// Functor implementations -*- C++ -*- // Copyright (C) 2001 Free Software Foundation, Inc. // // This file is part of the GNU ISO C++ Library. This library is free // software; you can redistribute it and/or modify it under the // terms of the GNU General Public License as published by the // Free Software Foundation; either version 2, or (at your option) // any later version. // This library is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // GNU General Public License for more details. // You should have received a copy of the GNU General Public License along // with this library; see the file COPYING. If not, write to the Free // Software Foundation, 59 Temple Place - Suite 330, Boston, MA 02111-1307, // USA. // As a special exception, you may use this file as part of a free software // library without restriction. Specifically, if other files instantiate // templates or use macros or inline functions from this file, or you compile // this file and link it with other files to produce an executable, this // file does not by itself cause the resulting executable to be covered by // the GNU General Public License. This exception does not however // invalidate any other reasons why the executable file might be covered by // the GNU General Public License. /* * * Copyright (c) 1994 * Hewlett-Packard Company * * Permission to use, copy, modify, distribute and sell this software * and its documentation for any purpose is hereby granted without fee, * provided that the above copyright notice appear in all copies and * that both that copyright notice and this permission notice appear * in supporting documentation. Hewlett-Packard Company makes no * representations about the suitability of this software for any * purpose. It is provided "as is" without express or implied warranty. * * * Copyright (c) 1996-1998 * Silicon Graphics Computer Systems, Inc. * * Permission to use, copy, modify, distribute and sell this software * and its documentation for any purpose is hereby granted without fee, * provided that the above copyright notice appear in all copies and * that both that copyright notice and this permission notice appear * in supporting documentation. Silicon Graphics makes no * representations about the suitability of this software for any * purpose. It is provided "as is" without express or implied warranty. */ /** @file stl_function.h * This is an internal header file, included by other STL headers. You * should not attempt to use it directly. */ #ifndef __SGI_STL_INTERNAL_FUNCTION_H #define __SGI_STL_INTERNAL_FUNCTION_H namespace std { // 20.3.1 base classes /** @defgroup s20_3_1_base Functor Base Classes * Function objects, or @e functors, are objects with an @c operator() * defined and accessible. They can be passed as arguments to algorithm * templates and used in place of a function pointer. Not only is the * resulting expressiveness of the library increased, but the generated * code can be more efficient than what you might write by hand. When we * refer to "functors," then, generally we include function pointers in * the description as well. * * Often, functors are only created as temporaries passed to algorithm * calls, rather than being created as named variables. * * Two examples taken from the standard itself follow. To perform a * by-element addition of two vectors @c a and @c b containing @c double, * and put the result in @c a, use * \code * transform (a.begin(), a.end(), b.begin(), a.begin(), plus()); * \endcode * To negate every element in @c a, use * \code * transform(a.begin(), a.end(), a.begin(), negate()); * \endcode * The addition and negation functions will be inlined directly. * * The standard functiors are derived from structs named @c unary_function * and @c binary_function. These two classes contain nothing but typedefs, * to aid in generic (template) programming. If you write your own * functors, you might consider doing the same. * * @{ */ /** * This is one of the @link s20_3_1_base functor base classes @endlink. */ template struct unary_function { typedef _Arg argument_type; ///< @c argument_type is the type of the argument (no surprises here) typedef _Result