> l_vref_config;
+ uint8_t is_sim = 0;
// This is the buffer which will be written to CAL_CONFIG0. It starts
// life assuming no cal sequences, no rank pairs - but we set the abort-on-error
@@ -747,6 +749,8 @@ fapi2::ReturnCode setup_cal_config( const fapi2::Target<fapi2::TARGET_TYPE_MCA>&
i_cal_steps_enabled.clearBit<WRITE_CTR>();
}
+ FAPI_TRY( FAPI_ATTR_GET(fapi2::ATTR_IS_SIMULATION, fapi2::Target<TARGET_TYPE_SYSTEM>(), is_sim) );
+
// Sadly, the bits in the register don't align directly with the bits in the attribute.
// So, arrange the bits accordingly and write the config register.
{
@@ -766,6 +770,12 @@ fapi2::ReturnCode setup_cal_config( const fapi2::Target<fapi2::TARGET_TYPE_MCA>&
i_cal_steps_enabled.getBit<COARSE_WR>());
l_cal_config.writeBit<MCA_DDRPHY_PC_INIT_CAL_CONFIG0_P0_ENA_COARSE_RD>(
i_cal_steps_enabled.getBit<COARSE_RD>());
+
+ // Always turn on initial pattern write in h/w, never for sim (makes the DIMM behavioral lose it's mind)
+ if (!is_sim)
+ {
+ l_cal_config.setBit<MCA_DDRPHY_PC_INIT_CAL_CONFIG0_P0_ENA_INITIAL_PAT_WR>();
+ }
}
// Blast the VREF config with the proper setting for these cal bits.
diff --git a/src/import/chips/p9/procedures/hwp/memory/lib/phy/read_cntrl.H b/src/import/chips/p9/procedures/hwp/memory/lib/phy/read_cntrl.H
index cadca6a20..58e638ae7 100644
--- a/src/import/chips/p9/procedures/hwp/memory/lib/phy/read_cntrl.H
+++ b/src/import/chips/p9/procedures/hwp/memory/lib/phy/read_cntrl.H
@@ -390,12 +390,10 @@ template< fapi2::TargetType T, typename TT = rcTraits<T> >
inline fapi2::ReturnCode reset_config3( const fapi2::Target<T>& i_target )
{
fapi2::buffer<uint64_t> l_data;
- uint8_t is_sim = 0;
- FAPI_TRY( FAPI_ATTR_GET(fapi2::ATTR_IS_SIMULATION, fapi2::Target<fapi2::TARGET_TYPE_SYSTEM>(), is_sim) );
- // 51:54, 0b1010, (def_is_sim); # COARSE_CAL_STEP_SIZE» # old=4=5/128 (5/18)
- // 51:54, 0b0000, any; # COARSE_CAL_STEP_SIZE = 1/128
- l_data.insertFromRight<TT::COARSE_CAL_STEP_SIZE, TT::COARSE_CAL_STEP_SIZE_LEN>(is_sim ? 0b1010 : 0b0000);
+ // Per S. Wyatt 8/16: COARSE_CAL_STEP_SIZE='1010'b [Centaur sim value] is reserved.
