# Copyright (C) 1999, 2001, 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010, # 2011, 2012 Free Software Foundation, Inc. # This program is free software; you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation; either version 3 of the License, or # (at your option) any later version. # # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with GCC; see the file COPYING3. If not see # . # Please email any bugs, comments, and/or additions to this file to: # gcc-patches@gcc.gnu.org # This file defines procs for determining features supported by the target. # Try to compile the code given by CONTENTS into an output file of # type TYPE, where TYPE is as for target_compile. Return a list # whose first element contains the compiler messages and whose # second element is the name of the output file. # # BASENAME is a prefix to use for source and output files. # If ARGS is not empty, its first element is a string that # should be added to the command line. # # Assume by default that CONTENTS is C code. # Otherwise, code should contain: # "// C++" for c++, # "! Fortran" for Fortran code, # "/* ObjC", for ObjC # "// ObjC++" for ObjC++ # and "// Go" for Go # If the tool is ObjC/ObjC++ then we overide the extension to .m/.mm to # allow for ObjC/ObjC++ specific flags. proc check_compile {basename type contents args} { global tool verbose "check_compile tool: $tool for $basename" if { [llength $args] > 0 } { set options [list "additional_flags=[lindex $args 0]"] } else { set options "" } switch -glob -- $contents { "*! Fortran*" { set src ${basename}[pid].f90 } "*// C++*" { set src ${basename}[pid].cc } "*// ObjC++*" { set src ${basename}[pid].mm } "*/* ObjC*" { set src ${basename}[pid].m } "*// Go*" { set src ${basename}[pid].go } default { switch -- $tool { "objc" { set src ${basename}[pid].m } "obj-c++" { set src ${basename}[pid].mm } default { set src ${basename}[pid].c } } } } set compile_type $type switch -glob $type { assembly { set output ${basename}[pid].s } object { set output ${basename}[pid].o } executable { set output ${basename}[pid].exe } "rtl-*" { set output ${basename}[pid].s lappend options "additional_flags=-fdump-$type" set compile_type assembly } } set f [open $src "w"] puts $f $contents close $f set lines [${tool}_target_compile $src $output $compile_type "$options"] file delete $src set scan_output $output # Don't try folding this into the switch above; calling "glob" before the # file is created won't work. if [regexp "rtl-(.*)" $type dummy rtl_type] { set scan_output "[glob $src.\[0-9\]\[0-9\]\[0-9\]r.$rtl_type]" file delete $output } return [list $lines $scan_output] } proc current_target_name { } { global target_info if [info exists target_info(target,name)] { set answer $target_info(target,name) } else { set answer "" } return $answer } # Implement an effective-target check for property PROP by invoking # the Tcl command ARGS and seeing if it returns true. proc check_cached_effective_target { prop args } { global et_cache set target [current_target_name] if {![info exists et_cache($prop,target)] || $et_cache($prop,target) != $target} { verbose "check_cached_effective_target $prop: checking $target" 2 set et_cache($prop,target) $target set et_cache($prop,value) [uplevel eval $args] } set value $et_cache($prop,value) verbose "check_cached_effective_target $prop: returning $value for $target" 2 return $value } # Like check_compile, but delete the output file and return true if the # compiler printed no messages. proc check_no_compiler_messages_nocache {args} { set result [eval check_compile $args] set lines [lindex $result 0] set output [lindex $result 1] remote_file build delete $output return [string match "" $lines] } # Like check_no_compiler_messages_nocache, but cache the result. # PROP is the property we're checking, and doubles as a prefix for # temporary filenames. proc check_no_compiler_messages {prop args} { return [check_cached_effective_target $prop { eval [list check_no_compiler_messages_nocache $prop] $args }] } # Like check_compile, but return true if the compiler printed no # messages and if the contents of the output file satisfy PATTERN. # If PATTERN has the form "!REGEXP", the contents satisfy it if they # don't match regular expression REGEXP, otherwise they satisfy it # if they do match regular expression PATTERN. (PATTERN can start # with something like "[!]" if the regular expression needs to match # "!" as the first character.) # # Delete the output file before returning. The other arguments are # as for check_compile. proc check_no_messages_and_pattern_nocache {basename pattern args} { global tool set result [eval [list check_compile $basename] $args] set lines [lindex $result 0] set output [lindex $result 1] set ok 0 if { [string match "" $lines] } { set chan [open "$output"] set invert [regexp {^!(.*)} $pattern dummy pattern] set ok [expr { [regexp $pattern [read $chan]] != $invert }] close $chan } remote_file build delete $output return $ok } # Like check_no_messages_and_pattern_nocache, but cache the result. # PROP is the property we're checking, and doubles as a prefix for # temporary filenames. proc check_no_messages_and_pattern {prop pattern args} { return [check_cached_effective_target $prop { eval [list check_no_messages_and_pattern_nocache $prop $pattern] $args }] } # Try to compile and run an executable from code CONTENTS. Return true # if the compiler reports no messages and if execution "passes" in the # usual DejaGNU sense. The arguments are as for check_compile, with # TYPE implicitly being "executable". proc check_runtime_nocache {basename contents args} { global tool set result [eval [list check_compile $basename executable $contents] $args] set lines [lindex $result 0] set output [lindex $result 1] set ok 0 if { [string match "" $lines] } { # No error messages, everything is OK. set result [remote_load target "./$output" "" ""] set status [lindex $result 0] verbose "check_runtime_nocache $basename: status is <$status>" 2 if { $status == "pass" } { set ok 1 } } remote_file build delete $output return $ok } # Like check_runtime_nocache, but cache the result. PROP is the # property we're checking, and doubles as a prefix for temporary # filenames. proc check_runtime {prop args} { global tool return [check_cached_effective_target $prop { eval [list check_runtime_nocache $prop] $args }] } ############################### # proc check_weak_available { } ############################### # weak symbols are only supported in some configs/object formats # this proc returns 1 if they're supported, 0 if they're not, or -1 if unsure proc check_weak_available { } { global target_cpu # All mips targets should support it if { [ string first "mips" $target_cpu ] >= 0 } { return 1 } # All solaris2 targets should support it if { [istarget *-*-solaris2*] } { return 1 } # Windows targets Cygwin and MingW32 support it if { [istarget *-*-cygwin*] || [istarget *-*-mingw*] } { return 1 } # HP-UX 10.X doesn't support it if { [istarget hppa*-*-hpux10*] } { return 0 } # ELF and ECOFF support it. a.out does with gas/gld but may also with # other linkers, so we should try it set objformat [gcc_target_object_format] switch $objformat { elf { return 1 } ecoff { return 1 } a.out { return 1 } mach-o { return 1 } som { return 1 } unknown { return -1 } default { return 0 } } } ############################### # proc check_weak_override_available { } ############################### # Like check_weak_available, but return 0 if weak symbol definitions # cannot be overridden. proc check_weak_override_available { } { if { [istarget *-*-mingw*] } { return 0 } return [check_weak_available] } ############################### # proc check_visibility_available { what_kind } ############################### # The visibility attribute is only support in some object formats # This proc returns 1 if it is supported, 0 if not. # The argument is the kind of visibility, default/protected/hidden/internal. proc check_visibility_available { what_kind } { if [string match "" $what_kind] { set what_kind "hidden" } return [check_no_compiler_messages visibility_available_$what_kind object " void f() __attribute__((visibility(\"$what_kind\"))); void f() {} "] } ############################### # proc check_alias_available { } ############################### # Determine if the target toolchain supports the alias attribute. # Returns 2 if the target supports aliases. Returns 1 if the target # only supports weak aliased. Returns 0 if the target does not # support aliases at all. Returns -1 if support for aliases could not # be determined. proc check_alias_available { } { global alias_available_saved global tool if [info exists alias_available_saved] { verbose "check_alias_available returning saved $alias_available_saved" 2 } else { set src alias[pid].c set obj alias[pid].o verbose "check_alias_available compiling testfile $src" 2 set f [open $src "w"] # Compile a small test program. The definition of "g" is # necessary to keep the Solaris assembler from complaining # about the program. puts $f "#ifdef __cplusplus\nextern \"C\"\n#endif\n" puts $f "void g() {} void f() __attribute__((alias(\"g\")));" close $f set lines [${tool}_target_compile $src $obj object ""] file delete $src remote_file build delete $obj if [string match "" $lines] then { # No error messages, everything is OK. set alias_available_saved 2 } else { if [regexp "alias definitions not supported" $lines] { verbose "check_alias_available target does not support aliases" 2 set objformat [gcc_target_object_format] if { $objformat == "elf" } { verbose "check_alias_available but target uses ELF format, so it ought to" 2 set alias_available_saved -1 } else { set alias_available_saved 0 } } else { if [regexp "only weak aliases are supported" $lines] { verbose "check_alias_available target supports only weak aliases" 2 set alias_available_saved 1 } else { set alias_available_saved -1 } } } verbose "check_alias_available returning $alias_available_saved" 2 } return $alias_available_saved } # Returns 1 if the target toolchain supports ifunc, 0 otherwise. proc check_ifunc_available { } { return [check_no_compiler_messages ifunc_available object { #ifdef __cplusplus extern "C" #endif void g() {} void f() __attribute__((ifunc("g"))); }] } # Returns true if --gc-sections is supported on the target. proc check_gc_sections_available { } { global gc_sections_available_saved global tool if {![info exists gc_sections_available_saved]} { # Some targets don't support gc-sections despite whatever's # advertised by ld's options. if { [istarget alpha*-*-*] || [istarget ia64-*-*] } { set gc_sections_available_saved 0 return 0 } # elf2flt uses -q (--emit-relocs), which is incompatible with # --gc-sections. if { [board_info target exists ldflags] && [regexp " -elf2flt\[ =\]" " [board_info target ldflags] "] } { set gc_sections_available_saved 0 return 0 } # VxWorks kernel modules are relocatable objects linked with -r, # while RTP executables are linked with -q (--emit-relocs). # Both of these options are incompatible with --gc-sections. if { [istarget *-*-vxworks*] } { set gc_sections_available_saved 0 return 0 } # Check if the ld used by gcc supports --gc-sections. set gcc_spec [${tool}_target_compile "-dumpspecs" "" "none" ""] regsub ".*\n\\*linker:\[ \t\]*\n(\[^ \t\n\]*).*" "$gcc_spec" {\1} linker set gcc_ld [lindex [${tool}_target_compile "-print-prog-name=$linker" "" "none" ""] 0] set ld_output [remote_exec host "$gcc_ld" "--help"] if { [ string first "--gc-sections" $ld_output ] >= 0 } { set gc_sections_available_saved 1 } else { set gc_sections_available_saved 0 } } return $gc_sections_available_saved } # Return 1 if according to target_info struct and explicit target list # target is supposed to support trampolines. proc check_effective_target_trampolines { } { if [target_info exists no_trampolines] { return 0 } if { [istarget avr-*-*] || [istarget hppa2.0w-hp-hpux11.23] || [istarget hppa64-hp-hpux11.23] } { return 0; } return 1 } # Return 1 if according to target_info struct and explicit target list # target is supposed to keep null pointer checks. This could be due to # use of option fno-delete-null-pointer-checks or hardwired in target. proc check_effective_target_keeps_null_pointer_checks { } { if [target_info exists keeps_null_pointer_checks] { return 1 } if { [istarget avr-*-*] } { return 1; } return 0 } # Return true if profiling is supported on the target. proc check_profiling_available { test_what } { global profiling_available_saved verbose "Profiling argument is <$test_what>" 1 # These conditions depend on the argument so examine them before # looking at the cache variable. # Tree profiling requires TLS runtime support. if { $test_what == "-fprofile-generate" } { if { ![check_effective_target_tls_runtime] } { return 0 } } # Support for -p on solaris2 relies on mcrt1.o which comes with the # vendor compiler. We cannot reliably predict the directory where the # vendor compiler (and thus mcrt1.o) is installed so we can't # necessarily find mcrt1.o even if we have it. if { [istarget *-*-solaris2*] && $test_what == "-p" } { return 0 } # We don't yet support profiling for MIPS16. if { [istarget mips*-*-*] && ![check_effective_target_nomips16] && ($test_what == "-p" || $test_what == "-pg") } { return 0 } # MinGW does not support -p. if { [istarget *-*-mingw*] && $test_what == "-p" } { return 0 } # cygwin does not support -p. if { [istarget *-*-cygwin*] && $test_what == "-p" } { return 0 } # uClibc does not have gcrt1.o. if { [check_effective_target_uclibc] && ($test_what == "-p" || $test_what == "-pg") } { return 0 } # Now examine the cache variable. if {![info exists profiling_available_saved]} { # Some targets don't have any implementation of __bb_init_func or are # missing other needed machinery. if { [istarget am3*-*-linux*] || [istarget arm*-*-eabi*] || [istarget arm*-*-elf] || [istarget arm*-*-symbianelf*] || [istarget avr-*-*] || [istarget bfin-*-*] || [istarget cris-*-*] || [istarget crisv32-*-*] || [istarget fido-*-elf] || [istarget h8300-*-*] || [istarget lm32-*-*] || [istarget m32c-*-elf] || [istarget m68k-*-elf] || [istarget m68k-*-uclinux*] || [istarget mep-*-elf] || [istarget mips*-*-elf*] || [istarget mmix-*-*] || [istarget mn10300-*-elf*] || [istarget moxie-*-elf*] || [istarget picochip-*-*] || [istarget powerpc-*-eabi*] || [istarget powerpc-*-elf] || [istarget rx-*-*] || [istarget tic6x-*-elf] || [istarget xstormy16-*] || [istarget xtensa*-*-elf] || [istarget *-*-rtems*] || [istarget *-*-vxworks*] } { set profiling_available_saved 0 } else { set profiling_available_saved 1 } } return $profiling_available_saved } # Check to see if a target is "freestanding". This is as per the definition # in Section 4 of C99 standard. Effectively, it is a target which supports no # extra headers or libraries other than what is considered essential. proc check_effective_target_freestanding { } { if { [istarget picochip-*-*] } then { return 1 } else { return 0 } } # Return 1 if target has packed layout of structure members by # default, 0 otherwise. Note that this is slightly different than # whether the target has "natural alignment": both attributes may be # false. proc check_effective_target_default_packed { } { return [check_no_compiler_messages default_packed assembly { struct x { char a; long b; } c; int s[sizeof (c) == sizeof (char) + sizeof (long) ? 1 : -1]; }] } # Return 1 if target has PCC_BITFIELD_TYPE_MATTERS defined. See # documentation, where the test also comes from. proc check_effective_target_pcc_bitfield_type_matters { } { # PCC_BITFIELD_TYPE_MATTERS isn't just about unnamed or empty # bitfields, but let's stick to the example code from the docs. return [check_no_compiler_messages pcc_bitfield_type_matters assembly { struct foo1 { char x; char :0; char y; }; struct foo2 { char x; int :0; char y; }; int s[sizeof (struct foo1) != sizeof (struct foo2) ? 