/* Generic implementation of the PACK intrinsic Copyright (C) 2002-2014 Free Software Foundation, Inc. Contributed by Paul Brook This file is part of the GNU Fortran runtime library (libgfortran). Libgfortran is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 3 of the License, or (at your option) any later version. Ligbfortran is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. Under Section 7 of GPL version 3, you are granted additional permissions described in the GCC Runtime Library Exception, version 3.1, as published by the Free Software Foundation. You should have received a copy of the GNU General Public License and a copy of the GCC Runtime Library Exception along with this program; see the files COPYING3 and COPYING.RUNTIME respectively. If not, see . */ #include "libgfortran.h" #include #include #include /* PACK is specified as follows: 13.14.80 PACK (ARRAY, MASK, [VECTOR]) Description: Pack an array into an array of rank one under the control of a mask. Class: Transformational function. Arguments: ARRAY may be of any type. It shall not be scalar. MASK shall be of type LOGICAL. It shall be conformable with ARRAY. VECTOR (optional) shall be of the same type and type parameters as ARRAY. VECTOR shall have at least as many elements as there are true elements in MASK. If MASK is a scalar with the value true, VECTOR shall have at least as many elements as there are in ARRAY. Result Characteristics: The result is an array of rank one with the same type and type parameters as ARRAY. If VECTOR is present, the result size is that of VECTOR; otherwise, the result size is the number /t/ of true elements in MASK unless MASK is scalar with the value true, in which case the result size is the size of ARRAY. Result Value: Element /i/ of the result is the element of ARRAY that corresponds to the /i/th true element of MASK, taking elements in array element order, for /i/ = 1, 2, ..., /t/. If VECTOR is present and has size /n/ > /t/, element /i/ of the result has the value VECTOR(/i/), for /i/ = /t/ + 1, ..., /n/. Examples: The nonzero elements of an array M with the value | 0 0 0 | | 9 0 0 | may be "gathered" by the function PACK. The result of | 0 0 7 | PACK (M, MASK = M.NE.0) is [9,7] and the result of PACK (M, M.NE.0, VECTOR = (/ 2,4,6,8,10,12 /)) is [9,7,6,8,10,12]. There are two variants of the PACK intrinsic: one, where MASK is array valued, and the other one where MASK is scalar. */ static void pack_internal (gfc_array_char *ret, const gfc_array_char *array, const gfc_array_l1 *mask, const gfc_array_char *vector, index_type size) { /* r.* indicates the return array. */ index_type rstride0; char * restrict rptr; /* s.* indicates the source array. */ index_type sstride[GFC_MAX_DIMENSIONS]; index_type sstride0; const char *sptr; /* m.