result_type; ///< @c result_type is the return type }; /** * This is one of the @link s20_3_1_base functor base classes @endlink. */ template struct binary_function { typedef _Arg1 first_argument_type; ///< the type of the first argument (no surprises here) typedef _Arg2 second_argument_type; ///< the type of the second argument typedef _Result result_type; ///< type of the return type }; /** @} */ // 20.3.2 arithmetic /** @defgroup s20_3_2_arithmetic Arithmetic Classes * Because basic math often needs to be done during an algorithm, the library * provides functors for those operations. See the documentation for * @link s20_3_1_base the base classes @endlink for examples of their use. * * @{ */ /// One of the @link s20_3_2_arithmetic math functors @endlink. template struct plus : public binary_function<_Tp,_Tp,_Tp> { _Tp operator()(const _Tp& __x, const _Tp& __y) const { return __x + __y; } }; /// One of the @link s20_3_2_arithmetic math functors @endlink. template struct minus : public binary_function<_Tp,_Tp,_Tp> { _Tp operator()(const _Tp& __x, const _Tp& __y) const { return __x - __y; } }; /// One of the @link s20_3_2_arithmetic math functors @endlink. template struct multiplies : public binary_function<_Tp,_Tp,_Tp> { _Tp operator()(const _Tp& __x, const _Tp& __y) const { return __x * __y; } }; /// One of the @link s20_3_2_arithmetic math functors @endlink. template struct divides : public binary_function<_Tp,_Tp,_Tp> { _Tp operator()(const _Tp& __x, const _Tp& __y) const { return __x / __y; } }; /// One of the @link s20_3_2_arithmetic math functors @endlink. template struct modulus : public binary_function<_Tp,_Tp,_Tp> { _Tp operator()(const _Tp& __x, const _Tp& __y) const { return __x % __y; } }; /// One of the @link s20_3_2_arithmetic math functors @endlink. template struct negate : public unary_function<_Tp,_Tp> { _Tp operator()(const _Tp& __x) const { return -__x; } }; /** @} */ /** The @c identity_element functions are not part of the C++ standard; SGI * provided them as an extension. Its argument is an operation, and its * return value is the identity element for that operation. It is overloaded * for addition and multiplication, and you can overload it for your own * nefarious operations. * * @addtogroup SGIextensions * @{ */ /// An \link SGIextensions SGI extension \endlink. template inline _Tp identity_element(plus<_Tp>) { return _Tp(0); } /// An \link SGIextensions SGI extension \endlink. template inline _Tp identity_element(multiplies<_Tp>) { return _Tp(1); } /** @} */ // 20.3.3 comparisons /** @defgroup s20_3_3_comparisons Comparison Classes * The library provides six wrapper functors for all the basic comparisons * in C++, like @c <. * * @{ */ /// One of the @link s20_3_3_comparisons comparison functors @endlink. template struct equal_to : public binary_function<_Tp,_Tp,bool> { bool operator()(const _Tp& __x, const _Tp& __y) const { return __x == __y; } }; /// One of the @link s20_3_3_comparisons comparison functors @endlink. template struct not_equal_to : public binary_function<_Tp,_Tp,bool> { bool operator()(const _Tp& __x, const _Tp& __y) const { return __x != __y; } }; /// One of the @link s20_3_3_comparisons comparison functors @endlink. template struct greater : public binary_function<_Tp,_Tp,bool> { bool operator()(const _Tp& __x, const _Tp& __y) const { return __x > __y; } }; /// One of the @link s20_3_3_comparisons comparison functors @endlink. template struct less : public binary_function<_Tp,_Tp,bool> { bool operator()(const _Tp& __x, const _Tp& __y) const { return __x < __y; } }; /// One of the @link s20_3_3_comparisons comparison functors @endlink. template struct greater_equal : public binary_function<_Tp,_Tp,bool> { bool operator()(const _Tp& __x, const _Tp& __y) const { return __x >= __y; } }; /// One of the @link s20_3_3_comparisons comparison functors @endlink. template struct less_equal : public binary_function<_Tp,_Tp,bool> { bool operator()(const _Tp& __x, const _Tp& __y) const { return __x <= __y; } }; /** @} */ // 20.3.4 logical operations /** @defgroup s20_3_4_logical Boolean Operations Classes * Here are wrapper functors for Boolean operations: @c &&, @c ||, and @c !. * * @{ */ /// One of the @link s20_3_4_logical Boolean operations functors @endlink. template struct logical_and : public binary_function<_Tp,_Tp,bool> { bool operator()(const _Tp& __x, const _Tp& __y) const { return __x && __y; } }; /// One of the @link s20_3_4_logical Boolean operations functors @endlink. template struct logical_or : public binary_function<_Tp,_Tp,bool> { bool operator()(const _Tp& __x, const _Tp& __y) const { return __x || __y; } }; /// One of the @link s20_3_4_logical Boolean operations functors @endlink. template struct logical_not : public unary_function<_Tp,bool> { bool operator()(const _Tp& __x) const { return !__x; } }; /** @} */ // 20.3.5 negators /** @defgroup s20_3_5_negators Negators * The functions @c not1 and @c not2 each take a predicate functor * and return an instance of @c unary_negate or * @c binary_negate, respectively. These classes are functors whose * @c operator() performs the stored predicate function and then returns * the negation of the result. * * For example, given a vector of integers and a trivial predicate, * \code * struct IntGreaterThanThree * : public std::unary_function * { * bool operator() (int x) { return x > 3; } * }; * * std::find_if (v.begin(), v.end(), not1(IntGreaterThanThree())); * \endcode * The call to @c find_if will locate the first index (i) of @c v for which * "!(v[i] > 3)" is true. * * The not1/unary_negate combination works on predicates taking a single * argument. The not2/binary_negate combination works on predicates which * take two arguments. * * @{ */ /// One of the @link s20_3_5_negators negation functors @endlink. template class unary_negate : public unary_function { protected: _Predicate _M_pred; public: explicit unary_negate(const _Predicate& __x) : _M_pred(__x) {} bool operator()(const typename _Predicate::argument_type& __x) const { return !_M_pred(__x); } }; /// One of the @link s20_3_5_negators negation functors @endlink. template inline unary_negate<_Predicate> not1(const _Predicate& __pred) { return unary_negate<_Predicate>(__pred); } /// One of the @link s20_3_5_negators negation functors @endlink. template class binary_negate : public binary_function { protected: _Predicate _M_pred; public: explicit binary_negate(const _Predicate& __x) : _M_pred(__x) {} bool operator()(const typename _Predicate::first_argument_type& __x, const typename _Predicate::second_argument_type& __y) const { return !_M_pred(__x, __y); } }; /// One of the @link s20_3_5_negators negation functors @endlink. template inline binary_negate<_Predicate> not2(const _Predicate& __pred) { return binary_negate<_Predicate>(__pred); } /** @} */ // 20.3.6 binders /** @defgroup s20_3_6_binder Binder Classes * Binders turn functions/functors with two arguments into functors with * a single argument, storing an argument to be applied later. For * example, an variable @c B of type @c binder1st is constructed from a functor * @c f and an argument @c x. Later, B's @c operator() is called with a * single argument @c y. The return value is the value of @c f(x,y). * @c B can be "called" with various arguments (y1, y2, ...) and will in * turn call @c f(x,y1), @c f(x,y2), ... * * The function @c bind1st is provided to save some typing. It takes the * function and an argument as parameters, and returns an instance of * @c binder1st. * * The type @c binder2nd and its creator function @c bind2nd do the same * thing, but the stored argument is passed as the second parameter instead * of the first, e.g., @c bind2nd(std::minus,1.3) will create a * functor whose @c operator() accepts a floating-point number, subtracts * 1.3 from it, and returns the result. (If @c bind1st had been used, * the functor would perform "1.3 - x" instead. * * Creator-wrapper functions like @c bind1st are intended to be used in * calling algorithms. Their return values will be temporary objects. * (The goal is to not require you to type names like * @c std::binder1st> for declaring a variable to hold the * return value from @c bind1st(std::plus,5). * * These become more useful when combined with the composition functions. * * @{ */ /// One of the @link s20_3_6_binder