1 : -1]; }] } # Add to FLAGS all the target-specific flags needed to use thread-local storage. proc add_options_for_tls { flags } { # On Solaris 9, __tls_get_addr/___tls_get_addr only lives in # libthread, so always pass -pthread for native TLS. # Need to duplicate native TLS check from # check_effective_target_tls_native to avoid recursion. if { [istarget *-*-solaris2.9*] && [check_no_messages_and_pattern tls_native "!emutls" assembly { __thread int i; int f (void) { return i; } void g (int j) { i = j; } }] } { return "$flags -pthread" } return $flags } # Return 1 if thread local storage (TLS) is supported, 0 otherwise. proc check_effective_target_tls {} { return [check_no_compiler_messages tls assembly { __thread int i; int f (void) { return i; } void g (int j) { i = j; } }] } # Return 1 if *native* thread local storage (TLS) is supported, 0 otherwise. proc check_effective_target_tls_native {} { # VxWorks uses emulated TLS machinery, but with non-standard helper # functions, so we fail to automatically detect it. if { [istarget *-*-vxworks*] } { return 0 } return [check_no_messages_and_pattern tls_native "!emutls" assembly { __thread int i; int f (void) { return i; } void g (int j) { i = j; } }] } # Return 1 if *emulated* thread local storage (TLS) is supported, 0 otherwise. proc check_effective_target_tls_emulated {} { # VxWorks uses emulated TLS machinery, but with non-standard helper # functions, so we fail to automatically detect it. if { [istarget *-*-vxworks*] } { return 1 } return [check_no_messages_and_pattern tls_emulated "emutls" assembly { __thread int i; int f (void) { return i; } void g (int j) { i = j; } }] } # Return 1 if TLS executables can run correctly, 0 otherwise. proc check_effective_target_tls_runtime {} { return [check_runtime tls_runtime { __thread int thr = 0; int main (void) { return thr; } } [add_options_for_tls ""]] } # Return 1 if atomic compare-and-swap is supported on 'int' proc check_effective_target_cas_char {} { return [check_no_compiler_messages cas_char assembly { #ifndef __GCC_HAVE_SYNC_COMPARE_AND_SWAP_1 #error unsupported #endif } ""] } proc check_effective_target_cas_int {} { return [check_no_compiler_messages cas_int assembly { #if __INT_MAX__ == 0x7fff && __GCC_HAVE_SYNC_COMPARE_AND_SWAP_2 /* ok */ #elif __INT_MAX__ == 0x7fffffff && __GCC_HAVE_SYNC_COMPARE_AND_SWAP_4 /* ok */ #else #error unsupported #endif } ""] } # Return 1 if -ffunction-sections is supported, 0 otherwise. proc check_effective_target_function_sections {} { # Darwin has its own scheme and silently accepts -ffunction-sections. if { [istarget *-*-darwin*] } { return 0 } return [check_no_compiler_messages functionsections assembly { void foo (void) { } } "-ffunction-sections"] } # Return 1 if instruction scheduling is available, 0 otherwise. proc check_effective_target_scheduling {} { return [check_no_compiler_messages scheduling object { void foo (void) { } } "-fschedule-insns"] } # Return 1 if compilation with -fgraphite is error-free for trivial # code, 0 otherwise. proc check_effective_target_fgraphite {} { return [check_no_compiler_messages fgraphite object { void foo (void) { } } "-O1 -fgraphite"] } # Return 1 if compilation with -fopenmp is error-free for trivial # code, 0 otherwise. proc check_effective_target_fopenmp {} { return [check_no_compiler_messages fopenmp object { void foo (void) { } } "-fopenmp"] } # Return 1 if compilation with -fgnu-tm is error-free for trivial # code, 0 otherwise. proc check_effective_target_fgnu_tm {} { return [check_no_compiler_messages fgnu_tm object { void foo (void) { } } "-fgnu-tm"] } # Return 1 if the target supports mmap, 0 otherwise. proc check_effective_target_mmap {} { return [check_function_available "mmap"] } # Return 1 if compilation with -pthread is error-free for trivial # code, 0 otherwise. proc check_effective_target_pthread {} { return [check_no_compiler_messages pthread object { void foo (void) { } } "-pthread"] } # Return 1 if compilation with -mpe-aligned-commons is error-free # for trivial code, 0 otherwise. proc check_effective_target_pe_aligned_commons {} { if { [istarget *-*-cygwin*] || [istarget *-*-mingw*] } { return [check_no_compiler_messages pe_aligned_commons object { int foo; } "-mpe-aligned-commons"] } return 0 } # Return 1 if the target supports -static proc check_effective_target_static {} { return [check_no_compiler_messages static executable { int main (void) { return 0; } } "-static"] } # Return 1 if the target supports -fstack-protector proc check_effective_target_fstack_protector {} { return [check_runtime fstack_protector { int main (void) { return 0; } } "-fstack-protector"] } # Return 1 if compilation with -freorder-blocks-and-partition is error-free # for trivial code, 0 otherwise. proc check_effective_target_freorder {} { return [check_no_compiler_messages freorder object { void foo (void) { } } "-freorder-blocks-and-partition"] } # Return 1 if -fpic and -fPIC are supported, as in no warnings or errors # emitted, 0 otherwise. Whether a shared library can actually be built is # out of scope for this test. proc check_effective_target_fpic { } { # Note that M68K has a multilib that supports -fpic but not # -fPIC, so we need to check both. We test with a program that # requires GOT references. foreach arg {fpic fPIC} { if [check_no_compiler_messages $arg object { extern int foo (void); extern int bar; int baz (void) { return foo () + bar; } } "-$arg"] { return 1 } } return 0 } # Return 1 if -pie, -fpie and -fPIE are supported, 0 otherwise. proc check_effective_target_pie { } { if { [istarget *-*-darwin\[912\]*] || [istarget *-*-linux*] } { return 1; } return 0 } # Return true if the target supports -mpaired-single (as used on MIPS). proc check_effective_target_mpaired_single { } { return [check_no_compiler_messages mpaired_single object { void foo (void) { } } "-mpaired-single"] } # Return true if the target has access to FPU instructions. proc check_effective_target_hard_float { } { if { [istarget mips*-*-*] } { return [check_no_compiler_messages hard_float assembly { #if (defined __mips_soft_float || defined __mips16) #error FOO #endif }] } # This proc is actually checking the availabilty of FPU # support for doubles, so on the RX we must fail if the # 64-bit double multilib has been selected. if { [istarget rx-*-*] } { return 0 # return [check_no_compiler_messages hard_float assembly { #if defined __RX_64_BIT_DOUBLES__ #error FOO #endif # }] } # The generic test equates hard_float with "no call for adding doubles". return [check_no_messages_and_pattern hard_float "!\\(call" rtl-expand { double a (double b, double c) { return b + c; } }] } # Return true if the target is a 64-bit MIPS target. proc check_effective_target_mips64 { } { return [check_no_compiler_messages mips64 assembly { #ifndef __mips64 #error FOO #endif }] } # Return true if the target is a MIPS target that does not produce # MIPS16 code. proc check_effective_target_nomips16 { } { return [check_no_compiler_messages nomips16 object { #ifndef __mips #error FOO #else /* A cheap way of testing for -mflip-mips16. */ void foo (void) { asm ("addiu $20,$20,1"); } void bar (void) { asm ("addiu $20,$20,1"); } #endif }] } # Add the options needed for MIPS16 function attributes. At the moment, # we don't support MIPS16 PIC. proc add_options_for_mips16_attribute { flags } { return "$flags -mno-abicalls -fno-pic -DMIPS16=__attribute__((mips16))" } # Return true if we can force a mode that allows MIPS16 code generation. # We don't support MIPS16 PIC, and only support MIPS16 -mhard-float # for o32 and o64. proc check_effective_target_mips16_attribute { } { return [check_no_compiler_messages mips16_attribute assembly { #ifdef PIC #error FOO #endif #if defined __mips_hard_float \ && (!defined _ABIO32 || _MIPS_SIM != _ABIO32) \ && (!defined _ABIO64 || _MIPS_SIM != _ABIO64) #error FOO #endif } [add_options_for_mips16_attribute ""]] } # Return 1 if the target supports long double larger than double when # using the new ABI, 0 otherwise. proc check_effective_target_mips_newabi_large_long_double { } { return [check_no_compiler_messages mips_newabi_large_long_double object { int dummy[sizeof(long double) > sizeof(double) ? 1 : -1]; } "-mabi=64"] } # Return true if the target is a MIPS target that has access # to the LL and SC instructions. proc check_effective_target_mips_llsc { } { if { ![istarget mips*-*-*] } { return 0 } # Assume that these instructions are always implemented for # non-elf* targets, via emulation if necessary. if { ![istarget *-*-elf*] } { return 1 } # Otherwise assume LL/SC support for everything but MIPS I. return [check_no_compiler_messages mips_llsc assembly { #if __mips == 1 #error FOO #endif }] } # Return true if the target is a MIPS target that uses in-place relocations. proc check_effective_target_mips_rel { } { if { ![istarget mips*-*-*] } { return 0 } return [check_no_compiler_messages mips_rel object { #if (defined _ABIN32 && _MIPS_SIM == _ABIN32) \ || (defined _ABI64 && _MIPS_SIM == _ABI64) #error FOO #endif }] } # Return true if the target is a MIPS target that uses the EABI. proc check_effective_target_mips_eabi { } { if { ![istarget mips*-*-*] } { return 0 } return [check_no_compiler_messages mips_eabi object { #ifndef __mips_eabi #error FOO #endif }] } # Return 1 if the current multilib does not generate PIC by default. proc check_effective_target_nonpic { } { return [check_no_compiler_messages nonpic assembly { #if __PIC__ #error FOO #endif }] } # Return 1 if the target does not use a status wrapper. proc check_effective_target_unwrapped { } { if { [target_info needs_status_wrapper] != "" \ && [target_info needs_status_wrapper] != "0" } { return 0 } return 1 } # Return true if iconv is supported on the target. In particular IBM1047. proc check_iconv_available { test_what } { global libiconv # If the tool configuration file has not set libiconv, try "-liconv" if { ![info exists libiconv] } { set libiconv "-liconv" } set test_what [lindex $test_what 1] return [check_runtime_nocache $test_what [subst { #include int main (void) { iconv_t cd; cd = iconv_open ("$test_what", "UTF-8"); if (cd == (iconv_t) -1) return 1; return 0; } }] $libiconv] } # Return 1 if an ASCII locale is supported on this host, 0 otherwise. proc check_ascii_locale_available { } { return 1 } # Return true if named sections are supported on this target. proc check_named_sections_available { } { return [check_no_compiler_messages named_sections assembly { int __attribute__ ((section("whatever"))) foo; }] } # Return true if the "naked" function attribute is supported on this target. proc check_effective_target_naked_functions { } { return [check_no_compiler_messages naked_functions assembly { void f() __attribute__((naked)); }] } # Return 1 if the target supports Fortran real kinds larger than real(8), # 0 otherwise. # # When the target name changes, replace the cached result. proc check_effective_target_fortran_large_real { } { return [check_no_compiler_messages fortran_large_real executable { ! Fortran integer,parameter :: k = selected_real_kind (precision (0.0_8) + 1) real(kind=k) :: x x = cos (x) end }] } # Return 1 if the target supports Fortran real kind real(16), # 0 otherwise. Contrary to check_effective_target_fortran_large_real # this checks for Real(16) only; the other returned real(10) if # both real(10) and real(16) are available. # # When the target name changes, replace the cached result. proc check_effective_target_fortran_real_16 { } { return [check_no_compiler_messages fortran_real_16 executable { ! Fortran real(kind=16) :: x x = cos (x) end }] } # Return 1 if the target supports SQRT for the largest floating-point # type. (Some targets lack the libm support for this FP type.) # On most targets, this check effectively checks either whether sqrtl is # available or on __float128 systems whether libquadmath is installed, # which provides sqrtq. # # When the target name changes, replace the cached result. proc check_effective_target_fortran_largest_fp_has_sqrt { } { return [check_no_compiler_messages fortran_largest_fp_has_sqrt executable { ! Fortran use iso_fortran_env, only: real_kinds integer,parameter:: maxFP = real_kinds(ubound(real_kinds,dim=1)) real(kind=maxFP), volatile :: x x = 2.0_maxFP x = sqrt (x) end }] } # Return 1 if the target supports Fortran integer kinds larger than # integer(8), 0 otherwise. # # When the target name changes, replace the cached result. proc check_effective_target_fortran_large_int { } { return [check_no_compiler_messages fortran_large_int executable { ! Fortran integer,parameter :: k = selected_int_kind (range (0_8) + 1) integer(kind=k) :: i end }] } # Return 1 if the target supports Fortran integer(16), 0 otherwise. # # When the target name changes, replace the cached result. proc check_effective_target_fortran_integer_16 { } { return [check_no_compiler_messages fortran_integer_16 executable { ! Fortran integer(16) :: i end }] } # Return 1 if we can statically link libgfortran, 0 otherwise. # # When the target name changes, replace the cached result. proc check_effective_target_static_libgfortran { } { return [check_no_compiler_messages static_libgfortran executable { ! Fortran print *, 'test' end } "-static"] } proc check_linker_plugin_available { } { return [check_no_compiler_messages_nocache linker_plugin executable { int main() { return 0; } } "-flto -fuse-linker-plugin"] } # Return 1 if the target supports executing 750CL paired-single instructions, 0 # otherwise. Cache the result. proc check_750cl_hw_available { } { return [check_cached_effective_target 750cl_hw_available { # If this is not the right target then we can skip the test. if { ![istarget powerpc-*paired*] } { expr 0 } else { check_runtime_nocache 750cl_hw_available { int main() { #ifdef __MACH__ asm volatile ("ps_mul v0,v0,v0"); #else asm volatile ("ps_mul 0,0,0"); #endif return 0; } } "-mpaired" } }] } # Return 1 if the target OS supports running SSE executables, 0 # otherwise. Cache the result. proc check_sse_os_support_available { } { return [check_cached_effective_target sse_os_support_available { # If this is not the right target then we can skip the test. if { !([istarget x86_64-*-*] || [istarget i?86-*-*]) } { expr 0 } elseif { [istarget i?86-*-solaris2*] } { # The Solaris 2 kernel doesn't save and restore SSE registers # before Solaris 9 4/04. Before that, executables die with SIGILL. check_runtime_nocache sse_os_support_available { int main () { asm volatile ("movaps %xmm0,%xmm0"); return 0; } } "-msse" } else { expr 1 } }] } # Return 1 if the target OS supports running AVX executables, 0 # otherwise. Cache the result. proc check_avx_os_support_available { } { return [check_cached_effective_target avx_os_support_available { # If this is not the right target then we can skip the test. if { !([istarget x86_64-*-*] || [istarget i?86-*-*]) } { expr 0 } else { # Check that OS has AVX and SSE saving enabled. check_runtime_nocache avx_os_support_available { int main () { unsigned int eax, edx; asm ("xgetbv" : "=a" (eax), "=d" (edx) : "c" (0)); return (eax & 6) != 6; } } "" } }] } # Return 1 if the target supports executing SSE instructions, 0 # otherwise. Cache the result. proc check_sse_hw_available { } { return [check_cached_effective_target sse_hw_available { # If this is not the right target then we can skip the test. if { !([istarget x86_64-*-*] || [istarget i?86-*-*]) } { expr 0 } else { check_runtime_nocache sse_hw_available { #include "cpuid.h" int main () { unsigned int eax, ebx, ecx, edx; if (__get_cpuid (1, &eax, &ebx, &ecx, &edx)) return !(edx & bit_SSE); return 1; } } "" } }] } # Return 1 if the target supports executing SSE2 instructions, 0 # otherwise. Cache the result. proc check_sse2_hw_available { } { return [check_cached_effective_target sse2_hw_available { # If this is not the right target then we can skip the test. if { !