+ // Change to COARSE_CAL_STEP_SIZE='0100'
+ l_data.insertFromRight<TT::COARSE_CAL_STEP_SIZE, TT::COARSE_CAL_STEP_SIZE_LEN>(0b0100);
FAPI_TRY( write_config3(i_target, l_data) );
diff --git a/src/import/chips/p9/procedures/hwp/memory/lib/phy/write_cntrl.H b/src/import/chips/p9/procedures/hwp/memory/lib/phy/write_cntrl.H
index 2b1a9084e..26cc5e564 100644
--- a/src/import/chips/p9/procedures/hwp/memory/lib/phy/write_cntrl.H
+++ b/src/import/chips/p9/procedures/hwp/memory/lib/phy/write_cntrl.H
@@ -39,7 +39,7 @@
#include <fapi2.H>
#include <p9_mc_scom_addresses.H>
#include <lib/utils/scom.H>
-#include <lib/utils/conversions.H>
+#include <lib/eff_config/timing.H>
namespace mss
{
diff --git a/src/import/chips/p9/procedures/hwp/memory/lib/termination/slew_cal.C b/src/import/chips/p9/procedures/hwp/memory/lib/termination/slew_cal.C
deleted file mode 100644
index f62f8b920..000000000
--- a/src/import/chips/p9/procedures/hwp/memory/lib/termination/slew_cal.C
+++ /dev/null
@@ -1,503 +0,0 @@
-/* IBM_PROLOG_BEGIN_TAG */
-/* This is an automatically generated prolog. */
-/* */
-/* $Source: src/import/chips/p9/procedures/hwp/memory/lib/termination/slew_cal.C $ */
-/* */
-/* OpenPOWER HostBoot Project */
-/* */
-/* Contributors Listed Below - COPYRIGHT 2015,2016 */
-/* [+] International Business Machines Corp. */
-/* */
-/* */
-/* Licensed under the Apache License, Version 2.0 (the "License"); */
-/* you may not use this file except in compliance with the License. */
-/* You may obtain a copy of the License at */
-/* */
-/* http://www.apache.org/licenses/LICENSE-2.0 */
-/* */
-/* Unless required by applicable law or agreed to in writing, software */
-/* distributed under the License is distributed on an "AS IS" BASIS, */
-/* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or */
-/* implied. See the License for the specific language governing */
-/* permissions and limitations under the License. */
-/* */
-/* IBM_PROLOG_END_TAG */
-///
-/// @file slew_cal.C
-/// @brief * This function runs the slew calibration engine to configure MSS_SLEW_DATA/ADR
-/// attributes and calls config_slew_rate to set the slew rate in the registers.
-///
-// *HWP HWP Owner: Brian Silver <bsilver@us.ibm.com>
-// *HWP HWP Backup: Andre Marin <aamarin@us.ibm.com>
-// *HWP Team: Memory
-// *HWP Level: 2
-// *HWP Consumed by: FSP:HB
-
-#include <fapi2.H>
-
-#include <mss.H>
-#include <lib/termination/slew_cal.H>
-
-using fapi2::TARGET_TYPE_MCBIST;
-using fapi2::TARGET_TYPE_MCA;
-using fapi2::TARGET_TYPE_MCS;
-using fapi2::TARGET_TYPE_SYSTEM;
-
-using fapi2::TARGET_STATE_FUNCTIONAL;
-
-using fapi2::FAPI2_RC_SUCCESS;
-
-// slew calibration control register
-
-static const uint64_t slew_cal_cntl[] =
-{
- MCA_0_DDRPHY_ADR_SLEW_CAL_CNTL_P0_ADR32S0,
- MCA_1_DDRPHY_ADR_SLEW_CAL_CNTL_P1_ADR32S0,
- MCA_2_DDRPHY_ADR_SLEW_CAL_CNTL_P2_ADR32S0,
- MCA_3_DDRPHY_ADR_SLEW_CAL_CNTL_P3_ADR32S0,
-};
-// slew calibration status registers
-static const uint64_t ENABLE_BIT = 48;
-static const uint64_t slew_cal_stat[] =
-{
- MCA_0_DDRPHY_ADR_SYSCLK_CNTL_PR_P0_ADR32S0,
- MCA_1_DDRPHY_ADR_SYSCLK_CNTL_PR_P1_ADR32S0,
- MCA_2_DDRPHY_ADR_SYSCLK_CNTL_PR_P2_ADR32S0,
- MCA_3_DDRPHY_ADR_SYSCLK_CNTL_PR_P3_ADR32S0,
-};
-
-// big bang lock bit register
-static const uint64_t bb_lock_stat[] =
-{
- MCA_0_DDRPHY_ADR_SYSCLK_PR_VALUE_RO_P0_ADR32S0,
- MCA_1_DDRPHY_ADR_SYSCLK_PR_VALUE_RO_P1_ADR32S0,
- MCA_2_DDRPHY_ADR_SYSCLK_PR_VALUE_RO_P2_ADR32S0,
- MCA_3_DDRPHY_ADR_SYSCLK_PR_VALUE_RO_P3_ADR32S0,
-};
-
-namespace mss
-{
-
-///
-/// @brief perform the slew calibration, store the result.
