/* Generic implementation of the CSHIFT intrinsic Copyright (C) 2003-2014 Free Software Foundation, Inc. Contributed by Feng Wang This file is part of the GNU Fortran runtime library (libgfortran). Libgfortran is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 3 of the License, or (at your option) any later version. Libgfortran is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. Under Section 7 of GPL version 3, you are granted additional permissions described in the GCC Runtime Library Exception, version 3.1, as published by the Free Software Foundation. You should have received a copy of the GNU General Public License and a copy of the GCC Runtime Library Exception along with this program; see the files COPYING3 and COPYING.RUNTIME respectively. If not, see . */ #include "libgfortran.h" #include #include #include static void cshift0 (gfc_array_char * ret, const gfc_array_char * array, ptrdiff_t shift, int which, index_type size) { /* r.* indicates the return array. */ index_type rstride[GFC_MAX_DIMENSIONS]; index_type rstride0; index_type roffset; char *rptr; /* s.* indicates the source array. */ index_type sstride[GFC_MAX_DIMENSIONS]; index_type sstride0; index_type soffset; const char *sptr; index_type count[GFC_MAX_DIMENSIONS]; index_type extent[GFC_MAX_DIMENSIONS]; index_type dim; index_type len; index_type n; index_type arraysize; index_type type_size; if (which < 1 || which > GFC_DESCRIPTOR_RANK (array)) runtime_error ("Argument 'DIM' is out of range in call to 'CSHIFT'"); arraysize = size0 ((array_t *) array); if (ret->base_addr == NULL) { int i; ret->offset = 0; ret->dtype = array->dtype; for (i = 0; i < GFC_DESCRIPTOR_RANK (array); i++) { index_type ub, str; ub = GFC_DESCRIPTOR_EXTENT(array,i) - 1; if (i == 0) str = 1; else str = GFC_DESCRIPTOR_EXTENT(ret,i-1) * GFC_DESCRIPTOR_STRIDE(ret,i-1); GFC_DIMENSION_SET(ret->dim[i], 0, ub, str); } /* xmallocarray allocates a single byte for zero size. */ ret->base_addr = xmallocarray (arraysize, size); } else if (unlikely (compile_options.bounds_check)) { bounds_equal_extents ((array_t *) ret, (array_t *) array, "return value", "CSHIFT"); } if (arraysize == 0) return; type_size = GFC_DTYPE_TYPE_SIZE (array); switch(type_size) { case GFC_DTYPE_LOGICAL_1: case GFC_DTYPE_INTEGER_1: case GFC_DTYPE_DERIVED_1: cshift0_i1 ((gfc_array_i1 *)ret, (gfc_array_i1 *) array, shift, which); return; case GFC_DTYPE_LOGICAL_2: case GFC_DTYPE_INTEGER_2: cshift0_i2 ((gfc_array_i2 *)ret, (gfc_array_i2 *) array, shift, which); return; case GFC_DTYPE_LOGICAL_4: case GFC_DTYPE_INTEGER_4: cshift0_i4 ((gfc_array_i4 *)ret, (gfc_array_i4 *) array, shift, which); return; case GFC_DTYPE_LOGICAL_8: case GFC_DTYPE_INTEGER_8: cshift0_i8 ((gfc_array_i8 *)ret, (gfc_array_i8 *) array, shift, which); return; #ifdef HAVE_GFC_INTEGER_16 case GFC_DTYPE_LOGICAL_16: case GFC_DTYPE_INTEGER_16: cshift0_i16 ((gfc_array_i16 *)ret, (gfc_array_i16 *) array, shift, which); return; #endif case GFC_DTYPE_REAL_4: cshift0_r4 ((gfc_array_r4 *)ret, (gfc_array_r4 *) array, shift, which); return; case GFC_DTYPE_REAL_8: cshift0_r8 ((gfc_array_r8 *)ret, (gfc_array_r8 *) array, shift, which); return; /* FIXME: This here is a hack, which will have to be removed when the array descriptor is reworked. Currently, we don't store the kind value for the type, but only the size. Because on targets with __float128, we have sizeof(logn double) == sizeof(__float128), we cannot discriminate here and have to fall back to the generic