([istarget x86_64-*-*] || [istarget i?86-*-*]) } { expr 0 } else { check_runtime_nocache sse2_hw_available { #include "cpuid.h" int main () { unsigned int eax, ebx, ecx, edx; if (__get_cpuid (1, &eax, &ebx, &ecx, &edx)) return !(edx & bit_SSE2); return 1; } } "" } }] } # Return 1 if the target supports executing AVX instructions, 0 # otherwise. Cache the result. proc check_avx_hw_available { } { return [check_cached_effective_target avx_hw_available { # If this is not the right target then we can skip the test. if { !([istarget x86_64-*-*] || [istarget i?86-*-*]) } { expr 0 } else { check_runtime_nocache avx_hw_available { #include "cpuid.h" int main () { unsigned int eax, ebx, ecx, edx; if (__get_cpuid (1, &eax, &ebx, &ecx, &edx)) return ((ecx & (bit_AVX | bit_OSXSAVE)) != (bit_AVX | bit_OSXSAVE)); return 1; } } "" } }] } # Return 1 if the target supports running SSE executables, 0 otherwise. proc check_effective_target_sse_runtime { } { if { [check_effective_target_sse] && [check_sse_hw_available] && [check_sse_os_support_available] } { return 1 } return 0 } # Return 1 if the target supports running SSE2 executables, 0 otherwise. proc check_effective_target_sse2_runtime { } { if { [check_effective_target_sse2] && [check_sse2_hw_available] && [check_sse_os_support_available] } { return 1 } return 0 } # Return 1 if the target supports running AVX executables, 0 otherwise. proc check_effective_target_avx_runtime { } { if { [check_effective_target_avx] && [check_avx_hw_available] && [check_avx_os_support_available] } { return 1 } return 0 } # Return 1 if the target supports executing VSX instructions, 0 # otherwise. Cache the result. proc check_vsx_hw_available { } { return [check_cached_effective_target vsx_hw_available { # Some simulators are known to not support VSX instructions. # For now, disable on Darwin if { [istarget powerpc-*-eabi] || [istarget powerpc*-*-eabispe] || [istarget *-*-darwin*]} { expr 0 } else { set options "-mvsx" check_runtime_nocache vsx_hw_available { int main() { #ifdef __MACH__ asm volatile ("xxlor vs0,vs0,vs0"); #else asm volatile ("xxlor 0,0,0"); #endif return 0; } } $options } }] } # Return 1 if the target supports executing AltiVec instructions, 0 # otherwise. Cache the result. proc check_vmx_hw_available { } { return [check_cached_effective_target vmx_hw_available { # Some simulators are known to not support VMX instructions. if { [istarget powerpc-*-eabi] || [istarget powerpc*-*-eabispe] } { expr 0 } else { # Most targets don't require special flags for this test case, but # Darwin does. Just to be sure, make sure VSX is not enabled for # the altivec tests. if { [istarget *-*-darwin*] || [istarget *-*-aix*] } { set options "-maltivec -mno-vsx" } else { set options "-mno-vsx" } check_runtime_nocache vmx_hw_available { int main() { #ifdef __MACH__ asm volatile ("vor v0,v0,v0"); #else asm volatile ("vor 0,0,0"); #endif return 0; } } $options } }] } proc check_ppc_recip_hw_available { } { return [check_cached_effective_target ppc_recip_hw_available { # Some simulators may not support FRE/FRES/FRSQRTE/FRSQRTES # For now, disable on Darwin if { [istarget powerpc-*-eabi] || [istarget powerpc*-*-eabispe] || [istarget *-*-darwin*]} { expr 0 } else { set options "-mpowerpc-gfxopt -mpowerpc-gpopt -mpopcntb" check_runtime_nocache ppc_recip_hw_available { volatile double d_recip, d_rsqrt, d_four = 4.0; volatile float f_recip, f_rsqrt, f_four = 4.0f; int main() { asm volatile ("fres %0,%1" : "=f" (f_recip) : "f" (f_four)); asm volatile ("fre %0,%1" : "=d" (d_recip) : "d" (d_four)); asm volatile ("frsqrtes %0,%1" : "=f" (f_rsqrt) : "f" (f_four)); asm volatile ("frsqrte %0,%1" : "=f" (d_rsqrt) : "d" (d_four)); return 0; } } $options } }] } # Return 1 if the target supports executing AltiVec and Cell PPU # instructions, 0 otherwise. Cache the result. proc check_effective_target_cell_hw { } { return [check_cached_effective_target cell_hw_available { # Some simulators are known to not support VMX and PPU instructions. if { [istarget powerpc-*-eabi*] } { expr 0 } else { # Most targets don't require special flags for this test # case, but Darwin and AIX do. if { [istarget *-*-darwin*] || [istarget *-*-aix*] } { set options "-maltivec -mcpu=cell" } else { set options "-mcpu=cell" } check_runtime_nocache cell_hw_available { int main() { #ifdef __MACH__ asm volatile ("vor v0,v0,v0"); asm volatile ("lvlx v0,r0,r0"); #else asm volatile ("vor 0,0,0"); asm volatile ("lvlx 0,0,0"); #endif return 0; } } $options } }] } # Return 1 if the target supports executing 64-bit instructions, 0 # otherwise. Cache the result. proc check_effective_target_powerpc64 { } { global powerpc64_available_saved global tool if [info exists powerpc64_available_saved] { verbose "check_effective_target_powerpc64 returning saved $powerpc64_available_saved" 2 } else { set powerpc64_available_saved 0 # Some simulators are known to not support powerpc64 instructions. if { [istarget powerpc-*-eabi*] || [istarget powerpc-ibm-aix*] } { verbose "check_effective_target_powerpc64 returning 0" 2 return $powerpc64_available_saved } # Set up, compile, and execute a test program containing a 64-bit # instruction. Include the current process ID in the file # names to prevent conflicts with invocations for multiple # testsuites. set src ppc[pid].c set exe ppc[pid].x set f [open $src "w"] puts $f "int main() {" puts $f "#ifdef __MACH__" puts $f " asm volatile (\"extsw r0,r0\");" puts $f "#else" puts $f " asm volatile (\"extsw 0,0\");" puts $f "#endif" puts $f " return 0; }" close $f set opts "additional_flags=-mcpu=G5" verbose "check_effective_target_powerpc64 compiling testfile $src" 2 set lines [${tool}_target_compile $src $exe executable "$opts"] file delete $src if [string match "" $lines] then { # No error message, compilation succeeded. set result [${tool}_load "./$exe" "" ""] set status [lindex $result 0] remote_file build delete $exe verbose "check_effective_target_powerpc64 testfile status is <$status>" 2 if { $status == "pass" } then { set powerpc64_available_saved 1 } } else { verbose "check_effective_target_powerpc64 testfile compilation failed" 2 } } return $powerpc64_available_saved } # GCC 3.4.0 for powerpc64-*-linux* included an ABI fix for passing # complex float arguments. This affects gfortran tests that call cabsf # in libm built by an earlier compiler. Return 1 if libm uses the same # argument passing as the compiler under test, 0 otherwise. # # When the target name changes, replace the cached result. proc check_effective_target_broken_cplxf_arg { } { return [check_cached_effective_target broken_cplxf_arg { # Skip the work for targets known not to be affected. if { ![istarget powerpc64-*-linux*] } { expr 0 } elseif { ![is-effective-target lp64] } { expr 0 } else { check_runtime_nocache broken_cplxf_arg { #include extern void abort (void); float fabsf (float); float cabsf (_Complex float); int main () { _Complex float cf; float f; cf = 3 + 4.0fi; f = cabsf (cf); if (fabsf (f - 5.0) > 0.0001) abort (); return 0; } } "-lm" } }] } # Return 1 is this is a TI C6X target supporting C67X instructions proc check_effective_target_ti_c67x { } { return [check_no_compiler_messages ti_c67x assembly { #if !defined(_TMS320C6700) #error FOO #endif }] } # Return 1 is this is a TI C6X target supporting C64X+ instructions proc check_effective_target_ti_c64xp { } { return [check_no_compiler_messages ti_c64xp assembly { #if !defined(_TMS320C6400_PLUS) #error FOO #endif }] } proc check_alpha_max_hw_available { } { return [check_runtime alpha_max_hw_available { int main() { return __builtin_alpha_amask(1<<8) != 0; } }] } # Returns true iff the FUNCTION is available on the target system. # (This is essentially a Tcl implementation of Autoconf's # AC_CHECK_FUNC.) proc check_function_available { function } { return [check_no_compiler_messages ${function}_available \ executable [subst { #ifdef __cplusplus extern "C" #endif char $function (); int main () { $function (); } }] "-fno-builtin" ] } # Returns true iff "fork" is available on the target system. proc check_fork_available {} { return [check_function_available "fork"] } # Returns true iff "mkfifo" is available on the target system. proc check_mkfifo_available {} { if { [istarget *-*-cygwin*] } { # Cygwin has mkfifo, but support is incomplete. return 0 } return [check_function_available "mkfifo"] } # Returns true iff "__cxa_atexit" is used on the target system. proc check_cxa_atexit_available { } { return [check_cached_effective_target cxa_atexit_available { if { [istarget hppa*-*-hpux10*] } { # HP-UX 10 doesn't have __cxa_atexit but subsequent test passes. expr 0 } elseif { [istarget *-*-vxworks] } { # vxworks doesn't have __cxa_atexit but subsequent test passes. expr 0 } else { check_runtime_nocache cxa_atexit_available { // C++ #include static unsigned int count; struct X { X() { count = 1; } ~X() { if (count != 3) exit(1); count = 4; } }; void f() { static X x; } struct Y { Y() { f(); count = 2; } ~Y() { if (count != 2) exit(1); count = 3; } }; Y y; int main() { return 0; } } } }] } proc check_effective_target_objc2 { } { return [check_no_compiler_messages objc2 object { #ifdef __OBJC2__ int dummy[1]; #else #error #endif }] } proc check_effective_target_next_runtime { } { return [check_no_compiler_messages objc2 object { #ifdef __NEXT_RUNTIME__ int dummy[1]; #else #error #endif }] } # Return 1 if we're generating 32-bit code using default options, 0 # otherwise. proc check_effective_target_ilp32 { } { return [check_no_compiler_messages ilp32 object { int dummy[sizeof (int) == 4 && sizeof (void *) == 4 && sizeof (long) == 4 ? 1 : -1]; }] } # Return 1 if we're generating ia32 code using default options, 0 # otherwise. proc check_effective_target_ia32 { } { return [check_no_compiler_messages ia32 object { int dummy[sizeof (int) == 4 && sizeof (void *) == 4 && sizeof (long) == 4 ? 1 : -1] = { __i386__ }; }] } # Return 1 if we're generating x32 code using default options, 0 # otherwise. proc check_effective_target_x32 { } { return [check_no_compiler_messages x32 object { int dummy[sizeof (int) == 4 && sizeof (void *) == 4 && sizeof (long) == 4 ? 1 : -1] = { __x86_64__ }; }] } # Return 1 if we're generating 32-bit or larger integers using default # options, 0 otherwise. proc check_effective_target_int32plus { } { return [check_no_compiler_messages int32plus object { int dummy[sizeof (int) >= 4 ? 1 : -1]; }] } # Return 1 if we're generating 32-bit or larger pointers using default # options, 0 otherwise. proc check_effective_target_ptr32plus { } { return [check_no_compiler_messages ptr32plus object { int dummy[sizeof (void *) >= 4 ? 1 : -1]; }] } # Return 1 if we support 32-bit or larger array and structure sizes # using default options, 0 otherwise. proc check_effective_target_size32plus { } { return [check_no_compiler_messages size32plus object { char dummy[65537]; }] } # Returns 1 if we're generating 16-bit or smaller integers with the # default options, 0 otherwise. proc check_effective_target_int16 { } { return [check_no_compiler_messages int16 object { int dummy[sizeof (int) < 4 ? 1 : -1]; }] } # Return 1 if we're generating 64-bit code using default options, 0 # otherwise. proc check_effective_target_lp64 { } { return [check_no_compiler_messages lp64 object { int dummy[sizeof (int) == 4 && sizeof (void *) == 8 && sizeof (long) == 8 ? 1 : -1]; }] } # Return 1 if we're generating 64-bit code using default llp64 options, # 0 otherwise. proc check_effective_target_llp64 { } { return [check_no_compiler_messages llp64 object { int dummy[sizeof (int) == 4 && sizeof (void *) == 8 && sizeof (long long) == 8 && sizeof (long) == 4 ? 1 : -1]; }] } # Return 1 if long and int have different sizes, # 0 otherwise. proc check_effective_target_long_neq_int { } { return [check_no_compiler_messages long_ne_int object { int dummy[sizeof (int) != sizeof (long) ? 1 : -1]; }] } # Return 1 if the target supports long double larger than double, # 0 otherwise. proc check_effective_target_large_long_double { } { return [check_no_compiler_messages large_long_double object { int dummy[sizeof(long double) > sizeof(double) ? 1 : -1]; }] } # Return 1 if the target supports double larger than float, # 0 otherwise. proc check_effective_target_large_double { } { return [check_no_compiler_messages large_double object { int dummy[sizeof(double) > sizeof(float) ? 1 : -1]; }] } # Return 1 if the target supports double of 64 bits, # 0 otherwise. proc check_effective_target_double64 { } { return [check_no_compiler_messages double64 object { int dummy[sizeof(double) == 8 ? 1 : -1]; }] } # Return 1 if the target supports double of at least 64 bits, # 0 otherwise. proc check_effective_target_double64plus { } { return [check_no_compiler_messages double64plus object { int dummy[sizeof(double) >= 8 ? 1 : -1]; }] } # Return 1 if the target supports compiling fixed-point, # 0 otherwise. proc check_effective_target_fixed_point { } { return [check_no_compiler_messages fixed_point object { _Sat _Fract x; _Sat _Accum y; }] } # Return 1 if the target supports compiling decimal floating point, # 0 otherwise. proc check_effective_target_dfp_nocache { } { verbose "check_effective_target_dfp_nocache: compiling source" 2 set ret [check_no_compiler_messages_nocache dfp object { float x __attribute__((mode(DD))); }] verbose "check_effective_target_dfp_nocache: returning $ret" 2 return $ret } proc check_effective_target_dfprt_nocache { } { return [check_runtime_nocache dfprt { typedef float d64 __attribute__((mode(DD))); d64 x = 1.2df, y = 2.3dd, z; int main () { z = x + y; return 0; } }] } # Return 1 if the target supports compiling Decimal Floating Point, # 0 otherwise. # # This won't change for different subtargets so cache the result. proc check_effective_target_dfp { } { return [check_cached_effective_target dfp { check_effective_target_dfp_nocache }] } # Return 1 if the target supports linking and executing Decimal Floating # Point, 0 otherwise. # # This won't change for different subtargets so cache the result. proc check_effective_target_dfprt { } { return [check_cached_effective_target dfprt { check_effective_target_dfprt_nocache }] } # Return 1 if the target supports compiling and assembling UCN, 0 otherwise. proc check_effective_target_ucn_nocache { } { # -std=c99 is only valid for C if [check_effective_target_c] { set ucnopts "-std=c99" } append ucnopts " -fextended-identifiers" verbose "check_effective_target_ucn_nocache: compiling source" 2 set ret [check_no_compiler_messages_nocache ucn object { int \u00C0; } $ucnopts] verbose "check_effective_target_ucn_nocache: returning $ret" 2 return $ret } # Return 1 if the target supports compiling and assembling UCN, 0 otherwise. # # This won't change for different subtargets, so cache the result. proc check_effective_target_ucn { } { return [check_cached_effective_target ucn { check_effective_target_ucn_nocache }] } # Return 1 if the target needs a command line argument to enable a SIMD # instruction set. proc check_effective_target_vect_cmdline_needed { } { global et_vect_cmdline_needed_saved global et_vect_cmdline_needed_target_name if { ![info exists et_vect_cmdline_needed_target_name] } { set et_vect_cmdline_needed_target_name "" } # If the target has changed since we set the cached value, clear it. set current_target [current_target_name] if { $current_target != $et_vect_cmdline_needed_target_name } { verbose "check_effective_target_vect_cmdline_needed: `$et_vect_cmdline_needed_target_name' `$current_target'" 2 set et_vect_cmdline_needed_target_name $current_target if { [info exists et_vect_cmdline_needed_saved] } { verbose "check_effective_target_vect_cmdline_needed: removing cached result" 2 unset et_vect_cmdline_needed_saved } } if [info exists