* indicates the mask array. */ index_type mstride[GFC_MAX_DIMENSIONS]; index_type mstride0; const GFC_LOGICAL_1 *mptr; index_type count[GFC_MAX_DIMENSIONS]; index_type extent[GFC_MAX_DIMENSIONS]; index_type n; index_type dim; index_type nelem; index_type total; int mask_kind; dim = GFC_DESCRIPTOR_RANK (array); sptr = array->base_addr; mptr = mask->base_addr; /* Use the same loop for all logical types, by using GFC_LOGICAL_1 and using shifting to address size and endian issues. */ mask_kind = GFC_DESCRIPTOR_SIZE (mask); if (mask_kind == 1 || mask_kind == 2 || mask_kind == 4 || mask_kind == 8 #ifdef HAVE_GFC_LOGICAL_16 || mask_kind == 16 #endif ) { /* Don't convert a NULL pointer as we use test for NULL below. */ if (mptr) mptr = GFOR_POINTER_TO_L1 (mptr, mask_kind); } else runtime_error ("Funny sized logical array"); for (n = 0; n < dim; n++) { count[n] = 0; extent[n] = GFC_DESCRIPTOR_EXTENT(array,n); sstride[n] = GFC_DESCRIPTOR_STRIDE_BYTES(array,n); mstride[n] = GFC_DESCRIPTOR_STRIDE_BYTES(mask,n); } if (sstride[0] == 0) sstride[0] = size; if (mstride[0] == 0) mstride[0] = mask_kind; if (ret->base_addr == NULL || unlikely (compile_options.bounds_check)) { /* Count the elements, either for allocating memory or for bounds checking. */ if (vector != NULL) { /* The return array will have as many elements as there are in VECTOR. */ total = GFC_DESCRIPTOR_EXTENT(vector,0); } else { /* We have to count the true elements in MASK. */ total = count_0 (mask); } if (ret->base_addr == NULL) { /* Setup the array descriptor. */ GFC_DIMENSION_SET(ret->dim[0], 0, total-1, 1); ret->offset = 0; /* xmallocarray allocates a single byte for zero size. */ ret->base_addr = xmallocarray (total, size); if (total == 0) return; /* In this case, nothing remains to be done. */ } else { /* We come here because of range checking. */ index_type ret_extent; ret_extent = GFC_DESCRIPTOR_EXTENT(ret,0); if (total != ret_extent) runtime_error ("Incorrect extent in return value of PACK intrinsic;" " is %ld, should be %ld", (long int) total, (long int) ret_extent); } } rstride0 = GFC_DESCRIPTOR_STRIDE_BYTES(ret,0); if (rstride0 == 0) rstride0 = size; sstride0 = sstride[0]; mstride0 = mstride[0]; rptr = ret->base_addr; while (sptr && mptr) { /* Test this element. */ if (*mptr) { /* Add it. */ memcpy (rptr, sptr, size); rptr += rstride0; } /* Advance to the next element. */ sptr += sstride0; mptr += mstride0; count[0]++; n = 0; while (count[n] == extent[n]) { /* When we get to the end of a dimension, reset it and increment the next dimension. */ count[n] = 0; /* We could precalculate these products, but this is a less frequently used path so probably not worth it. */ sptr -= sstride[n] * extent[n]; mptr -= mstride[n] * extent[n]; n++; if (n >= dim) { /* Break out of the loop. */ sptr = NULL; break; } else { count[n]++; sptr += sstride[n]; mptr += mstride[n]; } } } /* Add any remaining elements from VECTOR. */ if (vector) { n = GFC_DESCRIPTOR_EXTENT(vector,0); nelem = ((rptr - ret->base_addr) / rstride0); if (n > nelem) { sstride0 = GFC_DESCRIPTOR_STRIDE_BYTES(vector,0); if (sstride0 == 0) sstride0 = size; sptr = vector->base_addr + sstride0 * nelem; n -= nelem; while (n--) { memcpy (rptr, sptr, size); rptr += rstride0; sptr += sstride0; } } } } extern void pack (gfc_array_char *, const gfc_array_char *, const gfc_array_l1 *, const gfc_array_char *); export_proto(pack); void pack (gfc_array_char *ret, const gfc_array_char *array, const gfc_array_l1 *mask, const gfc_array_char *vector) { index_type type_size; index_type size; type_size = GFC_DTYPE_TYPE_SIZE(array); switch(type_size) { case