// Copyright 2009 The Go Authors. All rights reserved. // Use of this source code is governed by a BSD-style // license that can be found in the LICENSE file. package math /* The algorithm is based in part on "Optimal Partitioning of Newton's Method for Calculating Roots", by Gunter Meinardus and G. D. Taylor, Mathematics of Computation © 1980 American Mathematical Society. (http://www.jstor.org/stable/2006387?seq=9, accessed 11-Feb-2010) */ // Cbrt returns the cube root of its argument. // // Special cases are: // Cbrt(±0) = ±0 // Cbrt(±Inf) = ±Inf // Cbrt(NaN) = NaN func Cbrt(x float64) float64 { const ( A1 = 1.662848358e-01 A2 = 1.096040958e+00 A3 = 4.105032829e-01 A4 = 5.649335816e-01 B1 = 2.639607233e-01 B2 = 8.699282849e-01 B3 = 1.629083358e-01 B4 = 2.824667908e-01 C1 = 4.190115298e-01 C2 = 6.904625373e-01 C3 = 6.46502159e-02 C4 = 1.412333954e-01 ) // special cases switch { case x == 0 || IsNaN(x) || IsInf(x, 0): return x } sign := false if x < 0 { x = -x sign = true } // Reduce argument and estimate cube root f, e := Frexp(x) // 0.5 <= f < 1.0 m := e % 3 if m > 0 { m -= 3 e -= m // e is multiple of 3 } switch m { case 0: // 0.5 <= f < 1.0 f = A1*f + A2 - A3/(A4+f) case -1: f *= 0.5 // 0.25 <= f < 0.5 f = B1*f + B2 - B3/(B4+f) default: // m == -2 f *= 0.25 // 0.125 <= f < 0.25 f = C1*f + C2 - C3/(C4+f) } y := Ldexp(f, e/3) // e/3 = exponent of cube root // Iterate s := y * y * y t := s + x y *= (t + x) / (s + t) // Reiterate s = (y*y*y - x) / x y -= y * (((14.0/81.0)*s-(2.0/9.0))*s + (1.0 / 3.0)) * s if sign { y = -y } return y }