et_vect_cmdline_needed_saved] { verbose "check_effective_target_vect_cmdline_needed: using cached result" 2 } else { set et_vect_cmdline_needed_saved 1 if { [istarget alpha*-*-*] || [istarget ia64-*-*] || (([istarget x86_64-*-*] || [istarget i?86-*-*]) && ([check_effective_target_x32] || [check_effective_target_lp64])) || ([istarget powerpc*-*-*] && ([check_effective_target_powerpc_spe] || [check_effective_target_powerpc_altivec])) || ([istarget sparc*-*-*] && [check_effective_target_sparc_vis]) || [istarget spu-*-*] || ([istarget arm*-*-*] && [check_effective_target_arm_neon]) } { set et_vect_cmdline_needed_saved 0 } } verbose "check_effective_target_vect_cmdline_needed: returning $et_vect_cmdline_needed_saved" 2 return $et_vect_cmdline_needed_saved } # Return 1 if the target supports hardware vectors of int, 0 otherwise. # # This won't change for different subtargets so cache the result. proc check_effective_target_vect_int { } { global et_vect_int_saved if [info exists et_vect_int_saved] { verbose "check_effective_target_vect_int: using cached result" 2 } else { set et_vect_int_saved 0 if { [istarget i?86-*-*] || ([istarget powerpc*-*-*] && ![istarget powerpc-*-linux*paired*]) || [istarget spu-*-*] || [istarget x86_64-*-*] || [istarget sparc*-*-*] || [istarget alpha*-*-*] || [istarget ia64-*-*] || [check_effective_target_arm32] || ([istarget mips*-*-*] && [check_effective_target_mips_loongson]) } { set et_vect_int_saved 1 } } verbose "check_effective_target_vect_int: returning $et_vect_int_saved" 2 return $et_vect_int_saved } # Return 1 if the target supports signed int->float conversion # proc check_effective_target_vect_intfloat_cvt { } { global et_vect_intfloat_cvt_saved if [info exists et_vect_intfloat_cvt_saved] { verbose "check_effective_target_vect_intfloat_cvt: using cached result" 2 } else { set et_vect_intfloat_cvt_saved 0 if { [istarget i?86-*-*] || ([istarget powerpc*-*-*] && ![istarget powerpc-*-linux*paired*]) || [istarget x86_64-*-*] || ([istarget arm*-*-*] && [check_effective_target_arm_neon_ok])} { set et_vect_intfloat_cvt_saved 1 } } verbose "check_effective_target_vect_intfloat_cvt: returning $et_vect_intfloat_cvt_saved" 2 return $et_vect_intfloat_cvt_saved } #Return 1 if we're supporting __int128 for target, 0 otherwise. proc check_effective_target_int128 { } { return [check_no_compiler_messages int128 object { int dummy[ #ifndef __SIZEOF_INT128__ -1 #else 1 #endif ]; }] } # Return 1 if the target supports unsigned int->float conversion # proc check_effective_target_vect_uintfloat_cvt { } { global et_vect_uintfloat_cvt_saved if [info exists et_vect_uintfloat_cvt_saved] { verbose "check_effective_target_vect_uintfloat_cvt: using cached result" 2 } else { set et_vect_uintfloat_cvt_saved 0 if { [istarget i?86-*-*] || ([istarget powerpc*-*-*] && ![istarget powerpc-*-linux*paired*]) || [istarget x86_64-*-*] || ([istarget arm*-*-*] && [check_effective_target_arm_neon_ok])} { set et_vect_uintfloat_cvt_saved 1 } } verbose "check_effective_target_vect_uintfloat_cvt: returning $et_vect_uintfloat_cvt_saved" 2 return $et_vect_uintfloat_cvt_saved } # Return 1 if the target supports signed float->int conversion # proc check_effective_target_vect_floatint_cvt { } { global et_vect_floatint_cvt_saved if [info exists et_vect_floatint_cvt_saved] { verbose "check_effective_target_vect_floatint_cvt: using cached result" 2 } else { set et_vect_floatint_cvt_saved 0 if { [istarget i?86-*-*] || ([istarget powerpc*-*-*] && ![istarget powerpc-*-linux*paired*]) || [istarget x86_64-*-*] || ([istarget arm*-*-*] && [check_effective_target_arm_neon_ok])} { set et_vect_floatint_cvt_saved 1 } } verbose "check_effective_target_vect_floatint_cvt: returning $et_vect_floatint_cvt_saved" 2 return $et_vect_floatint_cvt_saved } # Return 1 if the target supports unsigned float->int conversion # proc check_effective_target_vect_floatuint_cvt { } { global et_vect_floatuint_cvt_saved if [info exists et_vect_floatuint_cvt_saved] { verbose "check_effective_target_vect_floatuint_cvt: using cached result" 2 } else { set et_vect_floatuint_cvt_saved 0 if { ([istarget powerpc*-*-*] && ![istarget powerpc-*-linux*paired*]) || ([istarget arm*-*-*] && [check_effective_target_arm_neon_ok])} { set et_vect_floatuint_cvt_saved 1 } } verbose "check_effective_target_vect_floatuint_cvt: returning $et_vect_floatuint_cvt_saved" 2 return $et_vect_floatuint_cvt_saved } # Return 1 is this is an arm target using 32-bit instructions proc check_effective_target_arm32 { } { return [check_no_compiler_messages arm32 assembly { #if !defined(__arm__) || (defined(__thumb__) && !defined(__thumb2__)) #error FOO #endif }] } # Return 1 is this is an arm target not using Thumb proc check_effective_target_arm_nothumb { } { return [check_no_compiler_messages arm_nothumb assembly { #if (defined(__thumb__) || defined(__thumb2__)) #error FOO #endif }] } # Return 1 if this is a little-endian ARM target proc check_effective_target_arm_little_endian { } { return [check_no_compiler_messages arm_little_endian assembly { #if !defined(__arm__) || !defined(__ARMEL__) #error FOO #endif }] } # Return 1 if this is an ARM target that only supports aligned vector accesses proc check_effective_target_arm_vect_no_misalign { } { return [check_no_compiler_messages arm_vect_no_misalign assembly { #if !defined(__arm__) \ || (defined(__ARMEL__) \ && (!defined(__thumb__) || defined(__thumb2__))) #error FOO #endif }] } # Return 1 if this is an ARM target supporting -mfpu=vfp # -mfloat-abi=softfp. Some multilibs may be incompatible with these # options. proc check_effective_target_arm_vfp_ok { } { if { [check_effective_target_arm32] } { return [check_no_compiler_messages arm_vfp_ok object { int dummy; } "-mfpu=vfp -mfloat-abi=softfp"] } else { return 0 } } # Return 1 if this is an ARM target supporting -mfpu=vfp # -mfloat-abi=hard. Some multilibs may be incompatible with these # options. proc check_effective_target_arm_hard_vfp_ok { } { if { [check_effective_target_arm32] && ! [check-flags [list "" { *-*-* } { "-mfloat-abi=*" } { "-mfloat-abi=hard" }]] } { return [check_no_compiler_messages arm_hard_vfp_ok executable { int main() { return 0;} } "-mfpu=vfp -mfloat-abi=hard"] } else { return 0 } } # Return 1 if this is an ARM target that supports DSP multiply with # current multilib flags. proc check_effective_target_arm_dsp { } { return [check_no_compiler_messages arm_dsp assembly { #ifndef __ARM_FEATURE_DSP #error not DSP #endif int i; }] } # Return 1 if this is an ARM target that supports unaligned word/halfword # load/store instructions. proc check_effective_target_arm_unaligned { } { return [check_no_compiler_messages arm_unaligned assembly { #ifndef __ARM_FEATURE_UNALIGNED #error no unaligned support #endif int i; }] } # Add the options needed for NEON. We need either -mfloat-abi=softfp # or -mfloat-abi=hard, but if one is already specified by the # multilib, use it. Similarly, if a -mfpu option already enables # NEON, do not add -mfpu=neon. proc add_options_for_arm_neon { flags } { if { ! [check_effective_target_arm_neon_ok] } { return "$flags" } global et_arm_neon_flags return "$flags $et_arm_neon_flags" } # Add the options needed for NEON. We need either -mfloat-abi=softfp # or -mfloat-abi=hard, but if one is already specified by the # multilib, use it. Similarly, if a -mfpu option already enables # NEON, do not add -mfpu=neon. proc add_options_for_arm_neonv2 { flags } { if { ! [check_effective_target_arm_neonv2_ok] } { return "$flags" } global et_arm_neonv2_flags return "$flags $et_arm_neonv2_flags" } # Return 1 if this is an ARM target supporting -mfpu=neon # -mfloat-abi=softfp or equivalent options. Some multilibs may be # incompatible with these options. Also set et_arm_neon_flags to the # best options to add. proc check_effective_target_arm_neon_ok_nocache { } { global et_arm_neon_flags set et_arm_neon_flags "" if { [check_effective_target_arm32] } { foreach flags {"" "-mfloat-abi=softfp" "-mfpu=neon" "-mfpu=neon -mfloat-abi=softfp"} { if { [check_no_compiler_messages_nocache arm_neon_ok object { #include "arm_neon.h" int dummy; } "$flags"] } { set et_arm_neon_flags $flags return 1 } } } return 0 } proc check_effective_target_arm_neon_ok { } { return [check_cached_effective_target arm_neon_ok \ check_effective_target_arm_neon_ok_nocache] } # Return 1 if this is an ARM target supporting -mfpu=neon-vfpv4 # -mfloat-abi=softfp or equivalent options. Some multilibs may be # incompatible with these options. Also set et_arm_neonv2_flags to the # best options to add. proc check_effective_target_arm_neonv2_ok_nocache { } { global et_arm_neonv2_flags set et_arm_neonv2_flags "" if { [check_effective_target_arm32] } { foreach flags {"" "-mfloat-abi=softfp" "-mfpu=neon-vfpv4" "-mfpu=neon-vfpv4 -mfloat-abi=softfp"} { if { [check_no_compiler_messages_nocache arm_neonv2_ok object { #include "arm_neon.h" float32x2_t foo (float32x2_t a, float32x2_t b, float32x2_t c) { return vfma_f32 (a, b, c); } } "$flags"] } { set et_arm_neonv2_flags $flags return 1 } } } return 0 } proc check_effective_target_arm_neonv2_ok { } { return [check_cached_effective_target arm_neonv2_ok \ check_effective_target_arm_neonv2_ok_nocache] } # Add the options needed for NEON. We need either -mfloat-abi=softfp # or -mfloat-abi=hard, but if one is already specified by the # multilib, use it. proc add_options_for_arm_fp16 { flags } { if { ! [check_effective_target_arm_fp16_ok] } { return "$flags" } global et_arm_fp16_flags return "$flags $et_arm_fp16_flags" } # Return 1 if this is an ARM target that can support a VFP fp16 variant. # Skip multilibs that are incompatible with these options and set # et_arm_fp16_flags to the best options to add. proc check_effective_target_arm_fp16_ok_nocache { } { global et_arm_fp16_flags set et_arm_fp16_flags "" if { ! [check_effective_target_arm32] } { return 0; } if [check-flags [list "" { *-*-* } { "-mfpu=*" } { "-mfpu=*fp16*" "-mfpu=*fpv[4-9]*" "-mfpu=*fpv[1-9][0-9]*" } ]] { # Multilib flags would override -mfpu. return 0 } if [check-flags [list "" { *-*-* } { "-mfloat-abi=soft" } { "" } ]] { # Must generate floating-point instructions. return 0 } if [check-flags [list "" { *-*-* } { "-mfpu=*" } { "" } ]] { # The existing -mfpu value is OK; use it, but add softfp. set et_arm_fp16_flags "-mfloat-abi=softfp" return 1; } # Add -mfpu for a VFP fp16 variant since there is no preprocessor # macro to check for this support. set flags "-mfpu=vfpv4 -mfloat-abi=softfp" if { [check_no_compiler_messages_nocache arm_fp16_ok assembly { int dummy; } "$flags"] } { set et_arm_fp16_flags "$flags" return 1 } return 0 } proc check_effective_target_arm_fp16_ok { } { return [check_cached_effective_target arm_fp16_ok \ check_effective_target_arm_fp16_ok_nocache] } # Creates a series of routines that return 1 if the given architecture # can be selected and a routine to give the flags to select that architecture # Note: Extra flags may be added to disable options from newer compilers # (Thumb in particular - but others may be added in the future) # Usage: /* { dg-require-effective-target arm_arch_v5_ok } */ # /* { dg-add-options arm_arch_v5 } */ # /* { dg-require-effective-target arm_arch_v5_multilib } */ foreach { armfunc armflag armdef } { v4 "-march=armv4 -marm" __ARM_ARCH_4__ v4t "-march=armv4t" __ARM_ARCH_4T__ v5 "-march=armv5 -marm" __ARM_ARCH_5__ v5t "-march=armv5t" __ARM_ARCH_5T__ v5te "-march=armv5te" __ARM_ARCH_5TE__ v6 "-march=armv6" __ARM_ARCH_6__ v6k "-march=armv6k" __ARM_ARCH_6K__ v6t2 "-march=armv6t2" __ARM_ARCH_6T2__ v6z "-march=armv6z" __ARM_ARCH_6Z__ v6m "-march=armv6-m -mthumb" __ARM_ARCH_6M__ v7a "-march=armv7-a" __ARM_ARCH_7A__ v7r "-march=armv7-r" __ARM_ARCH_7R__ v7m "-march=armv7-m -mthumb" __ARM_ARCH_7M__ v7em "-march=armv7e-m -mthumb" __ARM_ARCH_7EM__ v8a "-march=armv8-a" __ARM_ARCH_8A__ } { eval [string map [list FUNC $armfunc FLAG $armflag DEF $armdef ] { proc check_effective_target_arm_arch_FUNC_ok { } { if { [ string match "*-marm*" "FLAG" ] && ![check_effective_target_arm_arm_ok] } { return 0 } return [check_no_compiler_messages arm_arch_FUNC_ok assembly { #if !defined (DEF) #error FOO #endif } "FLAG" ] } proc add_options_for_arm_arch_FUNC { flags } { return "$flags FLAG" } proc check_effective_target_arm_arch_FUNC_multilib { } { return [check_runtime arm_arch_FUNC_multilib { int main (void) { return 0; } } [add_options_for_arm_arch_FUNC ""]] } }] } # Return 1 if this is an ARM target where -marm causes ARM to be # used (not Thumb) proc check_effective_target_arm_arm_ok { } { return [check_no_compiler_messages arm_arm_ok assembly { #if !defined (__arm__) || defined (__thumb__) || defined (__thumb2__) #error FOO #endif } "-marm"] } # Return 1 is this is an ARM target where -mthumb causes Thumb-1 to be # used. proc check_effective_target_arm_thumb1_ok { } { return [check_no_compiler_messages arm_thumb1_ok assembly { #if !defined(__arm__) || !defined(__thumb__) || defined(__thumb2__) #error FOO #endif } "-mthumb"] } # Return 1 is this is an ARM target where -mthumb causes Thumb-2 to be # used. proc check_effective_target_arm_thumb2_ok { } { return [check_no_compiler_messages arm_thumb2_ok assembly { #if !defined(__thumb2__) #error FOO #endif } "-mthumb"] } # Return 1 if this is an ARM target where Thumb-1 is used without options # added by the test. proc check_effective_target_arm_thumb1 { } { return [check_no_compiler_messages arm_thumb1 assembly { #if !defined(__arm__) || !defined(__thumb__) || defined(__thumb2__) #error not thumb1 #endif int i; } ""] } # Return 1 if this is an ARM target where Thumb-2 is used without options # added by the test. proc check_effective_target_arm_thumb2 { } { return [check_no_compiler_messages arm_thumb2 assembly { #if !defined(__thumb2__) #error FOO #endif int i; } ""] } # Return 1 if this is an ARM cortex-M profile cpu proc check_effective_target_arm_cortex_m { } { return [check_no_compiler_messages arm_cortex_m assembly { #if !defined(__ARM_ARCH_7M__) \ && !defined (__ARM_ARCH_7EM__) \ && !defined (__ARM_ARCH_6M__) #error FOO #endif int i; } "-mthumb"] } # Return 1 if the target supports executing NEON instructions, 0 # otherwise. Cache the result. proc check_effective_target_arm_neon_hw { } { return [check_runtime arm_neon_hw_available { int main (void) { long long a = 0, b = 1; asm ("vorr %P0, %P1, %P2" : "=w" (a) : "0" (a), "w" (b)); return (a != 1); } } [add_options_for_arm_neon ""]] } proc check_effective_target_arm_neonv2_hw { } { return [check_runtime arm_neon_hwv2_available { #include "arm_neon.h" int main (void) { float32x2_t a, b, c; asm ("vfma.f32 %P0, %P1, %P2" : "=w" (a) : "w" (b), "w" (c)); return 0; } } [add_options_for_arm_neonv2 ""]] } # Return 1 if this is a ARM target with NEON enabled. proc check_effective_target_arm_neon { } { if { [check_effective_target_arm32] } { return [check_no_compiler_messages arm_neon object { #ifndef __ARM_NEON__ #error not NEON #else int dummy; #endif }] } else { return 0 } } proc check_effective_target_arm_neonv2 { } { if { [check_effective_target_arm32] } { return [check_no_compiler_messages arm_neon object { #ifndef __ARM_NEON__ #error not NEON #else #ifndef __ARM_FEATURE_FMA #error not NEONv2 #else int dummy; #endif #endif }] } else { return 0 } } # Return 1 if this a Loongson-2E or -2F target using an ABI that supports # the Loongson vector modes. proc check_effective_target_mips_loongson { } { return [check_no_compiler_messages loongson assembly { #if !defined(__mips_loongson_vector_rev) #error FOO #endif }] } # Return 1 if this is an ARM target that adheres to the ABI for the ARM # Architecture. proc check_effective_target_arm_eabi { } { return [check_no_compiler_messages arm_eabi object { #ifndef __ARM_EABI__ #error not EABI #else int dummy; #endif }] } # Return 1 if this is an ARM target that adheres to the hard-float variant of # the ABI for the ARM Architecture (e.g. -mfloat-abi=hard). proc check_effective_target_arm_hf_eabi { } { return [check_no_compiler_messages arm_hf_eabi object { #if !defined(__ARM_EABI__) || !defined(__ARM_PCS_VFP) #error not hard-float EABI #else int dummy; #endif }] } # Return 1 if this is an ARM target supporting -mcpu=iwmmxt. # Some multilibs may be incompatible with this option. proc check_effective_target_arm_iwmmxt_ok { } { if { [check_effective_target_arm32] } { return [check_no_compiler_messages arm_iwmmxt_ok object { int dummy; } "-mcpu=iwmmxt"] } else { return 0 } } # Return 1 if this is a PowerPC target with floating-point registers. proc check_effective_target_powerpc_fprs { } { if { [istarget powerpc*-*-*] || [istarget rs6000-*-*] } { return [check_no_compiler_messages powerpc_fprs object { #ifdef __NO_FPRS__ #error no FPRs #else int dummy; #endif }] } else { return 0 } } # Return 1 if this is a PowerPC target with hardware double-precision # floating point. proc check_effective_target_powerpc_hard_double { } { if { [istarget powerpc*-*-*] || [istarget rs6000-*-*] } { return [check_no_compiler_messages powerpc_hard_double object { #ifdef _SOFT_DOUBLE #error soft double #else int dummy; #endif }] } else { return 0 } } # Return 1 if this is a PowerPC target supporting -maltivec. proc check_effective_target_powerpc_altivec_ok { } { if { ([istarget powerpc*-*-*] && ![istarget powerpc-*-linux*paired*]) || [istarget rs6000-*-*] } { # AltiVec is not supported on AIX before 5.3. if { [istarget powerpc*-*-aix4*] || [istarget powerpc*-*-aix5.1*] || [istarget powerpc*-*-aix5.2*] } { return 0 } return [check_no_compiler_messages powerpc_altivec_ok object { int dummy; } "-maltivec"] } else { return 0 } } # Return 1 if this is a PowerPC target supporting -mvsx proc check_effective_target_powerpc_vsx_ok { } { if { ([istarget powerpc*-*-*] && ![istarget powerpc-*-linux*paired*]) || [istarget rs6000-*-*] } { # AltiVec is not supported on AIX before 5.3. if { [istarget powerpc*-*-aix4*] || [istarget powerpc*-*-aix5.1*] || [istarget powerpc*-*-aix5.2*] } { return 0 } return [check_no_compiler_messages powerpc_vsx_ok object { int main (void) { #ifdef __MACH__ asm volatile ("xxlor vs0,vs0,vs0"); #else asm volatile ("xxlor 0,0,0"); #endif return 0; } } "-mvsx"] } else { return 0 } } # Return 1 if this is a PowerPC target supporting -mcpu=cell. proc check_effective_target_powerpc_ppu_ok { } { if [check_effective_target_powerpc_altivec_ok] { return [check_no_compiler_messages cell_asm_available object { int main (void) { #ifdef __MACH__ asm volatile ("lvlx v0,v0,v0"); #else asm volatile ("lvlx 0,0,0"); #endif return 0; } }] } else { return 0 } } # Return 1 if this is a PowerPC target that supports SPU. proc check_effective_target_powerpc_spu { } { if { [istarget powerpc*-*-linux*] } { return [check_effective_target_powerpc_altivec_ok] } else { return 0 } } # Return 1 if this is a PowerPC SPE target. The check includes options # specified by dg-options for this test, so don't cache the result. proc check_effective_target_powerpc_spe_nocache { } { if { [istarget powerpc*-*-*] } { return [check_no_compiler_messages_nocache powerpc_spe object { #ifndef __SPE__ #error not SPE #else int dummy; #endif } [current_compiler_flags]] } else { return 0 } } # Return 1 if this is a PowerPC target with SPE enabled. proc check_effective_target_powerpc_spe { } { if { [istarget powerpc*-*-*] } { return [check_no_compiler_messages powerpc_spe object { #ifndef __SPE__ #error not SPE #else int dummy; #endif }] } else { return 0 } } # Return 1 if this is a PowerPC target with Altivec enabled. proc check_effective_target_powerpc_altivec { } { if { [istarget powerpc*-*-*] } { return [check_no_compiler_messages powerpc_altivec object { #ifndef __ALTIVEC__ #error not Altivec #else int dummy; #endif }] } else { return 0 } } # Return 1 if this is a PowerPC 405 target. The check includes options # specified by dg-options for this test, so don't cache the result. proc check_effective_target_powerpc_405_nocache { } { if { [istarget powerpc*-*-*] || [istarget rs6000-*-*] } { return [check_no_compiler_messages_nocache powerpc_405 object { #ifdef __PPC405__ int dummy; #else #error not a PPC405 #endif } [current_compiler_flags]] } else { return 0 } } # Return 1 if this is a SPU target with a toolchain that # supports automatic overlay generation. proc check_effective_target_spu_auto_overlay { } { if { [istarget spu*-*-elf*] } { return [check_no_compiler_messages spu_auto_overlay executable { int main (void) { } } "-Wl,--auto-overlay" ] } else { return 0 } } # The VxWorks SPARC simulator accepts only EM_SPARC executables and # chokes on EM_SPARC32PLUS or EM_SPARCV9 executables. Return 1 if the # test environment appears to run executables on such a simulator. proc check_effective_target_ultrasparc_hw { } { return [check_runtime ultrasparc_hw { int main() { return 0; } } "-mcpu=ultrasparc"] } # Return 1 if the test environment supports executing UltraSPARC VIS2 # instructions. We check this by attempting: "bmask %g0, %g0, %g0" proc check_effective_target_ultrasparc_vis2_hw { } { return [check_runtime ultrasparc_vis2_hw { int main() { __asm__(".word 0x81b00320"); return 0; } } "-mcpu=ultrasparc3"] } # Return 1 if the test environment supports executing UltraSPARC VIS3 # instructions. We check this by attempting: "addxc %g0, %g0, %g0" proc check_effective_target_ultrasparc_vis3_hw { } { return [check_runtime ultrasparc_vis3_hw { int main() { __asm__(".word 0x81b00220"); return 0; } } "-mcpu=niagara3"] } # Return 1 if this is a SPARC-V9 target. proc check_effective_target_sparc_v9 { } { if { [istarget sparc*-*-*] } { return [check_no_compiler_messages sparc_v9 object { int main (void) { asm volatile ("return %i7+8"); return 0; } }] } else { return 0 } } # Return 1 if this is a SPARC target with VIS enabled. proc check_effective_target_sparc_vis { } { if { [istarget sparc*-*-*] } { return [check_no_compiler_messages sparc_vis object { #ifndef __VIS__ #error not VIS #else int dummy; #endif }] } else { return 0 } } # Return 1 if the target supports hardware vector shift operation. proc check_effective_target_vect_shift { } { global et_vect_shift_saved if [info exists et_vect_shift_saved] { verbose "check_effective_target_vect_shift: using cached result" 2 } else { set et_vect_shift_saved 0 if { ([istarget powerpc*-*-*] && ![istarget powerpc-*-linux*paired*]) || [istarget ia64-*-*] || [istarget i?86-*-*] || [istarget x86_64-*-*] || [check_effective_target_arm32] || ([istarget mips*-*-*] && [check_effective_target_mips_loongson]) } { set et_vect_shift_saved 1 } } verbose "check_effective_target_vect_shift: returning $et_vect_shift_saved" 2 return $et_vect_shift_saved } # Return 1 if the target supports hardware vector shift operation for char. proc check_effective_target_vect_shift_char { } { global et_vect_shift_char_saved if [info exists et_vect_shift_char_saved] { verbose "check_effective_target_vect_shift_char: using cached result" 2 } else { set et_vect_shift_char_saved 0 if { ([istarget powerpc*-*-*] && ![istarget powerpc-*-linux*paired*]) || [check_effective_target_arm32] } { set et_vect_shift_char_saved 1 } } verbose "check_effective_target_vect_shift_char: returning $et_vect_shift_char_saved" 2 return $et_vect_shift_char_saved } # Return 1 if the target supports hardware vectors of long, 0 otherwise. # # This can change for different subtargets so do not cache the result. proc check_effective_target_vect_long { } { if { [istarget i?86-*-*] || (([istarget powerpc*-*-*] && ![istarget powerpc-*-linux*paired*]) && [check_effective_target_ilp32]) || [istarget x86_64-*-*] || [check_effective_target_arm32] || ([istarget sparc*-*-*] && [check_effective_target_ilp32]) } { set answer 1 } else { set answer 0 } verbose "check_effective_target_vect_long: returning $answer" 2 return $answer } # Return 1 if the target supports hardware vectors of float, 0 otherwise. # # This won't change for different subtargets so cache the result. proc check_effective_target_vect_float { } { global et_vect_float_saved if [info exists et_vect_float_saved] { verbose "check_effective_target_vect_float: using cached result" 2 } else { set et_vect_float_saved 0 if { [istarget i?86-*-*] || [istarget powerpc*-*-*] || [istarget spu-*-*] || [istarget mipsisa64*-*-*] || [istarget x86_64-*-*] || [istarget ia64-*-*] || [check_effective_target_arm32] } { set et_vect_float_saved 1 } } verbose "check_effective_target_vect_float: returning $et_vect_float_saved" 2 return $et_vect_float_saved } # Return 1 if the target supports hardware vectors of double, 0 otherwise. # # This won't change for different subtargets so cache the result. proc check_effective_target_vect_double { } { global et_vect_double_saved if [info exists et_vect_double_saved] { verbose "check_effective_target_vect_double: using cached result" 2 } else { set et_vect_double_saved 0 if { [istarget i?86-*-*] || [istarget x86_64-*-*] } { if { [check_no_compiler_messages vect_double assembly { #ifdef __tune_atom__ # error No double vectorizer support. #endif }] } { set et_vect_double_saved 1 } else { set et_vect_double_saved 0 } } elseif { [istarget spu-*-*] } { set et_vect_double_saved 1 } } verbose "check_effective_target_vect_double: returning $et_vect_double_saved" 2 return $et_vect_double_saved } # Return 1 if the target supports hardware vectors of long long, 0 otherwise. # # This won't change for different subtargets so cache the result. proc check_effective_target_vect_long_long { } { global et_vect_long_long_saved if [info exists et_vect_long_long_saved] { verbose "check_effective_target_vect_long_long: using cached result" 2 } else { set et_vect_long_long_saved 0 if { [istarget i?86-*-*] || [istarget x86_64-*-*] } { set et_vect_long_long_saved 1 } } verbose "check_effective_target_vect_long_long: returning $et_vect_long_long_saved" 2 return $et_vect_long_long_saved } # Return 1 if the target plus current options does not support a vector # max instruction on "int", 0 otherwise. # # This won't change for different subtargets so cache the result. proc check_effective_target_vect_no_int_max { } { global et_vect_no_int_max_saved if [info exists et_vect_no_int_max_saved] { verbose "check_effective_target_vect_no_int_max: using cached result" 2 } else { set et_vect_no_int_max_saved 0 if { [istarget sparc*-*-*] || [istarget spu-*-*] || [istarget alpha*-*-*] || ([istarget mips*-*-*] && [check_effective_target_mips_loongson]) } { set et_vect_no_int_max_saved 1 } } verbose "check_effective_target_vect_no_int_max: returning $et_vect_no_int_max_saved" 2 return $et_vect_no_int_max_saved } # Return 1 if the target plus current options does not support a vector # add instruction on "int", 0 otherwise. # # This won't change for different subtargets so cache the result. proc check_effective_target_vect_no_int_add { } { global et_vect_no_int_add_saved if [info exists et_vect_no_int_add_saved] { verbose "check_effective_target_vect_no_int_add: using cached result" 2 } else { set et_vect_no_int_add_saved 0 # Alpha only supports vector add on V8QI and V4HI. if { [istarget alpha*-*-*] } { set et_vect_no_int_add_saved 1 } } verbose "check_effective_target_vect_no_int_add: returning $et_vect_no_int_add_saved" 2 return $et_vect_no_int_add_saved } # Return 1 if the target plus current options does not support vector # bitwise instructions, 0 otherwise. # # This won't change for different subtargets so cache the result. proc check_effective_target_vect_no_bitwise { } { global et_vect_no_bitwise_saved if [info exists et_vect_no_bitwise_saved] { verbose "check_effective_target_vect_no_bitwise: using cached result" 2 } else { set et_vect_no_bitwise_saved 0 } verbose "check_effective_target_vect_no_bitwise: returning $et_vect_no_bitwise_saved" 2 return $et_vect_no_bitwise_saved } # Return 1 if the target plus current options supports vector permutation, # 0 otherwise. # # This won't change for different subtargets so cache the result. proc check_effective_target_vect_perm { } { global et_vect_perm if [info exists et_vect_perm_saved] { verbose "check_effective_target_vect_perm: using cached result" 2 } else { set et_vect_perm_saved 0 if { [is-effective-target arm_neon_ok] || [istarget powerpc*-*-*] || [istarget spu-*-*] || [istarget i?86-*-*] || [istarget x86_64-*-*] || ([istarget mips*-*-*] && [check_effective_target_mpaired_single]) } { set et_vect_perm_saved 1 } } verbose "check_effective_target_vect_perm: returning $et_vect_perm_saved" 2 return $et_vect_perm_saved } # Return 1 if the target plus current options supports vector permutation # on byte-sized elements, 0 otherwise. # # This won't change for different subtargets so cache the result. proc check_effective_target_vect_perm_byte { } { global et_vect_perm_byte if [info exists et_vect_perm_byte_saved] { verbose "check_effective_target_vect_perm_byte: using cached result" 2 } else { set et_vect_perm_byte_saved 0 if { [is-effective-target arm_neon_ok] || [istarget powerpc*-*-*] || [istarget spu-*-*] } { set et_vect_perm_byte_saved 1 } } verbose "check_effective_target_vect_perm_byte: returning $et_vect_perm_byte_saved" 2 return $et_vect_perm_byte_saved } # Return 1 if the target plus current options supports vector permutation # on short-sized elements, 0 otherwise. # # This won't change for different subtargets so cache the result. proc check_effective_target_vect_perm_short { } { global et_vect_perm_short if [info exists et_vect_perm_short_saved] { verbose "check_effective_target_vect_perm_short: using cached result" 2 } else { set et_vect_perm_short_saved 0 if { [is-effective-target arm_neon_ok] || [istarget powerpc*-*-*] || [istarget spu-*-*] } { set et_vect_perm_short_saved 1 } } verbose "check_effective_target_vect_perm_short: returning $et_vect_perm_short_saved" 2 return $et_vect_perm_short_saved } # Return 1 if the target plus current options supports a vector # widening summation of *short* args into *int* result, 0 otherwise. # # This won't change for different subtargets so cache the result. proc check_effective_target_vect_widen_sum_hi_to_si_pattern { } { global et_vect_widen_sum_hi_to_si_pattern if [info exists et_vect_widen_sum_hi_to_si_pattern_saved] { verbose "check_effective_target_vect_widen_sum_hi_to_si_pattern: using cached result" 2 } else { set et_vect_widen_sum_hi_to_si_pattern_saved 0 if { [istarget powerpc*-*-*] || [istarget ia64-*-*] } { set et_vect_widen_sum_hi_to_si_pattern_saved 1 } } verbose "check_effective_target_vect_widen_sum_hi_to_si_pattern: returning $et_vect_widen_sum_hi_to_si_pattern_saved" 2 return $et_vect_widen_sum_hi_to_si_pattern_saved } # Return 1 if the target plus current options supports a vector # widening summation of *short* args into *int* result, 0 otherwise. # A target can also support this widening summation if it can support # promotion (unpacking) from shorts to ints. # # This won't change for different subtargets so cache the result. proc check_effective_target_vect_widen_sum_hi_to_si { } { global et_vect_widen_sum_hi_to_si if [info exists et_vect_widen_sum_hi_to_si_saved] { verbose "check_effective_target_vect_widen_sum_hi_to_si: using cached result" 2 } else { set et_vect_widen_sum_hi_to_si_saved [check_effective_target_vect_unpack] if { [istarget powerpc*-*-*] || [istarget ia64-*-*] } { set et_vect_widen_sum_hi_to_si_saved 1 } } verbose "check_effective_target_vect_widen_sum_hi_to_si: returning $et_vect_widen_sum_hi_to_si_saved" 2 return $et_vect_widen_sum_hi_to_si_saved } # Return 1 if the target plus current options supports a vector # widening summation of *char* args into *short* result, 0 otherwise. # A target can also support this widening summation if it can support # promotion (unpacking) from chars to shorts. # # This won't change for different subtargets so cache the result. proc check_effective_target_vect_widen_sum_qi_to_hi { } { global et_vect_widen_sum_qi_to_hi if [info exists et_vect_widen_sum_qi_to_hi_saved] { verbose "check_effective_target_vect_widen_sum_qi_to_hi: using cached result" 2 } else { set et_vect_widen_sum_qi_to_hi_saved 0 if { [check_effective_target_vect_unpack] || [istarget ia64-*-*] } { set et_vect_widen_sum_qi_to_hi_saved 1 } } verbose "check_effective_target_vect_widen_sum_qi_to_hi: returning $et_vect_widen_sum_qi_to_hi_saved" 2 return $et_vect_widen_sum_qi_to_hi_saved } # Return 1 if the target plus current options supports a vector # widening summation of *char* args into *int* result, 0 otherwise. # # This won't change for different subtargets so cache the result. proc check_effective_target_vect_widen_sum_qi_to_si { } { global et_vect_widen_sum_qi_to_si if [info exists et_vect_widen_sum_qi_to_si_saved] { verbose "check_effective_target_vect_widen_sum_qi_to_si: using cached result" 2 } else { set et_vect_widen_sum_qi_to_si_saved 0 if { [istarget powerpc*-*-*] } { set et_vect_widen_sum_qi_to_si_saved 1 } } verbose "check_effective_target_vect_widen_sum_qi_to_si: returning $et_vect_widen_sum_qi_to_si_saved" 2 return $et_vect_widen_sum_qi_to_si_saved } # Return 1 if the target plus current options supports a vector # widening multiplication of *char* args into *short* result, 0 otherwise. # A target can also support this widening multplication if it can support # promotion (unpacking) from chars to shorts, and vect_short_mult (non-widening # multiplication of shorts). # # This won't change for different subtargets so cache the result. proc check_effective_target_vect_widen_mult_qi_to_hi { } { global et_vect_widen_mult_qi_to_hi if [info exists et_vect_widen_mult_qi_to_hi_saved] { verbose "check_effective_target_vect_widen_mult_qi_to_hi: using cached result" 2 } else { if { [check_effective_target_vect_unpack] && [check_effective_target_vect_short_mult] } { set et_vect_widen_mult_qi_to_hi_saved 1 } else { set et_vect_widen_mult_qi_to_hi_saved 0 } if { [istarget powerpc*-*-*] || ([istarget arm*-*-*] && [check_effective_target_arm_neon_ok]) } { set et_vect_widen_mult_qi_to_hi_saved 1 } } verbose "check_effective_target_vect_widen_mult_qi_to_hi: returning $et_vect_widen_mult_qi_to_hi_saved" 2 return $et_vect_widen_mult_qi_to_hi_saved } # Return 1 if the target plus current options supports a vector # widening multiplication of *short* args into *int* result, 0 otherwise. # A target can also support this widening multplication if it can support # promotion (unpacking) from shorts to ints, and vect_int_mult (non-widening # multiplication of ints). # # This won't change for different subtargets so cache the result. proc check_effective_target_vect_widen_mult_hi_to_si { } { global et_vect_widen_mult_hi_to_si if [info exists et_vect_widen_mult_hi_to_si_saved] { verbose "check_effective_target_vect_widen_mult_hi_to_si: using cached result" 2 } else { if { [check_effective_target_vect_unpack] && [check_effective_target_vect_int_mult] } { set et_vect_widen_mult_hi_to_si_saved 1 } else { set et_vect_widen_mult_hi_to_si_saved 0 } if { [istarget powerpc*-*-*] || [istarget spu-*-*] || [istarget ia64-*-*] || [istarget i?86-*-*] || [istarget x86_64-*-*] || ([istarget arm*-*-*] && [check_effective_target_arm_neon_ok]) } { set et_vect_widen_mult_hi_to_si_saved 1 } } verbose "check_effective_target_vect_widen_mult_hi_to_si: returning $et_vect_widen_mult_hi_to_si_saved" 2 return $et_vect_widen_mult_hi_to_si_saved } # Return 1 if the target plus current options supports a vector # widening multiplication of *char* args into *short* result, 0 otherwise. # # This won't change for different subtargets so cache the result. proc check_effective_target_vect_widen_mult_qi_to_hi_pattern { } { global et_vect_widen_mult_qi_to_hi_pattern if [info exists et_vect_widen_mult_qi_to_hi_pattern_saved] { verbose "check_effective_target_vect_widen_mult_qi_to_hi_pattern: using cached result" 2 } else { set et_vect_widen_mult_qi_to_hi_pattern_saved 0 if { [istarget powerpc*-*-*] || ([istarget arm*-*-*] && [check_effective_target_arm_neon_ok]) } { set et_vect_widen_mult_qi_to_hi_pattern_saved 1 } } verbose "check_effective_target_vect_widen_mult_qi_to_hi_pattern: returning $et_vect_widen_mult_qi_to_hi_pattern_saved" 2 return $et_vect_widen_mult_qi_to_hi_pattern_saved } # Return 1 if the target plus current options supports a vector # widening multiplication of *short* args into *int* result, 0 otherwise. # # This won't change for different subtargets so cache the result. proc check_effective_target_vect_widen_mult_hi_to_si_pattern { } { global et_vect_widen_mult_hi_to_si_pattern if [info exists et_vect_widen_mult_hi_to_si_pattern_saved] { verbose "check_effective_target_vect_widen_mult_hi_to_si_pattern: using cached result" 2 } else { set et_vect_widen_mult_hi_to_si_pattern_saved 0 if { [istarget powerpc*-*-*] || [istarget spu-*-*] || [istarget ia64-*-*] || [istarget i?86-*-*] || [istarget x86_64-*-*] || ([istarget arm*-*-*] && [check_effective_target_arm_neon_ok]) } { set et_vect_widen_mult_hi_to_si_pattern_saved 1 } } verbose "check_effective_target_vect_widen_mult_hi_to_si_pattern: returning $et_vect_widen_mult_hi_to_si_pattern_saved" 2 return $et_vect_widen_mult_hi_to_si_pattern_saved } # Return 1 if the target plus current options supports a vector # widening shift, 0 otherwise. # # This won't change for different subtargets so cache the result. proc check_effective_target_vect_widen_shift { } { global et_vect_widen_shift_saved if [info exists et_vect_shift_saved] { verbose "check_effective_target_vect_widen_shift: using cached result" 2 } else { set et_vect_widen_shift_saved 0 if { ([istarget arm*-*-*] && [check_effective_target_arm_neon_ok]) } { set et_vect_widen_shift_saved 1 } } verbose "check_effective_target_vect_widen_shift: returning $et_vect_widen_shift_saved" 2 return $et_vect_widen_shift_saved } # Return 1 if the target plus current options supports a vector # dot-product of signed chars, 0 otherwise. # # This won't change for different subtargets so cache the result. proc check_effective_target_vect_sdot_qi { } { global et_vect_sdot_qi if [info exists et_vect_sdot_qi_saved] { verbose "check_effective_target_vect_sdot_qi: using cached result" 2 } else { set et_vect_sdot_qi_saved 0 if { [istarget ia64-*-*] } { set et_vect_udot_qi_saved 1 } } verbose "check_effective_target_vect_sdot_qi: returning $et_vect_sdot_qi_saved" 2 return $et_vect_sdot_qi_saved } # Return 1 if the target plus current options supports a vector # dot-product of unsigned chars, 0 otherwise. # # This won't change for different subtargets so cache the result. proc check_effective_target_vect_udot_qi { } { global et_vect_udot_qi if [info exists et_vect_udot_qi_saved] { verbose "check_effective_target_vect_udot_qi: using cached result" 2 } else { set et_vect_udot_qi_saved 0 if { [istarget powerpc*-*-*] || [istarget ia64-*-*] } { set et_vect_udot_qi_saved 1 } } verbose "check_effective_target_vect_udot_qi: returning $et_vect_udot_qi_saved" 2 return $et_vect_udot_qi_saved } # Return 1 if the target plus current options supports a vector # dot-product of signed shorts, 0 otherwise. # # This won't change for different subtargets so cache the result. proc check_effective_target_vect_sdot_hi { } { global et_vect_sdot_hi if [info exists et_vect_sdot_hi_saved] { verbose "check_effective_target_vect_sdot_hi: using cached result" 2 } else { set et_vect_sdot_hi_saved 0 if { ([istarget powerpc*-*-*] && ![istarget powerpc-*-linux*paired*]) || [istarget ia64-*-*] || [istarget i?86-*-*] || [istarget x86_64-*-*] } { set et_vect_sdot_hi_saved 1 } } verbose "check_effective_target_vect_sdot_hi: returning $et_vect_sdot_hi_saved" 2 return $et_vect_sdot_hi_saved } # Return 1 if the target plus current options supports a vector # dot-product of unsigned shorts, 0 otherwise. # # This won't change for different subtargets so cache the result. proc check_effective_target_vect_udot_hi { } { global et_vect_udot_hi if [info exists et_vect_udot_hi_saved] { verbose "check_effective_target_vect_udot_hi: using cached result" 2 } else { set et_vect_udot_hi_saved 0 if { ([istarget powerpc*-*-*] && ![istarget powerpc-*-linux*paired*]) } { set et_vect_udot_hi_saved 1 } } verbose "check_effective_target_vect_udot_hi: returning $et_vect_udot_hi_saved" 2 return $et_vect_udot_hi_saved } # Return 1 if the target plus current options supports a vector # demotion (packing) of shorts (to chars) and ints (to shorts) # using modulo arithmetic, 0 otherwise. # # This won't change for different subtargets so cache the result. proc check_effective_target_vect_pack_trunc { } { global et_vect_pack_trunc if [info exists et_vect_pack_trunc_saved] { verbose "check_effective_target_vect_pack_trunc: using cached result" 2 } else { set et_vect_pack_trunc_saved 0 if { ([istarget powerpc*-*-*] && ![istarget powerpc-*-linux*paired*]) || [istarget i?86-*-*] || [istarget x86_64-*-*] || [istarget spu-*-*] || ([istarget arm*-*-*] && [check_effective_target_arm_neon_ok] && [check_effective_target_arm_little_endian]) } { set et_vect_pack_trunc_saved 1 } } verbose "check_effective_target_vect_pack_trunc: returning $et_vect_pack_trunc_saved" 2 return $et_vect_pack_trunc_saved } # Return 1 if the target plus current options supports a vector # promotion (unpacking) of chars (to shorts) and shorts (to ints), 0 otherwise. # # This won't change for different subtargets so cache the result. proc check_effective_target_vect_unpack { } { global et_vect_unpack if [info exists et_vect_unpack_saved] { verbose "check_effective_target_vect_unpack: using cached result" 2 } else { set et_vect_unpack_saved 0 if { ([istarget powerpc*-*-*] && ![istarget powerpc-*paired*]) || [istarget i?86-*-*] || [istarget x86_64-*-*] || [istarget spu-*-*] || [istarget ia64-*-*] || ([istarget arm*-*-*] && [check_effective_target_arm_neon_ok] && [check_effective_target_arm_little_endian]) } { set et_vect_unpack_saved 1 } } verbose "check_effective_target_vect_unpack: returning $et_vect_unpack_saved" 2 return $et_vect_unpack_saved } # Return 1 if the target plus current options does not guarantee # that its STACK_BOUNDARY is >= the reguired vector alignment. # # This won't change for different subtargets so cache the result. proc check_effective_target_unaligned_stack { } { global et_unaligned_stack_saved if [info exists et_unaligned_stack_saved] { verbose "check_effective_target_unaligned_stack: using cached result" 2 } else { set et_unaligned_stack_saved 0 } verbose "check_effective_target_unaligned_stack: returning $et_unaligned_stack_saved" 2 return $et_unaligned_stack_saved } # Return 1 if the target plus current options does not support a vector # alignment mechanism, 0 otherwise. # # This won't change for different subtargets so cache the result. proc check_effective_target_vect_no_align { } { global et_vect_no_align_saved if [info exists et_vect_no_align_saved] { verbose "check_effective_target_vect_no_align: using cached result" 2 } else { set et_vect_no_align_saved 0 if { [istarget mipsisa64*-*-*] || [istarget sparc*-*-*] || [istarget ia64-*-*] || [check_effective_target_arm_vect_no_misalign] || ([istarget mips*-*-*] && [check_effective_target_mips_loongson]) } { set et_vect_no_align_saved 1 } } verbose "check_effective_target_vect_no_align: returning $et_vect_no_align_saved" 2 return $et_vect_no_align_saved } # Return 1 if the target supports a vector misalign access, 0 otherwise. # # This won't change for different subtargets so cache the result. proc check_effective_target_vect_hw_misalign { } { global et_vect_hw_misalign_saved if [info exists et_vect_hw_misalign_saved] { verbose "check_effective_target_vect_hw_misalign: using cached result" 2 } else { set et_vect_hw_misalign_saved 0 if { ([istarget x86_64-*-*] || [istarget i?86-*-*]) } { set et_vect_hw_misalign_saved 1 } } verbose "check_effective_target_vect_hw_misalign: returning $et_vect_hw_misalign_saved" 2 return $et_vect_hw_misalign_saved } # Return 1 if arrays are aligned to the vector alignment # boundary, 0 otherwise. # # This won't change for different subtargets so cache the result. proc check_effective_target_vect_aligned_arrays { } { global et_vect_aligned_arrays if [info exists et_vect_aligned_arrays_saved] { verbose "check_effective_target_vect_aligned_arrays: using cached result" 2 } else { set et_vect_aligned_arrays_saved 0 if { ([istarget x86_64-*-*] || [istarget i?86-*-*]) } { if { ([is-effective-target lp64] && ( ![check_avx_available] || [check_prefer_avx128])) } { set et_vect_aligned_arrays_saved 1 } } if [istarget spu-*-*] { set et_vect_aligned_arrays_saved 1 } } verbose "check_effective_target_vect_aligned_arrays: returning $et_vect_aligned_arrays_saved" 2 return $et_vect_aligned_arrays_saved } # Return 1 if types of size 32 bit or less are naturally aligned # (aligned to their type-size), 0 otherwise. # # This won't change for different subtargets so cache the result. proc check_effective_target_natural_alignment_32 { } { global et_natural_alignment_32 if [info exists et_natural_alignment_32_saved] { verbose "check_effective_target_natural_alignment_32: using cached result" 2 } else { # FIXME: 32bit powerpc: guaranteed only if MASK_ALIGN_NATURAL/POWER. set et_natural_alignment_32_saved 1 if { ([istarget *-*-darwin*] && [is-effective-target lp64]) } { set et_natural_alignment_32_saved 0 } } verbose "check_effective_target_natural_alignment_32: returning $et_natural_alignment_32_saved" 2 return $et_natural_alignment_32_saved } # Return 1 if types of size 64 bit or less are naturally aligned (aligned to their # type-size), 0 otherwise. # # This won't change for different subtargets so cache the result. proc check_effective_target_natural_alignment_64 { } { global et_natural_alignment_64 if [info exists et_natural_alignment_64_saved] { verbose "check_effective_target_natural_alignment_64: using cached result" 2 } else { set et_natural_alignment_64_saved 0 if { ([is-effective-target lp64] && ![istarget *-*-darwin*]) || [istarget spu-*-*] } { set et_natural_alignment_64_saved 1 } } verbose "check_effective_target_natural_alignment_64: returning $et_natural_alignment_64_saved" 2 return $et_natural_alignment_64_saved } # Return 1 if all vector types are naturally aligned (aligned to their # type-size), 0 otherwise. # # This won't change for different subtargets so cache the result. proc check_effective_target_vect_natural_alignment { } { global et_vect_natural_alignment if [info exists et_vect_natural_alignment_saved] { verbose "check_effective_target_vect_natural_alignment: using cached result" 2 } else { set et_vect_natural_alignment_saved 1 if { [check_effective_target_arm_eabi] } { set et_vect_natural_alignment_saved 0 } } verbose "check_effective_target_vect_natural_alignment: returning $et_vect_natural_alignment_saved" 2 return $et_vect_natural_alignment_saved } # Return 1 if vector alignment (for types of size 32 bit or less) is reachable, 0 otherwise. # # This won't change for different subtargets so cache the result. proc check_effective_target_vector_alignment_reachable { } { global et_vector_alignment_reachable if [info exists et_vector_alignment_reachable_saved] { verbose "check_effective_target_vector_alignment_reachable: using cached result" 2 } else { if { [check_effective_target_vect_aligned_arrays] || [check_effective_target_natural_alignment_32] } { set et_vector_alignment_reachable_saved 1 } else { set et_vector_alignment_reachable_saved 0 } } verbose "check_effective_target_vector_alignment_reachable: returning $et_vector_alignment_reachable_saved" 2 return $et_vector_alignment_reachable_saved } # Return 1 if vector alignment for 64 bit is reachable, 0 otherwise. # # This won't change for different subtargets so cache the result. proc check_effective_target_vector_alignment_reachable_for_64bit { } { global