GFC_DTYPE_LOGICAL_1: case GFC_DTYPE_INTEGER_1: case GFC_DTYPE_DERIVED_1: pack_i1 ((gfc_array_i1 *) ret, (gfc_array_i1 *) array, (gfc_array_l1 *) mask, (gfc_array_i1 *) vector); return; case GFC_DTYPE_LOGICAL_2: case GFC_DTYPE_INTEGER_2: pack_i2 ((gfc_array_i2 *) ret, (gfc_array_i2 *) array, (gfc_array_l1 *) mask, (gfc_array_i2 *) vector); return; case GFC_DTYPE_LOGICAL_4: case GFC_DTYPE_INTEGER_4: pack_i4 ((gfc_array_i4 *) ret, (gfc_array_i4 *) array, (gfc_array_l1 *) mask, (gfc_array_i4 *) vector); return; case GFC_DTYPE_LOGICAL_8: case GFC_DTYPE_INTEGER_8: pack_i8 ((gfc_array_i8 *) ret, (gfc_array_i8 *) array, (gfc_array_l1 *) mask, (gfc_array_i8 *) vector); return; #ifdef HAVE_GFC_INTEGER_16 case GFC_DTYPE_LOGICAL_16: case GFC_DTYPE_INTEGER_16: pack_i16 ((gfc_array_i16 *) ret, (gfc_array_i16 *) array, (gfc_array_l1 *) mask, (gfc_array_i16 *) vector); return; #endif case GFC_DTYPE_REAL_4: pack_r4 ((gfc_array_r4 *) ret, (gfc_array_r4 *) array, (gfc_array_l1 *) mask, (gfc_array_r4 *) vector); return; case GFC_DTYPE_REAL_8: pack_r8 ((gfc_array_r8 *) ret, (gfc_array_r8 *) array, (gfc_array_l1 *) mask, (gfc_array_r8 *) vector); return; /* FIXME: This here is a hack, which will have to be removed when the array descriptor is reworked. Currently, we don't store the kind value for the type, but only the size. Because on targets with __float128, we have sizeof(logn double) == sizeof(__float128), we cannot discriminate here and have to fall back to the generic handling (which is suboptimal). */ #if !defined(GFC_REAL_16_IS_FLOAT128) # ifdef HAVE_GFC_REAL_10 case GFC_DTYPE_REAL_10: pack_r10 ((gfc_array_r10 *) ret, (gfc_array_r10 *) array, (gfc_array_l1 *) mask, (gfc_array_r10 *) vector); return; # endif # ifdef HAVE_GFC_REAL_16 case GFC_DTYPE_REAL_16: pack_r16 ((gfc_array_r16 *) ret, (gfc_array_r16 *) array, (gfc_array_l1 *) mask, (gfc_array_r16 *) vector); return; # endif #endif case GFC_DTYPE_COMPLEX_4: pack_c4 ((gfc_array_c4 *) ret, (gfc_array_c4 *) array, (gfc_array_l1 *) mask, (gfc_array_c4 *) vector); return; case GFC_DTYPE_COMPLEX_8: pack_c8 ((gfc_array_c8 *) ret, (gfc_array_c8 *) array, (gfc_array_l1 *) mask, (gfc_array_c8 *) vector); return; /* FIXME: This here is a hack, which will have to be removed when the array descriptor is reworked. Currently, we don't store the kind value for the type, but only the size. Because on targets with __float128, we have sizeof(logn double) == sizeof(__float128), we cannot discriminate here and have to fall back to the generic handling (which is suboptimal). */ #if !defined(GFC_REAL_16_IS_FLOAT128) # ifdef HAVE_GFC_COMPLEX_10 case GFC_DTYPE_COMPLEX_10: pack_c10 ((gfc_array_c10 *) ret, (gfc_array_c10 *) array, (gfc_array_l1 *) mask, (gfc_array_c10 *) vector); return; # endif # ifdef HAVE_GFC_COMPLEX_16 case GFC_DTYPE_COMPLEX_16: pack_c16 ((gfc_array_c16 *) ret, (gfc_array_c16 *) array, (gfc_array_l1 *) mask, (gfc_array_c16 *) vector); return; # endif #endif /* For derived types, let's check the actual alignment of the data pointers. If they are aligned, we can safely call the unpack functions. */ case GFC_DTYPE_DERIVED_2: if (GFC_UNALIGNED_2(ret->base_addr) || GFC_UNALIGNED_2(array->base_addr) || (vector && GFC_UNALIGNED_2(vector->base_addr))) break; else { pack_i2 ((gfc_array_i2 *) ret, (gfc_array_i2 *) array, (gfc_array_l1 *) mask, (gfc_array_i2 *) vector); return; } case GFC_DTYPE_DERIVED_4: if (GFC_UNALIGNED_4(ret->base_addr) || GFC_UNALIGNED_4(array->base_addr) || (vector && GFC_UNALIGNED_4(vector->base_addr))) break; else { pack_i4 ((gfc_array_i4 *) ret, (gfc_array_i4 *) array, (gfc_array_l1 *) mask, (gfc_array_i4 *) vector); return; } case GFC_DTYPE_DERIVED_8: if (GFC_UNALIGNED_8(ret->base_addr) || GFC_UNALIGNED_8(array->base_addr) || (vector && GFC_UNALIGNED_8(vector->base_addr))) break; else { pack_i8 ((gfc_array_i8 *) ret, (gfc_array_i8 *) array, (gfc_array_l1 *) mask, (gfc_array_i8 *) vector); return; } #ifdef HAVE_GFC_INTEGER_16 case GFC_DTYPE_DERIVED_16: if (GFC_UNALIGNED_16(ret->base_addr) || GFC_UNALIGNED_16(array->base_addr) || (vector && GFC_UNALIGNED_16(vector->base_addr))) break; else { pack_i16 ((gfc_array_i16 *) ret, (gfc_array_i16 *) array, (gfc_array_l1 *) mask, (gfc_array_i16 *) vector); return; } #endif } size = GFC_DESCRIPTOR_SIZE (array); pack_internal (ret, array, mask, vector, size); } extern void pack_char (gfc_array_char *, GFC_INTEGER_4, const gfc_array_char *, const gfc_array_l1 *, const gfc_array_char *, GFC_INTEGER_4, GFC_INTEGER_4); export_proto(pack_char); void pack_char (gfc_array_char *ret, GFC_INTEGER_4 ret_length __attribute__((unused)), const gfc_array_char *array, const gfc_array_l1 *mask, const gfc_array_char *vector, GFC_INTEGER_4 array_length, GFC_INTEGER_4 vector_length __attribute__((unused))) { pack_internal (ret, array, mask, vector, array_length); } extern void pack_char4 (gfc_array_char *, GFC_INTEGER_4, const gfc_array_char *, const gfc_array_l1 *, const gfc_array_char *, GFC_INTEGER_4, GFC_INTEGER_4); export_proto(pack_char4); void pack_char4 (gfc_array_char *ret, GFC_INTEGER_4 ret_length __attribute__((unused)), const gfc_array_char *array, const gfc_array_l1 *mask, const gfc_array_char *vector, GFC_INTEGER_4 array_length, GFC_INTEGER_4 vector_length __attribute__((unused))) { pack_internal (ret, array, mask, vector, array_length * sizeof (gfc_char4_t)); } static void pack_s_internal (gfc_array_char *ret, const gfc_array_char *array, const GFC_LOGICAL_4 *mask, const gfc_array_char *vector, index_type size) { /* r.* indicates the return array. */ index_type rstride0; char *rptr; /* s.* indicates the source array. */ index_type sstride[GFC_MAX_DIMENSIONS]; index_type sstride0; const char *sptr; index_type count[GFC_MAX_DIMENSIONS]; index_type extent[GFC_MAX_DIMENSIONS]; index_type n; index_type dim; index_type ssize; index_type nelem; index_type total; dim = GFC_DESCRIPTOR_RANK (array); ssize = 1; for (n = 0; n < dim; n++) { count[n] = 0; extent[n] = GFC_DESCRIPTOR_EXTENT(array,n); if (extent[n] < 0) extent[n] = 0; sstride[n] = GFC_DESCRIPTOR_STRIDE_BYTES(array,n); ssize *= extent[n]; } if (sstride[0] == 0) sstride[0] = size; sstride0 = sstride[0]; if (ssize != 0) sptr = array->base_addr; else sptr = NULL; if (ret->base_addr == NULL) { /* Allocate the memory for the result. */ if (vector != NULL) { /* The return array will have as many elements as there are in vector. */ total = GFC_DESCRIPTOR_EXTENT(vector,0); if (total <= 0) { total = 0; vector = NULL; } } else { if (*mask) { /* The result array will have as many elements as the input array. */ total = extent[0]; for (n = 1; n < dim; n++) total *= extent[n]; } else /* The result array will be empty. */ total = 0; } /* Setup the array descriptor. */ GFC_DIMENSION_SET(ret->dim[0],0,total-1,1); ret->offset = 0; ret->base_addr = xmallocarray (total, size); if (total == 0) return; } rstride0 = GFC_DESCRIPTOR_STRIDE_BYTES(ret,0); if (rstride0 == 0) rstride0 = size; rptr = ret->base_addr; /* The remaining possibilities are now: If MASK is .TRUE., we have to copy the source array into the result array. We then have to fill it up with elements from VECTOR. If MASK is .FALSE., we have to copy VECTOR into the result array. If VECTOR were not present we would have already returned. */ if (*mask && ssize != 0) { while (sptr) { /* Add this element. */ memcpy (rptr, sptr, size); rptr += rstride0; /* Advance to the next element. */ sptr += sstride0; count[0]++; n = 0; while (count[n] == extent[n]) { /* When we get to the end of a dimension, reset it and increment the next dimension. */ count[n] = 0; /* We could precalculate these products, but this is a less frequently used path so probably not worth it. */ sptr -= sstride[n] * extent[n]; n++; if (n >= dim) { /* Break out of the loop. */ sptr = NULL; break; } else { count[n]++; sptr += sstride[n]; } } } } /* Add any remaining elements from VECTOR. */ if (vector) { n = GFC_DESCRIPTOR_EXTENT(vector,0); nelem = ((rptr - ret->base_addr) / rstride0); if (n > nelem) { sstride0 = GFC_DESCRIPTOR_STRIDE_BYTES(vector,0); if (sstride0 == 0) sstride0 = size; sptr = vector->base_addr + sstride0 * nelem; n -= nelem; while (n--) { memcpy (rptr, sptr, size); rptr += rstride0; sptr += sstride0; } } } } extern void pack_s (gfc_array_char *ret, const gfc_array_char *array, const GFC_LOGICAL_4 *, const gfc_array_char *); export_proto(pack_s); void pack_s (gfc_array_char *ret, const gfc_array_char *array, const GFC_LOGICAL_4 *mask, const gfc_array_char *vector) { pack_s_internal (ret, array, mask, vector, GFC_DESCRIPTOR_SIZE (array)); } extern void pack_s_char (gfc_array_char *ret, GFC_INTEGER_4, const gfc_array_char *array, const GFC_LOGICAL_4 *, const gfc_array_char *, GFC_INTEGER_4, GFC_INTEGER_4); export_proto(pack_s_char); void pack_s_char (gfc_array_char *ret, GFC_INTEGER_4 ret_length __attribute__((unused)), const gfc_array_char *array, const GFC_LOGICAL_4 *mask, const gfc_array_char *vector, GFC_INTEGER_4 array_length, GFC_INTEGER_4 vector_length __attribute__((unused))) { pack_s_internal (ret, array, mask, vector, array_length); } extern void pack_s_char4 (gfc_array_char *ret, GFC_INTEGER_4, const gfc_array_char *array, const GFC_LOGICAL_4 *, const gfc_array_char *, GFC_INTEGER_4, GFC_INTEGER_4); export_proto(pack_s_char4); void pack_s_char4 (gfc_array_char *ret, GFC_INTEGER_4 ret_length __attribute__((unused)), const gfc_array_char *array, const GFC_LOGICAL_4 *mask, const gfc_array_char *vector, GFC_INTEGER_4 array_length, GFC_INTEGER_4 vector_length __attribute__((unused))) { pack_s_internal (ret, array, mask, vector, array_length * sizeof (gfc_char4_t)); }