handling (which is suboptimal). */ #if !defined(GFC_REAL_16_IS_FLOAT128) # ifdef HAVE_GFC_REAL_10 case GFC_DTYPE_REAL_10: cshift0_r10 ((gfc_array_r10 *)ret, (gfc_array_r10 *) array, shift, which); return; # endif # ifdef HAVE_GFC_REAL_16 case GFC_DTYPE_REAL_16: cshift0_r16 ((gfc_array_r16 *)ret, (gfc_array_r16 *) array, shift, which); return; # endif #endif case GFC_DTYPE_COMPLEX_4: cshift0_c4 ((gfc_array_c4 *)ret, (gfc_array_c4 *) array, shift, which); return; case GFC_DTYPE_COMPLEX_8: cshift0_c8 ((gfc_array_c8 *)ret, (gfc_array_c8 *) array, shift, which); return; /* FIXME: This here is a hack, which will have to be removed when the array descriptor is reworked. Currently, we don't store the kind value for the type, but only the size. Because on targets with __float128, we have sizeof(logn double) == sizeof(__float128), we cannot discriminate here and have to fall back to the generic handling (which is suboptimal). */ #if !defined(GFC_REAL_16_IS_FLOAT128) # ifdef HAVE_GFC_COMPLEX_10 case GFC_DTYPE_COMPLEX_10: cshift0_c10 ((gfc_array_c10 *)ret, (gfc_array_c10 *) array, shift, which); return; # endif # ifdef HAVE_GFC_COMPLEX_16 case GFC_DTYPE_COMPLEX_16: cshift0_c16 ((gfc_array_c16 *)ret, (gfc_array_c16 *) array, shift, which); return; # endif #endif default: break; } switch (size) { /* Let's check the actual alignment of the data pointers. If they are suitably aligned, we can safely call the unpack functions. */ case sizeof (GFC_INTEGER_1): cshift0_i1 ((gfc_array_i1 *) ret, (gfc_array_i1 *) array, shift, which); break; case sizeof (GFC_INTEGER_2): if (GFC_UNALIGNED_2(ret->base_addr) || GFC_UNALIGNED_2(array->base_addr)) break; else { cshift0_i2 ((gfc_array_i2 *) ret, (gfc_array_i2 *) array, shift, which); return; } case sizeof (GFC_INTEGER_4): if (GFC_UNALIGNED_4(ret->base_addr) || GFC_UNALIGNED_4(array->base_addr)) break; else { cshift0_i4 ((gfc_array_i4 *)ret, (gfc_array_i4 *) array, shift, which); return; } case sizeof (GFC_INTEGER_8): if (GFC_UNALIGNED_8(ret->base_addr) || GFC_UNALIGNED_8(array->base_addr)) { /* Let's try to use the complex routines. First, a sanity check that the sizes match; this should be optimized to a no-op. */ if (sizeof(GFC_INTEGER_8) != sizeof(GFC_COMPLEX_4)) break; if (GFC_UNALIGNED_C4(ret->base_addr) || GFC_UNALIGNED_C4(array->base_addr)) break; cshift0_c4 ((gfc_array_c4 *) ret, (gfc_array_c4 *) array, shift, which); return; } else { cshift0_i8 ((gfc_array_i8 *)ret, (gfc_array_i8 *) array, shift, which); return; } #ifdef HAVE_GFC_INTEGER_16 case sizeof (GFC_INTEGER_16): if (GFC_UNALIGNED_16(ret->base_addr) || GFC_UNALIGNED_16(array->base_addr)) { /* Let's try to use the complex routines. First, a sanity check that the sizes match; this should be optimized to a no-op. */ if (sizeof(GFC_INTEGER_16) != sizeof(GFC_COMPLEX_8)) break; if (GFC_UNALIGNED_C8(ret->base_addr) || GFC_UNALIGNED_C8(array->base_addr)) break; cshift0_c8 ((gfc_array_c8 *) ret, (gfc_array_c8 *) array, shift, which); return; } else { cshift0_i16 ((gfc_array_i16 *) ret, (gfc_array_i16 *) array, shift, which); return; } #else case sizeof (GFC_COMPLEX_8): if (GFC_UNALIGNED_C8(ret->base_addr) || GFC_UNALIGNED_C8(array->base_addr)) break; else { cshift0_c8 ((gfc_array_c8 *) ret, (gfc_array_c8 *) array, shift, which); return; } #endif default: break; } which = which - 1; sstride[0] = 0; rstride[0] = 0; extent[0] = 1; count[0] = 0; n = 0; /* Initialized for avoiding compiler warnings. */ roffset = size; soffset = size; len = 0; for (dim = 