binder functors @endlink. template class binder1st : public unary_function { protected: _Operation op; typename _Operation::first_argument_type value; public: binder1st(const _Operation& __x, const typename _Operation::first_argument_type& __y) : op(__x), value(__y) {} typename _Operation::result_type operator()(const typename _Operation::second_argument_type& __x) const { return op(value, __x); } #ifdef _GLIBCPP_RESOLVE_LIB_DEFECTS //109. Missing binders for non-const sequence elements typename _Operation::result_type operator()(typename _Operation::second_argument_type& __x) const { return op(value, __x); } #endif }; /// One of the @link s20_3_6_binder binder functors @endlink. template inline binder1st<_Operation> bind1st(const _Operation& __fn, const _Tp& __x) { typedef typename _Operation::first_argument_type _Arg1_type; return binder1st<_Operation>(__fn, _Arg1_type(__x)); } /// One of the @link s20_3_6_binder binder functors @endlink. template class binder2nd : public unary_function { protected: _Operation op; typename _Operation::second_argument_type value; public: binder2nd(const _Operation& __x, const typename _Operation::second_argument_type& __y) : op(__x), value(__y) {} typename _Operation::result_type operator()(const typename _Operation::first_argument_type& __x) const { return op(__x, value); } #ifdef _GLIBCPP_RESOLVE_LIB_DEFECTS //109. Missing binders for non-const sequence elements typename _Operation::result_type operator()(typename _Operation::first_argument_type& __x) const { return op(__x, value); } #endif }; /// One of the @link s20_3_6_binder binder functors @endlink. template inline binder2nd<_Operation> bind2nd(const _Operation& __fn, const _Tp& __x) { typedef typename _Operation::second_argument_type _Arg2_type; return binder2nd<_Operation>(__fn, _Arg2_type(__x)); } /** @} */ /** As an extension to the binders, SGI provided composition functors and * wrapper functions to aid in their creation. The @c unary_compose * functor is constructed from two functions/functors, @c f and @c g. * Calling @c operator() with a single argument @c x returns @c f(g(x)). * The function @c compose1 takes the two functions and constructs a * @c unary_compose variable for you. * * @c binary_compose is constructed from three functors, @c f, @c g1, * and @c g2. Its @c operator() returns @c f(g1(x),g2(x)). The function * @compose2 takes f, g1, and g2, and constructs the @c binary_compose * instance for you. For example, if @c f returns an int, then * \code * int answer = (compose2(f,g1,g2))(x); * \endcode * is equivalent to * \code * int temp1 = g1(x); * int temp2 = g2(x); * int answer = f(temp1,temp2); * \endcode * But the first form is more compact, and can be passed around as a * functor to other algorithms. * * @addtogroup SGIextensions * @{ */ /// An \link SGIextensions SGI extension \endlink. template class unary_compose : public unary_function { protected: _Operation1 _M_fn1; _Operation2 _M_fn2; public: unary_compose(const _Operation1& __x, const _Operation2& __y) : _M_fn1(__x), _M_fn2(__y) {} typename _Operation1::result_type operator()(const typename _Operation2::argument_type& __x) const { return _M_fn1(_M_fn2(__x)); } }; /// An \link SGIextensions SGI extension \endlink. template inline unary_compose<_Operation1,_Operation2> compose1(const _Operation1& __fn1, const _Operation2& __fn2) { return unary_compose<_Operation1,_Operation2>(__fn1, __fn2); } /// An \link SGIextensions SGI extension \endlink. template class binary_compose : public unary_function { protected: _Operation1 _M_fn1; _Operation2 _M_fn2; _Operation3 _M_fn3; public: binary_compose(const _Operation1& __x, const _Operation2& __y, const _Operation3& __z) : _M_fn1(__x), _M_fn2(__y), _M_fn3(__z) { } typename _Operation1::result_type operator()(const typename _Operation2::argument_type& __x) const { return _M_fn1(_M_fn2(__x), _M_fn3(__x)); } }; /// An \link SGIextensions SGI extension \endlink. template inline binary_compose<_Operation1, _Operation2, _Operation3> compose2(const _Operation1& __fn1, const _Operation2& __fn2, const _Operation3& __fn3) { return binary_compose<_Operation1,_Operation2,_Operation3> (__fn1, __fn2, __fn3); } /** @} */ // 20.3.7 adaptors pointers functions /** @defgroup s20_3_7_adaptors Adaptors for pointers to functions * The advantage of function objects over pointers to functions is that * the objects in the standard library declare nested typedefs describing * their argument and result types with uniform names (e.g., @c result_type * from the base classes @c unary_function and @c binary_function). * Sometimes those typedefs are required, not just optional. * * Adaptors are provided to turn pointers to unary (single-argument) and * binary (double-argument) functions into function objects. The long-winded * functor @c pointer_to_unary_function is constructed with a function * pointer @c f, and its @c operator() called with argument @c x returns * @c f(x). The functor @c pointer_to_binary_function does the same thing, * but with a double-argument @c f and @c operator(). * * The function @c ptr_fun takes a pointer-to-function @c f and constructs * an instance of the appropriate functor. * * @{ */ /// One of the @link s20_3_7_adaptors adaptors for function pointers @endlink. template class pointer_to_unary_function : public unary_function<_Arg, _Result> { protected: _Result (*_M_ptr)(_Arg); public: pointer_to_unary_function() {} explicit pointer_to_unary_function(_Result (*__x)(_Arg)) : _M_ptr(__x) {} _Result operator()(_Arg __x) const { return _M_ptr(__x); } }; /// One of the @link s20_3_7_adaptors adaptors for function pointers @endlink. template inline pointer_to_unary_function<_Arg, _Result> ptr_fun(_Result (*__x)(_Arg)) { return pointer_to_unary_function<_Arg, _Result>(__x); } /// One of the @link s20_3_7_adaptors adaptors for function pointers @endlink. template class pointer_to_binary_function : public binary_function<_Arg1,_Arg2,_Result> { protected: _Result (*_M_ptr)(_Arg1, _Arg2); public: pointer_to_binary_function() {} explicit pointer_to_binary_function(_Result (*__x)(_Arg1, _Arg2)) : _M_ptr(__x) {} _Result operator()(_Arg1 __x, _Arg2 __y) const { return _M_ptr(__x, __y); } }; /// One of the @link s20_3_7_adaptors adaptors for function pointers @endlink. template inline pointer_to_binary_function<_Arg1,_Arg2,_Result> ptr_fun(_Result (*__x)(_Arg1, _Arg2)) { return pointer_to_binary_function<_Arg1,_Arg2,_Result>(__x); } /** @} */ // extension documented next template struct _Identity : public unary_function<_Tp,_Tp> { _Tp& operator()(_Tp& __x) const { return __x; } const _Tp& operator()(const _Tp& __x) const { return __x; } }; /** As an extension, SGI provided a functor called @c identity. When a * functor is required but no operations are desired, this can be used as a * pass-through. Its @c operator() returns its argument unchanged. * * @addtogroup SGIextensions */ template struct identity : public _Identity<_Tp> {}; // extension documented next template struct _Select1st : public unary_function<_Pair, typename _Pair::first_type> { typename _Pair::first_type& operator()(_Pair& __x) const { return __x.first; } const typename _Pair::first_type& operator()(const _Pair& __x) const { return __x.first; } }; template struct _Select2nd : public unary_function<_Pair, typename _Pair::second_type> { typename _Pair::second_type& operator()(_Pair& __x) const { return __x.second; } const typename _Pair::second_type& operator()(const _Pair& __x) const { return __x.second; } }; /** @c select1st and @c select2nd are extensions provided by SGI. Their * @c operator()s * take a @c std::pair as an argument, and return either the first member * or the second member, respectively. They can be used (especially with * the composition functors) to "strip" data from a sequence before * performing the remainder of an algorithm. * * @addtogroup SGIextensions * @{ */ /// An \link SGIextensions SGI extension \endlink. template struct select1st : public _Select1st<_Pair> {}; /// An \link SGIextensions SGI extension \endlink. template struct select2nd : public _Select2nd<_Pair> {}; /** @} */ // extension documented next template struct _Project1st : public binary_function<_Arg1, _Arg2, _Arg1> { _Arg1 operator()(const _Arg1& __x, const _Arg2&) const { return __x; } }; template struct _Project2nd : public