et_vector_alignment_reachable_for_64bit if [info exists et_vector_alignment_reachable_for_64bit_saved] { verbose "check_effective_target_vector_alignment_reachable_for_64bit: using cached result" 2 } else { if { [check_effective_target_vect_aligned_arrays] || [check_effective_target_natural_alignment_64] } { set et_vector_alignment_reachable_for_64bit_saved 1 } else { set et_vector_alignment_reachable_for_64bit_saved 0 } } verbose "check_effective_target_vector_alignment_reachable_for_64bit: returning $et_vector_alignment_reachable_for_64bit_saved" 2 return $et_vector_alignment_reachable_for_64bit_saved } # Return 1 if the target only requires element alignment for vector accesses proc check_effective_target_vect_element_align { } { global et_vect_element_align if [info exists et_vect_element_align] { verbose "check_effective_target_vect_element_align: using cached result" 2 } else { set et_vect_element_align 0 if { ([istarget arm*-*-*] && ![check_effective_target_arm_vect_no_misalign]) || [check_effective_target_vect_hw_misalign] } { set et_vect_element_align 1 } } verbose "check_effective_target_vect_element_align: returning $et_vect_element_align" 2 return $et_vect_element_align } # Return 1 if the target supports vector conditional operations, 0 otherwise. proc check_effective_target_vect_condition { } { global et_vect_cond_saved if [info exists et_vect_cond_saved] { verbose "check_effective_target_vect_cond: using cached result" 2 } else { set et_vect_cond_saved 0 if { [istarget powerpc*-*-*] || [istarget ia64-*-*] || [istarget i?86-*-*] || [istarget spu-*-*] || [istarget x86_64-*-*] || ([istarget arm*-*-*] && [check_effective_target_arm_neon_ok]) } { set et_vect_cond_saved 1 } } verbose "check_effective_target_vect_cond: returning $et_vect_cond_saved" 2 return $et_vect_cond_saved } # Return 1 if the target supports vector conditional operations where # the comparison has different type from the lhs, 0 otherwise. proc check_effective_target_vect_cond_mixed { } { global et_vect_cond_mixed_saved if [info exists et_vect_cond_mixed_saved] { verbose "check_effective_target_vect_cond_mixed: using cached result" 2 } else { set et_vect_cond_mixed_saved 0 if { [istarget i?86-*-*] || [istarget x86_64-*-*] || [istarget powerpc*-*-*] } { set et_vect_cond_mixed_saved 1 } } verbose "check_effective_target_vect_cond_mixed: returning $et_vect_cond_mixed_saved" 2 return $et_vect_cond_mixed_saved } # Return 1 if the target supports vector char multiplication, 0 otherwise. proc check_effective_target_vect_char_mult { } { global et_vect_char_mult_saved if [info exists et_vect_char_mult_saved] { verbose "check_effective_target_vect_char_mult: using cached result" 2 } else { set et_vect_char_mult_saved 0 if { [istarget ia64-*-*] || [istarget i?86-*-*] || [istarget x86_64-*-*] || [check_effective_target_arm32] } { set et_vect_char_mult_saved 1 } } verbose "check_effective_target_vect_char_mult: returning $et_vect_char_mult_saved" 2 return $et_vect_char_mult_saved } # Return 1 if the target supports vector short multiplication, 0 otherwise. proc check_effective_target_vect_short_mult { } { global et_vect_short_mult_saved if [info exists et_vect_short_mult_saved] { verbose "check_effective_target_vect_short_mult: using cached result" 2 } else { set et_vect_short_mult_saved 0 if { [istarget ia64-*-*] || [istarget spu-*-*] || [istarget i?86-*-*] || [istarget x86_64-*-*] || [istarget powerpc*-*-*] || [check_effective_target_arm32] || ([istarget mips*-*-*] && [check_effective_target_mips_loongson]) } { set et_vect_short_mult_saved 1 } } verbose "check_effective_target_vect_short_mult: returning $et_vect_short_mult_saved" 2 return $et_vect_short_mult_saved } # Return 1 if the target supports vector int multiplication, 0 otherwise. proc check_effective_target_vect_int_mult { } { global et_vect_int_mult_saved if [info exists et_vect_int_mult_saved] { verbose "check_effective_target_vect_int_mult: using cached result" 2 } else { set et_vect_int_mult_saved 0 if { ([istarget powerpc*-*-*] && ![istarget powerpc-*-linux*paired*]) || [istarget spu-*-*] || [istarget i?86-*-*] || [istarget x86_64-*-*] || [istarget ia64-*-*] || [check_effective_target_arm32] } { set et_vect_int_mult_saved 1 } } verbose "check_effective_target_vect_int_mult: returning $et_vect_int_mult_saved" 2 return $et_vect_int_mult_saved } # Return 1 if the target supports vector even/odd elements extraction, 0 otherwise. proc check_effective_target_vect_extract_even_odd { } { global et_vect_extract_even_odd_saved if [info exists et_vect_extract_even_odd_saved] { verbose "check_effective_target_vect_extract_even_odd: using cached result" 2 } else { set et_vect_extract_even_odd_saved 0 if { [istarget powerpc*-*-*] || [is-effective-target arm_neon_ok] || [istarget i?86-*-*] || [istarget x86_64-*-*] || [istarget ia64-*-*] || [istarget spu-*-*] || ([istarget mips*-*-*] && [check_effective_target_mpaired_single]) } { set et_vect_extract_even_odd_saved 1 } } verbose "check_effective_target_vect_extract_even_odd: returning $et_vect_extract_even_odd_saved" 2 return $et_vect_extract_even_odd_saved } # Return 1 if the target supports vector interleaving, 0 otherwise. proc check_effective_target_vect_interleave { } { global et_vect_interleave_saved if [info exists et_vect_interleave_saved] { verbose "check_effective_target_vect_interleave: using cached result" 2 } else { set et_vect_interleave_saved 0 if { [istarget powerpc*-*-*] || [is-effective-target arm_neon_ok] || [istarget i?86-*-*] || [istarget x86_64-*-*] || [istarget ia64-*-*] || [istarget spu-*-*] || ([istarget mips*-*-*] && [check_effective_target_mpaired_single]) } { set et_vect_interleave_saved 1 } } verbose "check_effective_target_vect_interleave: returning $et_vect_interleave_saved" 2 return $et_vect_interleave_saved } foreach N {2 3 4 8} { eval [string map [list N $N] { # Return 1 if the target supports 2-vector interleaving proc check_effective_target_vect_stridedN { } { global et_vect_stridedN_saved if [info exists et_vect_stridedN_saved] { verbose "check_effective_target_vect_stridedN: using cached result" 2 } else { set et_vect_stridedN_saved 0 if { (N & -N) == N && [check_effective_target_vect_interleave] && [check_effective_target_vect_extract_even_odd] } { set et_vect_stridedN_saved 1 } if { [istarget arm*-*-*] && N >= 2 && N <= 4 } { set et_vect_stridedN_saved 1 } } verbose "check_effective_target_vect_stridedN: returning $et_vect_stridedN_saved" 2 return $et_vect_stridedN_saved } }] } # Return 1 if the target supports multiple vector sizes proc check_effective_target_vect_multiple_sizes { } { global et_vect_multiple_sizes_saved set et_vect_multiple_sizes_saved 0 if { ([istarget arm*-*-*] && [check_effective_target_arm_neon_ok]) } { set et_vect_multiple_sizes_saved 1 } if { ([istarget x86_64-*-*] || [istarget i?86-*-*]) } { if { ([check_avx_available] && ![check_prefer_avx128]) } { set et_vect_multiple_sizes_saved 1 } } verbose "check_effective_target_vect_multiple_sizes: returning $et_vect_multiple_sizes_saved" 2 return $et_vect_multiple_sizes_saved } # Return 1 if the target supports vectors of 64 bits. proc check_effective_target_vect64 { } { global et_vect64_saved if [info exists et_vect64_saved] { verbose "check_effective_target_vect64: using cached result" 2 } else { set et_vect64_saved 0 if { ([istarget arm*-*-*] && [check_effective_target_arm_neon_ok]) } { set et_vect64_saved 1 } } verbose "check_effective_target_vect64: returning $et_vect64_saved" 2 return $et_vect64_saved } # Return 1 if the target supports vector copysignf calls. proc check_effective_target_vect_call_copysignf { } { global et_vect_call_copysignf_saved if [info exists et_vect_call_copysignf_saved] { verbose "check_effective_target_vect_call_copysignf: using cached result" 2 } else { set et_vect_call_copysignf_saved 0 if { [istarget i?86-*-*] || [istarget x86_64-*-*] || [istarget powerpc*-*-*] } { set et_vect_call_copysignf_saved 1 } } verbose "check_effective_target_vect_call_copysignf: returning $et_vect_call_copysignf_saved" 2 return $et_vect_call_copysignf_saved } # Return 1 if the target supports vector sqrtf calls. proc check_effective_target_vect_call_sqrtf { } { global et_vect_call_sqrtf_saved if [info exists et_vect_call_sqrtf_saved] { verbose "check_effective_target_vect_call_sqrtf: using cached result" 2 } else { set et_vect_call_sqrtf_saved 0 if { [istarget i?86-*-*] || [istarget x86_64-*-*] || ([istarget powerpc*-*-*] && [check_vsx_hw_available]) } { set et_vect_call_sqrtf_saved 1 } } verbose "check_effective_target_vect_call_sqrtf: returning $et_vect_call_sqrtf_saved" 2 return $et_vect_call_sqrtf_saved } # Return 1 if the target supports vector lrint calls. proc check_effective_target_vect_call_lrint { } { set et_vect_call_lrint 0 if { ([istarget i?86-*-*] || [istarget x86_64-*-*]) && [check_effective_target_ilp32] } { set et_vect_call_lrint 1 } verbose "check_effective_target_vect_call_lrint: returning $et_vect_call_lrint" 2 return $et_vect_call_lrint } # Return 1 if the target supports section-anchors proc check_effective_target_section_anchors { } { global et_section_anchors_saved if [info exists et_section_anchors_saved] { verbose "check_effective_target_section_anchors: using cached result" 2 } else { set et_section_anchors_saved 0 if { [istarget powerpc*-*-*] || [istarget arm*-*-*] } { set et_section_anchors_saved 1 } } verbose "check_effective_target_section_anchors: returning $et_section_anchors_saved" 2 return $et_section_anchors_saved } # Return 1 if the target supports atomic operations on "int_128" values. proc check_effective_target_sync_int_128 { } { if { ([istarget x86_64-*-*] || [istarget i?86-*-*]) && ![is-effective-target ia32] } { return 1 } else { return 0 } } # Return 1 if the target supports atomic operations on "int_128" values # and can execute them. proc check_effective_target_sync_int_128_runtime { } { if { ([istarget x86_64-*-*] || [istarget i?86-*-*]) && ![is-effective-target ia32] } { return [check_cached_effective_target sync_int_128_available { check_runtime_nocache sync_int_128_available { #include "cpuid.h" int main () { unsigned int eax, ebx, ecx, edx; if (__get_cpuid (1, &eax, &ebx, &ecx, &edx)) return !(ecx & bit_CMPXCHG16B); return 1; } } "" }] } else { return 0 } } # Return 1 if the target supports atomic operations on "long long". # # Note: 32bit x86 targets require -march=pentium in dg-options. proc check_effective_target_sync_long_long { } { if { [istarget x86_64-*-*] || [istarget i?86-*-*]) || [istarget arm*-*-*] || [istarget alpha*-*-*] || ([istarget sparc*-*-*] && [check_effective_target_lp64]) } { return 1 } else { return 0 } } # Return 1 if the target supports atomic operations on "long long" # and can execute them. # # Note: 32bit x86 targets require -march=pentium in dg-options. proc check_effective_target_sync_long_long_runtime { } { if { [istarget x86_64-*-*] || [istarget i?86-*-*] } { return [check_cached_effective_target sync_long_long_available { check_runtime_nocache sync_long_long_available { #include "cpuid.h" int main () { unsigned int eax, ebx, ecx, edx; if (__get_cpuid (1, &eax, &ebx, &ecx, &edx)) return !(edx & bit_CMPXCHG8B); return 1; } } "" }] } elseif { [istarget arm*-*-linux-*] } { return [check_runtime sync_longlong_runtime { #include int main () { long long l1; if (sizeof (long long) != 8) exit (1); /* Just check for native; checking for kernel fallback is tricky. */ asm volatile ("ldrexd r0,r1, [%0]" : : "r" (&l1) : "r0", "r1"); exit (0); } } "" ] } elseif { [istarget alpha*-*-*] } { return 1 } elseif { ([istarget sparc*-*-*] && [check_effective_target_lp64] && [check_effective_target_ultrasparc_hw]) } { return 1 } elseif { [istarget powerpc*-*-*] && [check_effective_target_lp64] } { return 1 } else { return 0 } } # Return 1 if the target supports atomic operations on "int" and "long". proc check_effective_target_sync_int_long { } { global et_sync_int_long_saved if [info exists et_sync_int_long_saved] { verbose "check_effective_target_sync_int_long: using cached result" 2 } else { set et_sync_int_long_saved 0 # This is intentionally powerpc but not rs6000, rs6000 doesn't have the # load-reserved/store-conditional instructions. if { [istarget ia64-*-*] || [istarget i?86-*-*] || [istarget x86_64-*-*] || [istarget alpha*-*-*] || [istarget arm*-*-linux-*] || [istarget bfin*-*linux*] || [istarget hppa*-*linux*] || [istarget s390*-*-*] || [istarget powerpc*-*-*] || [istarget crisv32-*-*] || [istarget cris-*-*] || ([istarget sparc*-*-*] && [check_effective_target_sparc_v9]) || [check_effective_target_mips_llsc] } { set et_sync_int_long_saved 1 } } verbose "check_effective_target_sync_int_long: returning $et_sync_int_long_saved" 2 return $et_sync_int_long_saved } # Return 1 if the target supports atomic operations on "char" and "short". proc check_effective_target_sync_char_short { } { global et_sync_char_short_saved if [info exists et_sync_char_short_saved] { verbose "check_effective_target_sync_char_short: using cached result" 2 } else { set et_sync_char_short_saved 0 # This is intentionally powerpc but not rs6000, rs6000 doesn't have the # load-reserved/store-conditional instructions. if { [istarget ia64-*-*] || [istarget i?86-*-*] || [istarget x86_64-*-*] || [istarget alpha*-*-*] || [istarget arm*-*-linux-*] || [istarget hppa*-*linux*] || [istarget s390*-*-*] || [istarget powerpc*-*-*] || [istarget crisv32-*-*] || [istarget cris-*-*] || ([istarget sparc*-*-*] && [check_effective_target_sparc_v9]) || [check_effective_target_mips_llsc] } { set et_sync_char_short_saved 1 } } verbose "check_effective_target_sync_char_short: returning $et_sync_char_short_saved" 2 return $et_sync_char_short_saved } # Return 1 if the target uses a ColdFire FPU. proc check_effective_target_coldfire_fpu { } { return [check_no_compiler_messages coldfire_fpu assembly { #ifndef __mcffpu__ #error FOO #endif }] } # Return true if this is a uClibc target. proc check_effective_target_uclibc {} { return [check_no_compiler_messages uclibc object { #include #if !defined (__UCLIBC__) #error FOO #endif }] } # Return true if this is a uclibc target and if the uclibc feature # described by __$feature__ is not present. proc check_missing_uclibc_feature {feature} { return [check_no_compiler_messages $feature object " #include #if !defined (__UCLIBC) || defined (__${feature}__) #error FOO #endif "] } # Return true if this is a Newlib target. proc check_effective_target_newlib {} { return [check_no_compiler_messages newlib object { #include }] } # Return 1 if # (a) an error of a few ULP is expected in string to floating-point # conversion functions; and # (b) overflow is not always detected correctly by those functions. proc check_effective_target_lax_strtofp {} { # By default, assume that all uClibc targets suffer from this. return [check_effective_target_uclibc] } # Return 1 if this is a target for which wcsftime is a dummy # function that always returns 0. proc check_effective_target_dummy_wcsftime {} { # By default, assume that all uClibc targets suffer from this. return [check_effective_target_uclibc] } # Return 1 if constructors with initialization priority arguments are # supposed on this target. proc check_effective_target_init_priority {} { return [check_no_compiler_messages init_priority assembly " void f() __attribute__((constructor (1000))); void f() \{\} "] } # Return 1 if the target matches the effective target 'arg', 0 otherwise. # This can be used with any check_* proc that takes no argument and # returns only 1 or 0. It could be used with check_* procs that take # arguments with keywords that pass particular arguments. proc is-effective-target { arg } { set selected 0 if { [info procs check_effective_target_${arg}] != [list] } { set selected [check_effective_target_${arg}] } else { switch $arg { "vmx_hw" { set selected [check_vmx_hw_available] } "vsx_hw" { set selected [check_vsx_hw_available] } "ppc_recip_hw" { set selected [check_ppc_recip_hw_available] } "named_sections" { set selected [check_named_sections_available] } "gc_sections" { set selected [check_gc_sections_available] } "cxa_atexit" { set selected [check_cxa_atexit_available] } default { error "unknown effective target keyword `$arg'" } } } verbose "is-effective-target: $arg $selected" 2 return $selected } # Return 1 if the argument is an effective-target keyword, 0 otherwise. proc is-effective-target-keyword { arg } { if { [info procs check_effective_target_${arg}] != [list] } { return 1 } else { # These have different names for their check_* procs. switch $arg { "vmx_hw" { return 1 } "vsx_hw" { return 1 } "ppc_recip_hw" { return 1 } "named_sections" { return 1 } "gc_sections" { return 1 } "cxa_atexit" { return 1 } default { return 0 } } } } # Return 1 if target default to short enums proc check_effective_target_short_enums { } { return [check_no_compiler_messages short_enums assembly { enum foo { bar }; int s[sizeof (enum foo) == 1 ? 