-/// @tparam T the type of the slew table
-/// @param[in] i_target MCA (port) target
-/// @param[in] l_table a vector of the steps which came before me
-/// @param[in] o_cal_slew the slew table to be operated on
-/// @param[out] the array holding the results
-/// @return FAPI2_RC_SUCCESS, iff ok
-///
-template<typename T>
-fapi2::ReturnCode perform_slew_cal(
- const fapi2::Target<TARGET_TYPE_MCA>& i_target,
- std::vector<tags_t>& i_where_am_i, T& l_table,
- uint8_t (&o_cal_slew)[2][PORTS_PER_MCS][MAX_NUM_IMP][MAX_NUM_CAL_SLEW_RATES])
-{
- i_where_am_i.push_back(l_table.first);
-
- for (auto e : l_table.second)
- {
- FAPI_TRY( perform_slew_cal(i_target, i_where_am_i, e, o_cal_slew) );
- }
-
- i_where_am_i.pop_back();
-
-fapi_try_exit:
- return fapi2::current_err;
-}
-
-///
-/// @brief perform the slew calibration, store the result.
-/// @param[in] i_target MCA (port) target
-/// @param[in] i_where_am_i a vector of the steps which came before me
-/// @param[in] a slew_table_t
-/// @param[out] the array holding the results
-/// @bote Prunes recursion based on frequency.
-/// @return FAPI2_RC_SUCCESS, iff ok
-///
-template<>
-fapi2::ReturnCode perform_slew_cal(
- const fapi2::Target<TARGET_TYPE_MCA>& i_target,
- std::vector<tags_t>& i_where_am_i,
- std::pair<tags_t, slew_per_imp_t>& l_table,
- uint8_t (&o_cal_slew)[2][PORTS_PER_MCS][MAX_NUM_IMP][MAX_NUM_CAL_SLEW_RATES])
-{
- uint64_t ddr_freq = 0;
- const char* l_type = i_where_am_i[0] == TAG_ADR ? "adr" : "data";
-
- // Check our speed. If this isn't our speed, we can get out of here.
- FAPI_TRY( mss::freq(i_target.getParent<TARGET_TYPE_MCBIST>(), ddr_freq),
- "Unable to get ddr freq for %s", mss::c_str(i_target) );
-
- if (ddr_freq != l_table.first)
- {
- FAPI_DBG("Skipping slew %s for %s: invalid speed %d(%d)",
- l_type, mss::c_str(i_target), l_table.first, ddr_freq);
- return FAPI2_RC_SUCCESS;
- }
-
- i_where_am_i.push_back(l_table.first);
-
- for (auto e : l_table.second)
- {
- FAPI_TRY( perform_slew_cal(i_target, i_where_am_i, e, o_cal_slew) );
- }
-
- i_where_am_i.pop_back();
-
-fapi_try_exit:
- return fapi2::current_err;
-}
-
-///
-/// @brief perform the slew calibration, store the result.
-/// @param[in] i_target MCA (port) target
-/// @param[in] i_where_am_i a vector of the steps which came before me
-/// @param[in] l_slew_rate the slew rate to be calculated
-/// @param[out] the array holding the results
-/// @return FAPI2_RC_SUCCESS, iff ok
-///
-template<>
-fapi2::ReturnCode perform_slew_cal<slew_rate_t>(
- const fapi2::Target<TARGET_TYPE_MCA>& i_target,
- std::vector<tags_t>& i_where_am_i,
- slew_rate_t& l_slew_rate,
- uint8_t (&o_cal_slew)[2][PORTS_PER_MCS][MAX_NUM_IMP][MAX_NUM_CAL_SLEW_RATES])
-{
- i_where_am_i.push_back(l_slew_rate.first);
-
- fapi2::buffer<uint64_t> l_data;
-
- // Some short-hand for this calibration
- const char* l_type = i_where_am_i[0] == TAG_ADR ? "adr" : "data";
- const uint64_t& l_speed = i_where_am_i[1];
- const uint64_t& l_ohm = i_where_am_i[2];
- const uint64_t& l_vns = i_where_am_i[3];
-
- uint64_t cal_status = 0;
- fapi2::buffer<uint64_t> status_register;
- uint64_t calculated_slew = 0;
-
- FAPI_INF("Processing slew %s, %dmhz %dohm %dV/ns: %d", l_type, l_speed, l_ohm, l_vns, l_slew_rate.second);
