
ServerWiz2 Overview

• Serverwiz2 is a hierarchically based XML editor that is targeted for

representing a system topology.

• It has 3 primary concepts:

– Instances

• Node, card, connector, or chip

• Chips can have units that specify subcomponents of that chip such as cores and bus
interfaces

– Busses/Connections

• A connection between 2 units of Instances

• Connections are made at the level in the hierarchy where they exist in the real system

– Attributes

• Instances and Connections both have attributes

• Attributes are variables that Hostboot reads to control the behavior

Instance Creation

Step 1: Select parent of new instance

Step 2: Select type of new instance.

Only valid children will be visible

Step 3 (optional): Enter custom name

Step 4: Click “Add Instance”

Select Instance to view attributes

Connection Creation

1. Select Bus mode

2. Select Bus type

3. Select level in hierarchy
On which connection exists
(more about this on next page)

Connection Hierarchy

• Connections must be created at highest common point in hierarchy
or physically where wire exists. Here are some examples:

– Simple single motherboard system

• All connections are created at motherboard level so Selected Card =

motherboard.

• The motherboard is also obviously where the physical wires exist

– System with memory riser cards

• The DMI bus spans the motherboard and riser card

• The motherboard level is selected because that is the highest common level

in the hierarchy

– Multi-node system with cables connecting nodes

• System level is selected because that is highest common level in hierarchy

I2C bus type

Connection will

Exist on motherboard

Motherboard level is automatically highlighted and expanded

Source show ‘=>’

Destinations show ‘<=‘

To start a connection,
Right click on source and
select “Set Source”

To create connection,
Right click on destination
And select “Add Connection”

New Connection
Shows here

Select connection to
View attributes. For example,
An I2C bus has an address and speed.

Minimum System Requirements

System is always top level

Node is always second level

A System typically has a main board or motherboard

Must have at least 1 processor socket and processor chip

Must have at least 1 memory buffer

Must have 1 and only 1 BMC

Must have at least 1 VDDR regulator
(hostboot controls enable and must be aware of topology)

Must have at least 1 GPIO expander that controls VDDR
regulator enable

Must have at least 1 VPD for storing memory wiring information

Must have at least 1 part of DIMM connectors and DIMMs

DMI

• Required Connections: All membuf’s must have a DMI connection to a CPU

• The DMI name in the parenthesis match the schematic names

• If there is an lane reversal in the design, change the MSBSWAP attributes below to
“1”.

DDR

• Required Connections: All DIMMs must be connected to a membuf

• The names for the DDR ports match schematic names. Make sure DIMM

naming convention and connections match schematic. It will make the I2C

connections more straightforward.

I2C

• Required connections:
– BMC to CPU I2C slave for OCC communication
– Membuf I2C connections to DIMMs SPD
– Membuf I2C connection to GPIO expander to VDDR enable
– Membuf or CPU I2C connection to VPD

• For I2C busses, make sure I2C_ADDRESS and I2C_SPEED attributes match the
design

GPIO

• Required Connection: GPIO expander that controls the VDDR regulator

enable. The GPIO port # from GPIO expander must match design.

Power

• Required Connections: VDDR regulator connection to membuf

LPC Bus

• Required connection: The LPC bus connection between the BMC and

one of the CPU’s tells Hostboot which CPU is the master.

Logical Association

• Required connections: VPD that contains membuf wiring information
connection to membuf

• This is a virtual connection that tells hostboot where the VPD exists for each
membuf. The VPD can alternatively be attached to the CPU I2C master

• This logical association concept could be extended to FRU LED
associations

PCIe

• The PCIe bus is unique in that it can be configured in several different ways.
Under the “pci_configs” parent, you will see the various configurations. To
choose one, right-click and select “Select Config”. The other configurations
will be hidden. To make all configurations visible, right-click and select
“Deconfig”.

PCIe

• Required Connections: None

• Here is an example where E0 is configured as a x16 and E1 is configured

as 2 x8’s.

Serverwiz Library Files

• Every 3 days, Serverwiz will check the XML files at:

– https://github.com/open-power/serverwiz/tree/master/xml

– If the files have change, it will prompt the user if they wish to download new files

• Description of Files:

– attribute_types.xml, attribute_types_hb.xml, attribute_types_mrw.xml

• Listing of all possible attributes including data type, default value, and description

• Attribute_type.xml and attribute_types_hb.xml are same as hostboot

– target_types_mrw.xml

• Describes all the possible instances, the type of the instance, and the associated
attributes

• Systems, chips, cards, etc

• Also describes the valid parent instance types

– target_instances_v3.xml

• Specific instances of a target types including attribute values and children

Making Changes

• Additions of attributes might occur because of new Hostboot requirements

or features

• The change must first be thought of from a end user point of view (system

designer/user of Serverwiz)

1. If the attribute is a simple value that the user can enter directly then the developer

must simply add the attribute into Serverwiz’s attribute_types.xml and

target_types_mrw.xml under appropriate target. The attribute will then show up

in the Serverwiz and the user can enter desired value.

2. If the attribute is a computed value based on several factors, then the handling of

the attribute must be in processMrw.pl

• If the computed valued depends on static values that are also new attributes, then
follow Step 1.

IPMI Sensor Overview

• The POWER BIOS (Hostboot, OCC, and OPAL) updates virtual
BMC sensors via IPMI set sensor commands. The BIOS has to be
informed of the IPMI sensor ID’s. It does so through
IPMI_SENSORS attribute.

• Serverwiz can import XML (which could be generated by BMC
development environment) that contains the sensor information
using the “Import SDR” button and populate the IPMI_SENSORS
attribute

• There is a strict mapping between the instance type and the IPMI
entity ID. The mapping is maintained in the ENTITY_ID_LOOKUP
attribute which is read-only (see Table on next page)

• The Serverwiz IPMI_INSTANCE attribute maps to the IPMI entity
instance in the SDR import XML. The user must make sure the
IPMI_INSTANCE attribute is unique per entity ID.

Entity ID Mapping

system0xC20xD7APSS_Channel

system0xC60x15Activate Power Limit

system0xC20x15System Power Limit (User set)

system0xC30x22Boot Count

system0xC20x17Power Cap

occ0x070xD2OCC Active

system0x1F0x23OS Boot Status

system0xC40x23PCIe Link Present

system0x0F0x22Firmware Boot Progress

system0x220x23Host Status

system0x120x01System Event

node0xC70x07Backplane Fault

system0xC10x08DIMM Frequency

dimm0x0C0x20DIMM Functional Status

membuf0x0C0xD1Memory Buffer Functional

dimm0x010x20DIMM Temperatur

membuf0x010xD1Memory Buffer Temperature

core0xC10xD0CPU Core Frequency

core0x070xD0CPU Core Functional Status

proc0x070x03CPU Functional Status

core0x010xD0CPU Core Temperature

proc0x010x03CPU Temperature

Target AssociationSensor Type CodeEntity IDSensor Name

* Entity Instance from SDR maps to IPMI_INSTANCE attribute

SDR XML Format

<devices>

<device>

<name>Name</name>

<dev_name>Secondary Name</dev_name>

<sensor_id>[Sensor ID in decimal]</sensor_id>

<entity_id>[Entity ID in hex]</entity_id>

<sensor_type>[Sensor type in hex]</sensor_type>

<entity_instance>[Instance number in hex]</entity_instance>

</device>

…

</devices>

When the “Import SDR” button is used in Serverwiz, it will import a file of this

format. It will attempt to match up the entity id from the ENTITY_ID_LOOKUP

under a given target and the IPMI_INSTANCE attribute to the entity_id and

entity_instance fields from the SDR import file.