binary_function<_Arg1, _Arg2, _Arg2> { _Arg2 operator()(const _Arg1&, const _Arg2& __y) const { return __y; } }; /** The @c operator() of the @c project1st functor takes two arbitrary * arguments and returns the first one, while @c project2nd returns the * second one. They are extensions provided by SGI. * * @addtogroup SGIextensions * @{ */ /// An \link SGIextensions SGI extension \endlink. template struct project1st : public _Project1st<_Arg1, _Arg2> {}; /// An \link SGIextensions SGI extension \endlink. template struct project2nd : public _Project2nd<_Arg1, _Arg2> {}; /** @} */ // extension documented next template struct _Constant_void_fun { typedef _Result result_type; result_type _M_val; _Constant_void_fun(const result_type& __v) : _M_val(__v) {} const result_type& operator()() const { return _M_val; } }; template struct _Constant_unary_fun { typedef _Argument argument_type; typedef _Result result_type; result_type _M_val; _Constant_unary_fun(const result_type& __v) : _M_val(__v) {} const result_type& operator()(const _Argument&) const { return _M_val; } }; template struct _Constant_binary_fun { typedef _Arg1 first_argument_type; typedef _Arg2 second_argument_type; typedef _Result result_type; _Result _M_val; _Constant_binary_fun(const _Result& __v) : _M_val(__v) {} const result_type& operator()(const _Arg1&, const _Arg2&) const { return _M_val; } }; /** These three functors are each constructed from a single arbitrary * variable/value. Later, their @c operator()s completely ignore any * arguments passed, and return the stored value. * - @c constant_void_fun's @c operator() takes no arguments * - @c constant_unary_fun's @c operator() takes one argument (ignored) * - @c constant_binary_fun's @c operator() takes two arguments (ignored) * * The helper creator functions @c constant0, @c constant1, and * @c constant2 each take a "result" argument and construct variables of * the appropriate functor type. * * @addtogroup SGIextensions * @{ */ /// An \link SGIextensions SGI extension \endlink. template struct constant_void_fun : public _Constant_void_fun<_Result> { constant_void_fun(const _Result& __v) : _Constant_void_fun<_Result>(__v) {} }; /// An \link SGIextensions SGI extension \endlink. template struct constant_unary_fun : public _Constant_unary_fun<_Result, _Argument> { constant_unary_fun(const _Result& __v) : _Constant_unary_fun<_Result, _Argument>(__v) {} }; /// An \link SGIextensions SGI extension \endlink. template struct constant_binary_fun : public _Constant_binary_fun<_Result, _Arg1, _Arg2> { constant_binary_fun(const _Result& __v) : _Constant_binary_fun<_Result, _Arg1, _Arg2>(__v) {} }; /// An \link SGIextensions SGI extension \endlink. template inline constant_void_fun<_Result> constant0(const _Result& __val) { return constant_void_fun<_Result>(__val); } /// An \link SGIextensions SGI extension \endlink. template inline constant_unary_fun<_Result,_Result> constant1(const _Result& __val) { return constant_unary_fun<_Result,_Result>(__val); } /// An \link SGIextensions SGI extension \endlink. template inline constant_binary_fun<_Result,_Result,_Result> constant2(const _Result& __val) { return constant_binary_fun<_Result,_Result,_Result>(__val); } /** @} */ /** The @c subtractive_rng class is documented on * SGI's site. * Note that this code assumes that @c int is 32 bits. * * @ingroup SGIextensions */ class subtractive_rng : public unary_function { private: unsigned int _M_table[55]; size_t _M_index1; size_t _M_index2; public: /// Returns a number less than the argument. unsigned int operator()(unsigned int __limit) { _M_index1 = (_M_index1 + 1) % 55; _M_index2 = (_M_index2 + 1) % 55; _M_table[_M_index1] = _M_table[_M_index1] - _M_table[_M_index2]; return _M_table[_M_index1] % __limit; } void _M_initialize(unsigned int __seed) { unsigned int __k = 1; _M_table[54] = __seed; size_t __i; for (__i = 0; __i < 54; __i++) { size_t __ii = (21 * (__i + 1) % 55) - 1; _M_table[__ii] = __k; __k = __seed - __k; __seed = _M_table[__ii]; } for (int __loop = 0; __loop < 4; __loop++) { for (__i = 0; __i < 55; __i++) _M_table[__i] = _M_table[__i] - _M_table[(1 + __i + 30) % 55]; } _M_index1 = 0; _M_index2 = 31; } /// Ctor allowing you to initialize the seed. subtractive_rng(unsigned int __seed) { _M_initialize(__seed); } /// Default ctor; initializes its state with some number you don't see. subtractive_rng() { _M_initialize(161803398u); } }; // 20.3.8 adaptors pointers members /** @defgroup s20_3_8_memadaptors Adaptors for pointers to members * There are a total of 16 = 2^4 function objects in this family. * (1) Member functions taking no arguments vs member functions taking * one argument. * (2) Call through pointer vs call through reference. * (3) Member function with void return type vs member function with * non-void return type. * (4) Const vs non-const member function. * * Note that choice (3) is nothing more than a workaround: according * to the draft, compilers should handle void and non-void the same way. * This feature is not yet widely implemented, though. You can only use * member functions returning void if your compiler supports partial * specialization. * * All of this complexity is in the function objects themselves. You can * ignore it by using the helper function mem_fun and mem_fun_ref, * which create whichever type of adaptor is appropriate. * (mem_fun1 and mem_fun1_ref are no longer part of the C++ standard, * but they are provided for backward compatibility.) * * @{ */ /// One of the @link s20_3_8_memadaptors adaptors for member pointers @endlink. template class mem_fun_t : public unary_function<_Tp*,_Ret> { public: explicit mem_fun_t(_Ret (_Tp::*__pf)()) : _M_f(__pf) {} _Ret operator()(_Tp* __p) const { return (__p->*_M_f)(); } private: _Ret (_Tp::*_M_f)(); }; /// One of the @link s20_3_8_memadaptors adaptors for member pointers @endlink. template class const_mem_fun_t : public unary_function { public: explicit const_mem_fun_t(_Ret (_Tp::*__pf)() const) : _M_f(__pf) {} _Ret operator()(const _Tp* __p) const { return (__p->*_M_f)(); } private: _Ret (_Tp::*_M_f)() const; }; /// One of the @link s20_3_8_memadaptors adaptors for member pointers @endlink. template class mem_fun_ref_t : public unary_function<_Tp,_Ret> { public: explicit mem_fun_ref_t(_Ret (_Tp::*__pf)()) : _M_f(__pf) {} _Ret operator()(_Tp& __r) const { return (__r.*_M_f)(); } private: _Ret (_Tp::*_M_f)(); }; /// One of the @link s20_3_8_memadaptors adaptors for member pointers @endlink. template class const_mem_fun_ref_t : public unary_function<_Tp,_Ret> { public: explicit const_mem_fun_ref_t(_Ret (_Tp::*__pf)() const) : _M_f(__pf) {} _Ret operator()(const _Tp& __r) const { return (__r.*_M_f)(); } private: _Ret (_Tp::*_M_f)() const; }; /// One of the @link s20_3_8_memadaptors adaptors for member pointers @endlink. template class mem_fun1_t : public binary_function<_Tp*,_Arg,_Ret> { public: explicit mem_fun1_t(_Ret (_Tp::*__pf)(_Arg)) : _M_f(__pf) {} _Ret operator()(_Tp* __p, _Arg __x) const { return (__p->*_M_f)(__x); } private: _Ret (_Tp::*_M_f)(_Arg); }; /// One of the @link s20_3_8_memadaptors adaptors for member pointers @endlink. template class const_mem_fun1_t : public binary_function { public: explicit const_mem_fun1_t(_Ret (_Tp::*__pf)(_Arg) const) : _M_f(__pf) {} _Ret operator()(const _Tp* __p, _Arg __x) const { return (__p->*_M_f)(__x); } private: _Ret (_Tp::*_M_f)(_Arg) const; }; /// One of the @link s20_3_8_memadaptors adaptors for member pointers @endlink. template class mem_fun1_ref_t : public binary_function<_Tp,_Arg,_Ret> { public: explicit mem_fun1_ref_t(_Ret (_Tp::*__pf)(_Arg)) : _M_f(__pf) {} _Ret operator()(_Tp& __r, _Arg __x) const { return (__r.*_M_f)(__x); } private: _Ret (_Tp::*_M_f)(_Arg); }; /// One of the @link s20_3_8_memadaptors adaptors for member pointers @endlink. template class const_mem_fun1_ref_t : public binary_function<_Tp,_Arg,_Ret> { public: explicit const_mem_fun1_ref_t(_Ret (_Tp::*__pf)(_Arg) const) : _M_f(__pf) {} _Ret operator()(const _Tp& __r, _Arg __x) const { return (__r.