-
-#ifdef NOT_TESTING_WITH_SUET
- // Get out of here if we're in the simulator. Calibration fails in sim since bb_lock not possible in cycle
- // simulator, putting initial to be cal'd value in output table
- uint8_t is_sim = 0;
- FAPI_TRY( FAPI_ATTR_GET(fapi2::ATTR_IS_SIMULATION, fapi2::Target<TARGET_TYPE_SYSTEM>(), is_sim) );
-
- if (is_sim)
- {
- FAPI_INF("In SIM setting input slew value in array");
- calculated_slew = l_slew_rate.second;
- goto perform_slew_cal_exit;
- }
-
-#endif
-
- // This doesn't look right. There are 5 bits, but some of our values (134) are 8 bits. So, the
- // left-most bits are truncated. Note this is the same in P8, it seems - this needs to be looked at BRS
- l_data.insertFromRight<MCA_DDRPHY_ADR_SLEW_CAL_CNTL_P0_ADR32S0_ADR0_TARGET_PR_OFFSET,
- MCA_DDRPHY_ADR_SLEW_CAL_CNTL_P0_ADR32S0_ADR0_TARGET_PR_OFFSET_LEN>(l_slew_rate.second);
- l_data.setBit<MCA_DDRPHY_ADR_SLEW_CAL_CNTL_P0_ADR32S0_ADR0_START>();
-
- FAPI_TRY( mss::putScom(i_target, MCA_DDRPHY_ADR_SLEW_CAL_CNTL_P0_ADR32S0, l_data) );
-
- mss::poll( i_target, MCA_DDRPHY_ADR_SYSCLK_PR_VALUE_RO_P0_ADR32S0, mss::poll_parameters(DELAY_100NS),
- [&](const size_t poll_remaining, const fapi2::buffer<uint64_t>& stat_reg) -> bool
- {
- // Save off our claibration status
- status_register = stat_reg;
- stat_reg.extractToRight<MCA_DDRPHY_ADR_SYSCLK_PR_VALUE_RO_P0_ADR32S0_ADR0_SLEW_DONE_STATUS,
- MCA_DDRPHY_ADR_SYSCLK_PR_VALUE_RO_P0_ADR32S0_ADR0_SLEW_DONE_STATUS_LEN>(cal_status);
- FAPI_DBG("slew calibration status 0x%llx, remaining: %d", cal_status, poll_remaining);
- return cal_status != SLEW_CAL_NOT_DONE;
- });
-
- // This will kick us out if there's no further processing we can do.
- FAPI_TRY( slew_cal_status(i_target, i_where_am_i, l_slew_rate.second, cal_status, status_register) );
-
- // Get our calculated slew rate and process.
- FAPI_TRY( mss::getScom(i_target, MCA_DDRPHY_ADR_SLEW_CAL_CNTL_P0_ADR32S0, l_data) );
- l_data.extractToRight<MCA_DDRPHY_ADR_SLEW_CAL_CNTL_P0_ADR32S0_ADR0_TARGET_PR_OFFSET,
- MCA_DDRPHY_ADR_SLEW_CAL_CNTL_P0_ADR32S0_ADR0_TARGET_PR_OFFSET_LEN>(calculated_slew);
-
-#ifdef NOT_TESTING_WITH_SUET
-perform_slew_cal_exit:
-#endif
- FAPI_DBG("MSS_SLEW_RATE %s port %d %dohm slew 0x%lx(0x%lx)",
- l_type, mss::pos(i_target), l_ohm, calculated_slew, uint64_t(status_register));
-
- o_cal_slew[i_where_am_i[0]] // adr/data
- [mss::index(i_target)] // port
- [mss::index(i_where_am_i[0], i_where_am_i[2])] // imp
- [mss::index(i_where_am_i[0], i_where_am_i[3])] = calculated_slew;
-
- i_where_am_i.pop_back();
-
- return FAPI2_RC_SUCCESS;
-
-fapi_try_exit:
- return fapi2::current_err;
-}
-
-
-///
-/// @brief Run the slew calibration engine
-/// @param[in] i_target the MCBIST
-/// @return FAPI2_RC_SUCCESS iff OK
-///
-fapi2::ReturnCode slew_cal(const fapi2::Target<TARGET_TYPE_MCBIST>& i_target)
-{
- // freq index into lookup table. Fixed at 3 right now as we don't support
- // dimm slower than 1866 - without more work below.
- static const uint8_t freq_idx = 3;
-
- // current ddr freq
- uint64_t ddr_freq = 0;
-
- // ddr type index into lookup table
- // We only have one entry in the table right now, so this is fixed.
- static const uint8_t ddr_idx = 0;
-
- // ATTR_EFF_DRAM_GEN{0=invalid, 1=ddr3, 2=ddr4}
- // p9n only supprts ddr4 right now. So, fixed
- static const uint8_t ddr_type = 2;
-
- fapi2::buffer<uint64_t> ctl_reg;
- fapi2::buffer<uint64_t> stat_reg;
-
- // DD level 1.0-1.1, Version 1.0
- // [ddr3/4][dq/adr][speed][impedance][slew_rate]
- // note: Assumes standard voltage for DDR3(1.35V), DDR4(1.2V),
- // little endian, if >=128, lab only debug.
- //
- // ddr_type(1), ddr4=0
- // data/adr(2)data(dq/dqs)=0, adr(cmd/cntl)=1
- // speed(4)1066=0, 1333=1, 1600=2, 1866=3
- // imped(4)24ohms=0, 30ohms=1, 34ohms=2, 40ohms=3 for DQ/DQS
- // imped(4)15ohms=0, 20ohms=1, 30ohms=2, 40ohms=3 for ADR driver
- // slew(3)3V/ns=0, 4V/ns=1, 5V/ns=2, 6V/ns=3
-
- // Too many in here for real-world. But this allows us to test out the
- // logic to make sure we're in good shape as we add to this table. We
- // can redice this table before flight BRS.
- std::vector< std::pair< tags_t, slew_table_t> > slew_table =
- {
- {
- TAG_ADR, {
- {
- TAG_1066MHZ,
- {
- { TAG_15OHM, {{TAG_3VNS, 142}, {TAG_4VNS, 139}, {TAG_5VNS, 136}, {TAG_6VNS, 134}} },
- { TAG_20OHM, {{TAG_3VNS, 140}, {TAG_4VNS, 136}, {TAG_5VNS, 134}, {TAG_6VNS, 133}} },
- { TAG_30OHM, {{TAG_3VNS, 138}, {TAG_4VNS, 134}, {TAG_5VNS, 131}, {TAG_6VNS, 131}} },
- { TAG_40OHM, {{TAG_3VNS, 133}, {TAG_4VNS, 131}, {TAG_5VNS, 131}, {TAG_6VNS, 131}} },
- }
- },
-
-
- {
- TAG_1333MHZ,
- {
- { TAG_15OHM, {{TAG_3VNS, 145}, {TAG_4VNS, 142}, {TAG_5VNS, 139}, {TAG_6VNS, 136}} },
- { TAG_20OHM, {{TAG_3VNS, 143}, {TAG_4VNS, 138}, {TAG_5VNS, 135}, {TAG_6VNS, 134}} },
- { TAG_30OHM, {{TAG_3VNS, 140}, {TAG_4VNS, 135}, {TAG_5VNS, 132}, {TAG_6VNS, 132}} },
- { TAG_40OHM, {{TAG_3VNS, 134}, {TAG_4VNS, 132}, {TAG_5VNS, 132}, {TAG_6VNS, 132}} },
- }
- },
-
-
- {
- TAG_1600MHZ,
- {
- { TAG_15OHM, {{TAG_3VNS, 21}, {TAG_4VNS, 16}, {TAG_5VNS, 13}, {TAG_6VNS, 10}} },
- { TAG_20OHM, {{TAG_3VNS, 18}, {TAG_4VNS, 12}, {TAG_5VNS, 9}, {TAG_6VNS, 135}} },
- { TAG_30OHM, {{TAG_3VNS, 15}, {TAG_4VNS, 8}, {TAG_5VNS, 133}, {TAG_6VNS, 133}} },
- { TAG_40OHM, {{TAG_3VNS, 7}, {TAG_4VNS, 133}, {TAG_5VNS, 133}, {TAG_6VNS, 133}} },
- }
- },
-
-
- {
- TAG_1866MHZ,
- {
- { TAG_15OHM, {{TAG_3VNS, 24}, {TAG_4VNS, 19}, {TAG_5VNS, 15}, {TAG_6VNS, 11}} },
- { TAG_20OHM, {{TAG_3VNS, 21}, {TAG_4VNS, 14}, {TAG_5VNS, 10}, {TAG_6VNS, 136}} },
- { TAG_30OHM, {{TAG_3VNS, 17}, {TAG_4VNS, 10}, {TAG_5VNS, 134}, {TAG_6VNS, 134}} },
- { TAG_40OHM, {{TAG_3VNS, 9}, {TAG_4VNS, 134}, {TAG_5VNS, 134}, {TAG_6VNS, 134}} },
- }
- },
-
- {