1 : -1]; }] } # Return 1 if target supports merging string constants at link time. proc check_effective_target_string_merging { } { return [check_no_messages_and_pattern string_merging \ "rodata\\.str" assembly { const char *var = "String"; } {-O2}] } # Return 1 if target has the basic signed and unsigned types in # , 0 otherwise. This will be obsolete when GCC ensures a # working for all targets. proc check_effective_target_stdint_types { } { return [check_no_compiler_messages stdint_types assembly { #include int8_t a; int16_t b; int32_t c; int64_t d; uint8_t e; uint16_t f; uint32_t g; uint64_t h; }] } # Return 1 if target has the basic signed and unsigned types in # , 0 otherwise. This is for tests that GCC's notions of # these types agree with those in the header, as some systems have # only . proc check_effective_target_inttypes_types { } { return [check_no_compiler_messages inttypes_types assembly { #include int8_t a; int16_t b; int32_t c; int64_t d; uint8_t e; uint16_t f; uint32_t g; uint64_t h; }] } # Return 1 if programs are intended to be run on a simulator # (i.e. slowly) rather than hardware (i.e. fast). proc check_effective_target_simulator { } { # All "src/sim" simulators set this one. if [board_info target exists is_simulator] { return [board_info target is_simulator] } # The "sid" simulators don't set that one, but at least they set # this one. if [board_info target exists slow_simulator] { return [board_info target slow_simulator] } return 0 } # Return 1 if the target is a VxWorks kernel. proc check_effective_target_vxworks_kernel { } { return [check_no_compiler_messages vxworks_kernel assembly { #if !defined __vxworks || defined __RTP__ #error NO #endif }] } # Return 1 if the target is a VxWorks RTP. proc check_effective_target_vxworks_rtp { } { return [check_no_compiler_messages vxworks_rtp assembly { #if !defined __vxworks || !defined __RTP__ #error NO #endif }] } # Return 1 if the target is expected to provide wide character support. proc check_effective_target_wchar { } { if {[check_missing_uclibc_feature UCLIBC_HAS_WCHAR]} { return 0 } return [check_no_compiler_messages wchar assembly { #include }] } # Return 1 if the target has . proc check_effective_target_pthread_h { } { return [check_no_compiler_messages pthread_h assembly { #include }] } # Return 1 if the target can truncate a file from a file-descriptor, # as used by libgfortran/io/unix.c:fd_truncate; i.e. ftruncate or # chsize. We test for a trivially functional truncation; no stubs. # As libgfortran uses _FILE_OFFSET_BITS 64, we do too; it'll cause a # different function to be used. proc check_effective_target_fd_truncate { } { set prog { #define _FILE_OFFSET_BITS 64 #include #include #include int main () { FILE *f = fopen ("tst.tmp", "wb"); int fd; const char t[] = "test writing more than ten characters"; char s[11]; int status = 0; fd = fileno (f); write (fd, t, sizeof (t) - 1); lseek (fd, 0, 0); if (ftruncate (fd, 10) != 0) status = 1; close (fd); fclose (f); if (status) { unlink ("tst.tmp"); exit (status); } f = fopen ("tst.tmp", "rb"); if (fread (s, 1, sizeof (s), f) != 10 || strncmp (s, t, 10) != 0) status = 1; fclose (f); unlink ("tst.tmp"); exit (status); } } if { [check_runtime ftruncate $prog] } { return 1; } regsub "ftruncate" $prog "chsize" prog return [check_runtime chsize $prog] } # Add to FLAGS all the target-specific flags needed to access the c99 runtime. proc add_options_for_c99_runtime { flags } { if { [istarget *-*-solaris2*] } { return "$flags -std=c99" } if { [istarget powerpc-*-darwin*] } { return "$flags -mmacosx-version-min=10.3" } return $flags } # Add to FLAGS all the target-specific flags needed to enable # full IEEE compliance mode. proc add_options_for_ieee { flags } { if { [istarget alpha*-*-*] || [istarget sh*-*-*] } { return "$flags -mieee" } if { [istarget rx-*-*] } { return "$flags -mnofpu" } return $flags } # Add to FLAGS the flags needed to enable functions to bind locally # when using pic/PIC passes in the testsuite. proc add_options_for_bind_pic_locally { flags } { if {[check_no_compiler_messages using_pic2 assembly { #if __PIC__ != 2 #error FOO #endif }]} { return "$flags -fPIE" } if {[check_no_compiler_messages using_pic1 assembly { #if __PIC__ != 1 #error FOO #endif }]} { return "$flags -fpie" } return $flags } # Add to FLAGS the flags needed to enable 64-bit vectors. proc add_options_for_double_vectors { flags } { if [is-effective-target arm_neon_ok] { return "$flags -mvectorize-with-neon-double" } return $flags } # Return 1 if the target provides a full C99 runtime. proc check_effective_target_c99_runtime { } { return [check_cached_effective_target c99_runtime { global srcdir set file [open "$srcdir/gcc.dg/builtins-config.h"] set contents [read $file] close $file append contents { #ifndef HAVE_C99_RUNTIME #error FOO #endif } check_no_compiler_messages_nocache c99_runtime assembly \ $contents [add_options_for_c99_runtime ""] }] } # Return 1 if target wchar_t is at least 4 bytes. proc check_effective_target_4byte_wchar_t { } { return [check_no_compiler_messages 4byte_wchar_t object { int dummy[sizeof (__WCHAR_TYPE__) >= 4 ? 1 : -1]; }] } # Return 1 if the target supports automatic stack alignment. proc check_effective_target_automatic_stack_alignment { } { # Ordinarily x86 supports automatic stack alignment ... if { [istarget i?86*-*-*] || [istarget x86_64-*-*] } then { if { [istarget *-*-mingw*] || [istarget *-*-cygwin*] } { # ... except Win64 SEH doesn't. Succeed for Win32 though. return [check_effective_target_ilp32]; } return 1; } return 0; } # Return true if we are compiling for AVX target. proc check_avx_available { } { if { [check_no_compiler_messages avx_available assembly { #ifndef __AVX__ #error unsupported #endif } ""] } { return 1; } return 0; } # Return true if 32- and 16-bytes vectors are available. proc check_effective_target_vect_sizes_32B_16B { } { return [check_avx_available]; } # Return true if 128-bits vectors are preferred even if 256-bits vectors # are available. proc check_prefer_avx128 { } { if ![check_avx_available] { return 0; } return [check_no_messages_and_pattern avx_explicit "xmm" assembly { float a[1024],b[1024],c[1024]; void foo (void) { int i; for (i = 0; i < 1024; i++) a[i]=b[i]+c[i];} } "-O2 -ftree-vectorize"] } # Return 1 if avx instructions can be compiled. proc check_effective_target_avx { } { return [check_no_compiler_messages avx object { void _mm256_zeroall (void) { __builtin_ia32_vzeroall (); } } "-O2 -mavx" ] } # Return 1 if sse instructions can be compiled. proc check_effective_target_sse { } { return [check_no_compiler_messages sse object { int main () { __builtin_ia32_stmxcsr (); return 0; } } "-O2 -msse" ] } # Return 1 if sse2 instructions can be compiled. proc check_effective_target_sse2 { } { return [check_no_compiler_messages sse2 object { typedef long long __m128i __attribute__ ((__vector_size__ (16))); __m128i _mm_srli_si128 (__m128i __A, int __N) { return (__m128i)__builtin_ia32_psrldqi128 (__A, 8); } } "-O2 -msse2" ] } # Return 1 if F16C instructions can be compiled. proc check_effective_target_f16c { } { return [check_no_compiler_messages f16c object { #include "immintrin.h" float foo (unsigned short val) { return _cvtsh_ss (val); } } "-O2 -mf16c" ] } # Return 1 if C wchar_t type is compatible with char16_t. proc check_effective_target_wchar_t_char16_t_compatible { } { return [check_no_compiler_messages wchar_t_char16_t object { __WCHAR_TYPE__ wc; __CHAR16_TYPE__ *p16 = &wc; char t[(((__CHAR16_TYPE__) -1) < 0 == ((__WCHAR_TYPE__) -1) < 0) ? 1 : -1]; }] } # Return 1 if C wchar_t type is compatible with char32_t. proc check_effective_target_wchar_t_char32_t_compatible { } { return [check_no_compiler_messages wchar_t_char32_t object { __WCHAR_TYPE__ wc; __CHAR32_TYPE__ *p32 = &wc; char t[(((__CHAR32_TYPE__) -1) < 0 == ((__WCHAR_TYPE__) -1) < 0) ? 1 : -1]; }] } # Return 1 if pow10 function exists. proc check_effective_target_pow10 { } { return [check_runtime pow10 { #include int main () { double x; x = pow10 (1); return 0; } } "-lm" ] } # Return 1 if current options generate DFP instructions, 0 otherwise. proc check_effective_target_hard_dfp {} { return [check_no_messages_and_pattern hard_dfp "!adddd3" assembly { typedef float d64 __attribute__((mode(DD))); d64 x, y, z; void foo (void) { z = x + y; } }] } # Return 1 if string.h and wchar.h headers provide C++ requires overloads # for strchr etc. functions. proc check_effective_target_correct_iso_cpp_string_wchar_protos { } { return [check_no_compiler_messages correct_iso_cpp_string_wchar_protos assembly { #include #include #if !defined(__cplusplus) \ || !defined(__CORRECT_ISO_CPP_STRING_H_PROTO) \ || !defined(__CORRECT_ISO_CPP_WCHAR_H_PROTO) ISO C++ correct string.h and wchar.h protos not supported. #else int i; #endif }] } # Return 1 if GNU as is used. proc check_effective_target_gas { } { global use_gas_saved global tool if {![info exists use_gas_saved]} { # Check if the as used by gcc is GNU as. set gcc_as [lindex [${tool}_target_compile "-print-prog-name=as" "" "none" ""] 0] # Provide /dev/null as input, otherwise gas times out reading from # stdin. set status [remote_exec host "$gcc_as" "-v /dev/null"] set as_output [lindex $status 1] if { [ string first "GNU" $as_output ] >= 0 } { set use_gas_saved 1 } else { set use_gas_saved 0 } } return $use_gas_saved } # Return 1 if GNU ld is used. proc check_effective_target_gld { } { global use_gld_saved global tool if {![info exists use_gld_saved]} { # Check if the ld used by gcc is GNU ld. set gcc_ld [lindex [${tool}_target_compile "-print-prog-name=ld" "" "none" ""] 0] set status [remote_exec host "$gcc_ld" "--version"] set ld_output [lindex $status 1] if { [ string first "GNU" $ld_output ] >= 0 } { set use_gld_saved 1 } else { set use_gld_saved 0 } } return $use_gld_saved } # Return 1 if the compiler has been configure with link-time optimization # (LTO) support. proc check_effective_target_lto { } { global ENABLE_LTO return [info exists ENABLE_LTO] } # Return 1 if this target supports the -fsplit-stack option, 0 # otherwise. proc check_effective_target_split_stack {} { return [check_no_compiler_messages split_stack object { void foo (void) { } } "-fsplit-stack"] } # Return 1 if the language for the compiler under test is C. proc check_effective_target_c { } { global tool if [string match $tool "gcc"] { return 1 } return 0 } # Return 1 if the language for the compiler under test is C++. proc check_effective_target_c++ { } { global tool if [string match $tool "g++"] { return 1 } return 0 } # Check which language standard is active by checking for the presence of # one of the C++11 -std flags. This assumes that the default for the # compiler is C++98, and that there will never be multiple -std= arguments # on the command line. proc check_effective_target_c++11 { } { if ![check_effective_target_c++] { return 0 } return [check-flags { { } { } { -std=c++0x -std=gnu++0x -std=c++11 -std=gnu++11 } }] } proc check_effective_target_c++1y { } { if ![check_effective_target_c++] { return 0 } return [check-flags { { } { } { -std=c++1y -std=gnu++1y } }] } proc check_effective_target_c++98 { } { if ![check_effective_target_c++] { return 0 } return [check-flags { { } { } { } { -std=c++0x -std=gnu++0x -std=c++11 -std=gnu++11 -std=c++1y -std=gnu++1y } }] } # Return 1 if expensive testcases should be run. proc check_effective_target_run_expensive_tests { } { if { [getenv GCC_TEST_RUN_EXPENSIVE] != "" } { return 1 } return 0 } # Returns 1 if "mempcpy" is available on the target system. proc check_effective_target_mempcpy {} { return [check_function_available "mempcpy"] } # Check whether the vectorizer tests are supported by the target and # append additional target-dependent compile flags to DEFAULT_VECTCFLAGS. # Set dg-do-what-default to either compile or run, depending on target # capabilities. Return 1 if vectorizer tests are supported by # target, 0 otherwise. proc check_vect_support_and_set_flags { } { global DEFAULT_VECTCFLAGS global dg-do-what-default if [istarget powerpc-*paired*] { lappend DEFAULT_VECTCFLAGS "-mpaired" if [check_750cl_hw_available] { set dg-do-what-default run } else { set dg-do-what-default compile } } elseif [istarget powerpc*-*-*] { # Skip targets not supporting -maltivec. if ![is-effective-target powerpc_altivec_ok] { return 0 } lappend DEFAULT_VECTCFLAGS "-maltivec" if [check_vsx_hw_available] { lappend DEFAULT_VECTCFLAGS "-mvsx" "-mno-allow-movmisalign" } if [check_vmx_hw_available] { set dg-do-what-default run } else { if [is-effective-target ilp32] { # Specify a cpu that supports VMX for compile-only tests. lappend DEFAULT_VECTCFLAGS "-mcpu=970" } set dg-do-what-default compile } } elseif { [istarget spu-*-*] } { set dg-do-what-default run } elseif { [istarget i?86-*-*] || [istarget x86_64-*-*] } { lappend DEFAULT_VECTCFLAGS "-msse2" if { [check_effective_target_sse2_runtime] } { set dg-do-what-default run } else { set dg-do-what-default compile } } elseif { [istarget mips*-*-*] && ([check_effective_target_mpaired_single] || [check_effective_target_mips_loongson]) && [check_effective_target_nomips16] } { if { [check_effective_target_mpaired_single] } { lappend DEFAULT_VECTCFLAGS "-mpaired-single" } set dg-do-what-default run } elseif [istarget sparc*-*-*] { lappend DEFAULT_VECTCFLAGS "-mcpu=ultrasparc" "-mvis" if [check_effective_target_ultrasparc_hw] { set dg-do-what-default run } else { set dg-do-what-default compile } } elseif [istarget alpha*-*-*] { # Alpha's vectorization capabilities are extremely limited. # It's more effort than its worth disabling all of the tests # that it cannot pass. But if you actually want to see what # does work, command out the return. return 0 lappend DEFAULT_VECTCFLAGS "-mmax" if [check_alpha_max_hw_available] { set dg-do-what-default run } else { set dg-do-what-default compile } } elseif [istarget ia64-*-*] { set dg-do-what-default run } elseif [is-effective-target arm_neon_ok] { eval lappend DEFAULT_VECTCFLAGS [add_options_for_arm_neon ""] # NEON does not support denormals, so is not used for vectorization by # default to avoid loss of precision. We must pass -ffast-math to test # vectorization of float operations. lappend DEFAULT_VECTCFLAGS "-ffast-math" if [is-effective-target arm_neon_hw] { set dg-do-what-default run } else { set dg-do-what-default compile } } else { return 0 } return 1 } proc check_effective_target_non_strict_align {} { return [check_no_compiler_messages non_strict_align assembly { char *y; typedef char __attribute__ ((__aligned__(__BIGGEST_ALIGNMENT__))) c; c *z; void foo(void) { z = (c *) y; } } "-Wcast-align"] } # Return 1 if the target has . proc check_effective_target_ucontext_h { } { return [check_no_compiler_messages ucontext_h assembly { #include }] }