0; dim < GFC_DESCRIPTOR_RANK (array); dim++) { if (dim == which) { roffset = GFC_DESCRIPTOR_STRIDE_BYTES(ret,dim); if (roffset == 0) roffset = size; soffset = GFC_DESCRIPTOR_STRIDE_BYTES(array,dim); if (soffset == 0) soffset = size; len = GFC_DESCRIPTOR_EXTENT(array,dim); } else { count[n] = 0; extent[n] = GFC_DESCRIPTOR_EXTENT(array,dim); rstride[n] = GFC_DESCRIPTOR_STRIDE_BYTES(ret,dim); sstride[n] = GFC_DESCRIPTOR_STRIDE_BYTES(array,dim); n++; } } if (sstride[0] == 0) sstride[0] = size; if (rstride[0] == 0) rstride[0] = size; dim = GFC_DESCRIPTOR_RANK (array); rstride0 = rstride[0]; sstride0 = sstride[0]; rptr = ret->base_addr; sptr = array->base_addr; shift = len == 0 ? 0 : shift % (ptrdiff_t)len; if (shift < 0) shift += len; while (rptr) { /* Do the shift for this dimension. */ /* If elements are contiguous, perform the operation in two block moves. */ if (soffset == size && roffset == size) { size_t len1 = shift * size; size_t len2 = (len - shift) * size; memcpy (rptr, sptr + len1, len2); memcpy (rptr + len2, sptr, len1); } else { /* Otherwise, we'll have to perform the copy one element at a time. */ char *dest = rptr; const char *src = &sptr[shift * soffset]; for (n = 0; n < len - shift; n++) { memcpy (dest, src, size); dest += roffset; src += soffset; } for (src = sptr, n = 0; n < shift; n++) { memcpy (dest, src, size); dest += roffset; src += soffset; } } /* Advance to the next section. */ rptr += rstride0; sptr += sstride0; count[0]++; n = 0; while (count[n] == extent[n]) { /* When we get to the end of a dimension, reset it and increment the next dimension. */ count[n] = 0; /* We could precalculate these products, but this is a less frequently used path so probably not worth it. */ rptr -= rstride[n] * extent[n]; sptr -= sstride[n] * extent[n]; n++; if (n >= dim - 1) { /* Break out of the loop. */ rptr = NULL; break; } else { count[n]++; rptr += rstride[n]; sptr += sstride[n]; } } } } #define DEFINE_CSHIFT(N) \ extern void cshift0_##N (gfc_array_char *, const gfc_array_char *, \ const GFC_INTEGER_##N *, const GFC_INTEGER_##N *); \ export_proto(cshift0_##N); \ \ void \ cshift0_##N (gfc_array_char *ret, const gfc_array_char *array, \ const GFC_INTEGER_##N *pshift, const GFC_INTEGER_##N *pdim) \ { \ cshift0 (ret, array, *pshift, pdim ? *pdim : 1, \ GFC_DESCRIPTOR_SIZE (array)); \ } \ \ extern void cshift0_##N##_char (gfc_array_char *, GFC_INTEGER_4, \ const gfc_array_char *, \ const GFC_INTEGER_##N *, \ const GFC_INTEGER_##N *, GFC_INTEGER_4); \ export_proto(cshift0_##N##_char); \ \ void \ cshift0_##N##_char (gfc_array_char *ret, \ GFC_INTEGER_4 ret_length __attribute__((unused)), \ const gfc_array_char *array, \ const GFC_INTEGER_##N *pshift, \ const GFC_INTEGER_##N *pdim, \ GFC_INTEGER_4 array_length) \ { \ cshift0 (ret, array, *pshift, pdim ? *pdim : 1, array_length); \ } \ \ extern void cshift0_##N##_char4 (gfc_array_char *, GFC_INTEGER_4, \ const gfc_array_char *, \ const GFC_INTEGER_##N *, \ const GFC_INTEGER_##N *, GFC_INTEGER_4); \ export_proto(cshift0_##N##_char4); \ \ void \ cshift0_##N##_char4 (gfc_array_char *ret, \ GFC_INTEGER_4 ret_length __attribute__((unused)), \ const gfc_array_char *array, \ const GFC_INTEGER_##N *pshift, \ const GFC_INTEGER_##N *pdim, \ GFC_INTEGER_4 array_length) \ { \ cshift0 (ret, array, *pshift, pdim ? *pdim : 1, \ array_length * sizeof (gfc_char4_t)); \ } DEFINE_CSHIFT (1); DEFINE_CSHIFT (2); DEFINE_CSHIFT (4); DEFINE_CSHIFT (8); #ifdef HAVE_GFC_INTEGER_16 DEFINE_CSHIFT (16); #endif