- TAG_2400MHZ,
- {
- { TAG_15OHM, {{TAG_3VNS, 24}, {TAG_4VNS, 19}, {TAG_5VNS, 15}, {TAG_6VNS, 11}} },
- { TAG_20OHM, {{TAG_3VNS, 21}, {TAG_4VNS, 14}, {TAG_5VNS, 10}, {TAG_6VNS, 136}} },
- { TAG_30OHM, {{TAG_3VNS, 17}, {TAG_4VNS, 10}, {TAG_5VNS, 134}, {TAG_6VNS, 134}} },
- { TAG_40OHM, {{TAG_3VNS, 9}, {TAG_4VNS, 134}, {TAG_5VNS, 134}, {TAG_6VNS, 134}} },
- }
- },
-
- },
- },
-
- {
- TAG_DATA, {
- {
- TAG_1066MHZ,
- {
- { TAG_24OHM, {{TAG_3VNS, 138}, {TAG_4VNS, 135}, {TAG_5VNS, 134}, {TAG_6VNS, 133}} },
- { TAG_30OHM, {{TAG_3VNS, 139}, {TAG_4VNS, 136}, {TAG_5VNS, 134}, {TAG_6VNS, 132}} },
- { TAG_34OHM, {{TAG_3VNS, 140}, {TAG_4VNS, 136}, {TAG_5VNS, 135}, {TAG_6VNS, 133}} },
- { TAG_40OHM, {{TAG_3VNS, 140}, {TAG_4VNS, 136}, {TAG_5VNS, 132}, {TAG_6VNS, 132}} },
- }
- },
-
- {
- TAG_1333MHZ,
- {
- { TAG_24OHM, {{TAG_3VNS, 139}, {TAG_4VNS, 137}, {TAG_5VNS, 135}, {TAG_6VNS, 134}} },
- { TAG_30OHM, {{TAG_3VNS, 142}, {TAG_4VNS, 138}, {TAG_5VNS, 135}, {TAG_6VNS, 133}} },
- { TAG_34OHM, {{TAG_3VNS, 143}, {TAG_4VNS, 138}, {TAG_5VNS, 135}, {TAG_6VNS, 133}} },
- { TAG_40OHM, {{TAG_3VNS, 143}, {TAG_4VNS, 138}, {TAG_5VNS, 133}, {TAG_6VNS, 132}} },
- }
- },
-
- {
- TAG_1600MHZ,
- {
- { TAG_24OHM, {{TAG_3VNS, 15}, {TAG_4VNS, 11}, {TAG_5VNS, 9}, {TAG_6VNS, 135}} },
- { TAG_30OHM, {{TAG_3VNS, 17}, {TAG_4VNS, 11}, {TAG_5VNS, 9}, {TAG_6VNS, 135}} },
- { TAG_34OHM, {{TAG_3VNS, 18}, {TAG_4VNS, 13}, {TAG_5VNS, 9}, {TAG_6VNS, 134}} },
- { TAG_40OHM, {{TAG_3VNS, 18}, {TAG_4VNS, 11}, {TAG_5VNS, 6}, {TAG_6VNS, 133}} },
- }
- },
-
-
- {
- TAG_1866MHZ,
- {
- { TAG_24OHM, {{TAG_3VNS, 18}, {TAG_4VNS, 13}, {TAG_5VNS, 10}, {TAG_6VNS, 137}} },
- { TAG_30OHM, {{TAG_3VNS, 19}, {TAG_4VNS, 13}, {TAG_5VNS, 10}, {TAG_6VNS, 136}} },
- { TAG_34OHM, {{TAG_3VNS, 21}, {TAG_4VNS, 15}, {TAG_5VNS, 10}, {TAG_6VNS, 135}} },
- { TAG_40OHM, {{TAG_3VNS, 21}, {TAG_4VNS, 13}, {TAG_5VNS, 8}, {TAG_6VNS, 134}} },
- }
- },
-
- {
- TAG_2400MHZ,
- {
- { TAG_24OHM, {{TAG_3VNS, 18}, {TAG_4VNS, 13}, {TAG_5VNS, 10}, {TAG_6VNS, 137}} },
- { TAG_30OHM, {{TAG_3VNS, 19}, {TAG_4VNS, 13}, {TAG_5VNS, 10}, {TAG_6VNS, 136}} },
- { TAG_34OHM, {{TAG_3VNS, 21}, {TAG_4VNS, 15}, {TAG_5VNS, 10}, {TAG_6VNS, 135}} },
- { TAG_40OHM, {{TAG_3VNS, 21}, {TAG_4VNS, 13}, {TAG_5VNS, 8}, {TAG_6VNS, 134}} },
- }
- },
-
- }
- }
- };
-
- // Get the vector of ports. Note that we presently think there's a bit in the CCS_MODE
- // register which needs to be twiddled during slew cal. That means our caller can't
- // put each port's slew cal on a thread and do them in parallel. So, we interleave.
- // If that requirement for that MCBIST register goes away, then these functions can turn
- // in to per-port functions and the caller can decide to loop or thread as appropriate.
- // Or maybe per MCS given the attribute work we need to do at the end ...
- auto l_ports = i_target.getChildren<TARGET_TYPE_MCA>(TARGET_STATE_FUNCTIONAL);
-
- // Cache the name of our target. We can't just keep the pointer from c_str as
- // it points to thread-local space and anything we call might change the string.
- char l_name[fapi2::MAX_ECMD_STRING_LEN];
- strncpy(l_name, mss::c_str(i_target), fapi2::MAX_ECMD_STRING_LEN);
-
- // p9n is ddr4 only for now, so skip checking the dimm generation (effective config
- // should have raised a rukus if this isn't a DDR4 dimm ...
-
- FAPI_TRY( mss::freq(i_target, ddr_freq),
- "Unable to get ddr freq for %s", l_name );
-
- // Note: this catches two cases. One where ddr_freq is 0 and the other
- // where we put something slow in we don't (yet?) support
- FAPI_ASSERT( ddr_freq > 1732,
- fapi2::MSS_SLEW_CAL_INVALID_FREQ(),
- "Invalid ATTR_MSS_FREQ (%d) on %s", ddr_freq, l_name );
-
- // Get a list of functional ports.
- // Note: If we need to use the functional vector to figure this out,
- // change this to an mss call, and bury the attribute manipluation
- // in that function so it can be shared and tests. BRS
-
- //
- // This doesn't match teh Centaur workbook algorithm, but it matches the P8 code so
- // I'm leaving it this way. The algorithm according to the Centaur book would be to
- // configure ADR/MCLK detect and then wait for BB_LOCK. Then, enable the cal engine and
- // wait 2K clocks. So to "fix" you'd move the polling for BB_LOCK above the putScom. BRS
- //
-
- // Sanity check the DRAM generation
- for (auto c : i_target.getChildren<TARGET_TYPE_MCS>())
- {
- FAPI_TRY( check::dram_type(c) );
- }
-
- // Step A: Configure ADR registers and MCLK detect (done in ddr_phy_reset)
- {
- for (auto p : l_ports)
- {
- FAPI_INF("Enabling slew calibration engine on port %i: DDR%i(%u) %u(%u) in %s",
- mss::pos(p), (ddr_type + 2), ddr_idx, ddr_freq, freq_idx, l_name);
-
- // Note: This is wrong. Cant' find the SLEW_CAL enable bit in n10_e9024, so leaving this here for now BRS
- FAPI_TRY( mss::putScom(p, MCA_DDRPHY_ADR_SLEW_CAL_CNTL_P0_ADR32S0,
- fapi2::buffer<uint64_t>().setBit<ENABLE_BIT>()),
- "Error enabling slew calibration engine in DDRPHY_ADR_SLEW_CAL_CNTL register.");
- }
- }
-
- // Note: must be 2000 nclks+ after setting enable bit
- // normally 2000, but since cal doesn't work in SIM, setting to 1
- FAPI_TRY( fapi2::delay(cycles_to_ns(i_target, 2000), cycles_to_simcycles(1)) );
-
- // Create calibrated slew settings, per MCS. We do this as the attributes are written per MCS,
- // and this makes it easier to keep track of what's going where, etc.
- for (auto c : i_target.getChildren<TARGET_TYPE_MCS>())
- {
- // [adr or data][port on mcs][imp][slew]
- uint8_t calibrated_slew[2][PORTS_PER_MCS][MAX_NUM_IMP][MAX_NUM_CAL_SLEW_RATES] = {0};
-
- auto l_mcs_ports = c.getChildren<TARGET_TYPE_MCA>();
-
- for (auto p : l_mcs_ports)
- {
- for (auto e : slew_table)
- {
- FAPI_INF("Starting %s, port %d slew calibration", (e.first == TAG_ADR ? "adr" : "data"), mss::pos(p));
-
- for (auto this_table : e.second)
- {
- std::vector<tags_t> l_where_am_i;
- l_where_am_i.push_back(e.first);
- FAPI_TRY( perform_slew_cal(p, l_where_am_i, this_table, calibrated_slew) );
- }
- }
- }
-
- // We have the calibrated slew settings, disable the calibration engine and do the
- // attribute dance.
- for (auto p : l_mcs_ports)
- {
- // Note: This is wrong. Cant' find the SLEW_CAL enable bit in n10_e9024, so leaving this here for now BRS
- FAPI_TRY( mss::putScom(p, MCA_DDRPHY_ADR_SLEW_CAL_CNTL_P0_ADR32S0,
- fapi2::buffer<uint64_t>().clearBit<ENABLE_BIT>()),
- "Error disabling slew calibration engine in DDRPHY_ADR_SLEW_CAL_CNTL register.");
- }
-
-// FAPI_TRY( slew_cal_attributes() );
- }
-
-fapi_try_exit:
- return fapi2::current_err;
-}
-} // namespace
diff --git a/src/import/chips/p9/procedures/hwp/memory/lib/utils/conversions.H b/src/import/chips/p9/procedures/hwp/memory/lib/utils/conversions.H
index 9076f97ee..c7a3589b7 100644
--- a/src/import/chips/p9/procedures/hwp/memory/lib/utils/conversions.H
+++ b/src/import/chips/p9/procedures/hwp/memory/lib/utils/conversions.H
@@ -186,6 +186,12 @@ inline uint64_t ps_to_cycles(const fapi2::Target<T>& i_target, const uint64_t i_
FAPI_TRY( mss::freq( find_target<fapi2::TARGET_TYPE_MCBIST>(i_target), l_freq) );
+ // No time if MT/s is 0 (well, infinite really but shut up)
+ if (l_freq == 0)
+ {
+ return 0;
+ }
+
// Hoping the compiler figures out how to do these together.
FAPI_TRY( freq_to_ps(l_freq, l_divisor) );
l_quotient = i_ps / ((l_divisor == 0) ? 1 : l_divisor);
@@ -312,18 +318,6 @@ inline uint64_t cycles_to_us(const fapi2::Target<T>& i_target, const uint64_t i_
}
///
-/// @brief Calculate TWLO_TWLOE - this needs to go in to eff_config and be an attribute
-/// @tparam T fapi2::TargetType of the target used to calculate cycles from ns
-/// @param[in] i_target the target used to get DIMM clocks
-/// @return uint64_t, TWLO_TWLOE in cycles
-///
-template< fapi2::TargetType T >
-inline uint64_t twlo_twloe(const fapi2::Target<T>& i_target)
-{
- return 12 + mss::ns_to_cycles(i_target, tWLO - tWLOE);
-}
-
-///
/// @brief Convert nanoseconds to picoseconds
/// @tparam T input and output type
/// @param[in] i_time_in_ns time in nanoseconds
@@ -352,6 +346,19 @@ inline T ps_to_ns(const T i_time_in_ps)
return l_time_in_ns + ( remainder == 0 ? 0 : 1 );
}
+///
+/// @brief Return the maximum of two values *in clocks*, the first in clocks the second in ns
+/// @tparam T the fapi2::TargetType of a type from which we can get MT/s
+/// @param[in] i_clocks a value in clocks
+/// @param[in] i_time a value in nanoseconds
+/// @return max( iclocks nCK, i_time ) in clocks
+///
+template< fapi2::TargetType T >
+inline uint64_t max_ck_ns(const fapi2::Target<T>& i_target, const uint64_t i_clocks, const uint64_t i_time)
+{
+ return std::max( i_clocks, ns_to_cycles(i_target, i_time) );
+}
+
};// mss namespace
OpenPOWER on IntegriCloud