*_M_f)(__x); } private: _Ret (_Tp::*_M_f)(_Arg) const; }; /// One of the @link s20_3_8_memadaptors adaptors for member pointers @endlink. template class mem_fun_t : public unary_function<_Tp*,void> { public: explicit mem_fun_t(void (_Tp::*__pf)()) : _M_f(__pf) {} void operator()(_Tp* __p) const { (__p->*_M_f)(); } private: void (_Tp::*_M_f)(); }; /// One of the @link s20_3_8_memadaptors adaptors for member pointers @endlink. template class const_mem_fun_t : public unary_function { public: explicit const_mem_fun_t(void (_Tp::*__pf)() const) : _M_f(__pf) {} void operator()(const _Tp* __p) const { (__p->*_M_f)(); } private: void (_Tp::*_M_f)() const; }; /// One of the @link s20_3_8_memadaptors adaptors for member pointers @endlink. template class mem_fun_ref_t : public unary_function<_Tp,void> { public: explicit mem_fun_ref_t(void (_Tp::*__pf)()) : _M_f(__pf) {} void operator()(_Tp& __r) const { (__r.*_M_f)(); } private: void (_Tp::*_M_f)(); }; /// One of the @link s20_3_8_memadaptors adaptors for member pointers @endlink. template class const_mem_fun_ref_t : public unary_function<_Tp,void> { public: explicit const_mem_fun_ref_t(void (_Tp::*__pf)() const) : _M_f(__pf) {} void operator()(const _Tp& __r) const { (__r.*_M_f)(); } private: void (_Tp::*_M_f)() const; }; /// One of the @link s20_3_8_memadaptors adaptors for member pointers @endlink. template class mem_fun1_t : public binary_function<_Tp*,_Arg,void> { public: explicit mem_fun1_t(void (_Tp::*__pf)(_Arg)) : _M_f(__pf) {} void operator()(_Tp* __p, _Arg __x) const { (__p->*_M_f)(__x); } private: void (_Tp::*_M_f)(_Arg); }; /// One of the @link s20_3_8_memadaptors adaptors for member pointers @endlink. template class const_mem_fun1_t : public binary_function { public: explicit const_mem_fun1_t(void (_Tp::*__pf)(_Arg) const) : _M_f(__pf) {} void operator()(const _Tp* __p, _Arg __x) const { (__p->*_M_f)(__x); } private: void (_Tp::*_M_f)(_Arg) const; }; /// One of the @link s20_3_8_memadaptors adaptors for member pointers @endlink. template class mem_fun1_ref_t : public binary_function<_Tp,_Arg,void> { public: explicit mem_fun1_ref_t(void (_Tp::*__pf)(_Arg)) : _M_f(__pf) {} void operator()(_Tp& __r, _Arg __x) const { (__r.*_M_f)(__x); } private: void (_Tp::*_M_f)(_Arg); }; /// One of the @link s20_3_8_memadaptors adaptors for member pointers @endlink. template class const_mem_fun1_ref_t : public binary_function<_Tp,_Arg,void> { public: explicit const_mem_fun1_ref_t(void (_Tp::*__pf)(_Arg) const) : _M_f(__pf) {} void operator()(const _Tp& __r, _Arg __x) const { (__r.*_M_f)(__x); } private: void (_Tp::*_M_f)(_Arg) const; }; // Mem_fun adaptor helper functions. There are only two: // mem_fun and mem_fun_ref. (mem_fun1 and mem_fun1_ref // are provided for backward compatibility, but they are no longer // part of the C++ standard.) template inline mem_fun_t<_Ret,_Tp> mem_fun(_Ret (_Tp::*__f)()) { return mem_fun_t<_Ret,_Tp>(__f); } template inline const_mem_fun_t<_Ret,_Tp> mem_fun(_Ret (_Tp::*__f)() const) { return const_mem_fun_t<_Ret,_Tp>(__f); } template inline mem_fun_ref_t<_Ret,_Tp> mem_fun_ref(_Ret (_Tp::*__f)()) { return mem_fun_ref_t<_Ret,_Tp>(__f); } template inline const_mem_fun_ref_t<_Ret,_Tp> mem_fun_ref(_Ret (_Tp::*__f)() const) { return const_mem_fun_ref_t<_Ret,_Tp>(__f); } template inline mem_fun1_t<_Ret,_Tp,_Arg> mem_fun(_Ret (_Tp::*__f)(_Arg)) { return mem_fun1_t<_Ret,_Tp,_Arg>(__f); } template inline const_mem_fun1_t<_Ret,_Tp,_Arg> mem_fun(_Ret (_Tp::*__f)(_Arg) const) { return const_mem_fun1_t<_Ret,_Tp,_Arg>(__f); } template inline mem_fun1_ref_t<_Ret,_Tp,_Arg> mem_fun_ref(_Ret (_Tp::*__f)(_Arg)) { return mem_fun1_ref_t<_Ret,_Tp,_Arg>(__f); } template inline const_mem_fun1_ref_t<_Ret,_Tp,_Arg> mem_fun_ref(_Ret (_Tp::*__f)(_Arg) const) { return const_mem_fun1_ref_t<_Ret,_Tp,_Arg>(__f); } template inline mem_fun1_t<_Ret,_Tp,_Arg> mem_fun1(_Ret (_Tp::*__f)(_Arg)) { return mem_fun1_t<_Ret,_Tp,_Arg>(__f); } template inline const_mem_fun1_t<_Ret,_Tp,_Arg> mem_fun1(_Ret (_Tp::*__f)(_Arg) const) { return const_mem_fun1_t<_Ret,_Tp,_Arg>(__f); } template inline mem_fun1_ref_t<_Ret,_Tp,_Arg> mem_fun1_ref(_Ret (_Tp::*__f)(_Arg)) { return mem_fun1_ref_t<_Ret,_Tp,_Arg>(__f); } template inline const_mem_fun1_ref_t<_Ret,_Tp,_Arg> mem_fun1_ref(_Ret (_Tp::*__f)(_Arg) const) { return const_mem_fun1_ref_t<_Ret,_Tp,_Arg>(__f); } /** @} */ } // namespace std #endif /* __SGI_STL_INTERNAL_FUNCTION_H */ // Local Variables: // mode:C++ // End: