//===-- asan_test.cc ------------------------------------------------------===// // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file is a part of AddressSanitizer, an address sanity checker. // //===----------------------------------------------------------------------===// #include "asan_test_utils.h" NOINLINE void *malloc_fff(size_t size) { void *res = malloc/**/(size); break_optimization(0); return res;} NOINLINE void *malloc_eee(size_t size) { void *res = malloc_fff(size); break_optimization(0); return res;} NOINLINE void *malloc_ddd(size_t size) { void *res = malloc_eee(size); break_optimization(0); return res;} NOINLINE void *malloc_ccc(size_t size) { void *res = malloc_ddd(size); break_optimization(0); return res;} NOINLINE void *malloc_bbb(size_t size) { void *res = malloc_ccc(size); break_optimization(0); return res;} NOINLINE void *malloc_aaa(size_t size) { void *res = malloc_bbb(size); break_optimization(0); return res;} #ifndef __APPLE__ NOINLINE void *memalign_fff(size_t alignment, size_t size) { void *res = memalign/**/(alignment, size); break_optimization(0); return res;} NOINLINE void *memalign_eee(size_t alignment, size_t size) { void *res = memalign_fff(alignment, size); break_optimization(0); return res;} NOINLINE void *memalign_ddd(size_t alignment, size_t size) { void *res = memalign_eee(alignment, size); break_optimization(0); return res;} NOINLINE void *memalign_ccc(size_t alignment, size_t size) { void *res = memalign_ddd(alignment, size); break_optimization(0); return res;} NOINLINE void *memalign_bbb(size_t alignment, size_t size) { void *res = memalign_ccc(alignment, size); break_optimization(0); return res;} NOINLINE void *memalign_aaa(size_t alignment, size_t size) { void *res = memalign_bbb(alignment, size); break_optimization(0); return res;} #endif // __APPLE__ NOINLINE void free_ccc(void *p) { free(p); break_optimization(0);} NOINLINE void free_bbb(void *p) { free_ccc(p); break_optimization(0);} NOINLINE void free_aaa(void *p) { free_bbb(p); break_optimization(0);} template NOINLINE void uaf_test(int size, int off) { char *p = (char *)malloc_aaa(size); free_aaa(p); for (int i = 1; i < 100; i++) free_aaa(malloc_aaa(i)); fprintf(stderr, "writing %ld byte(s) at %p with offset %d\n", (long)sizeof(T), p, off); asan_write((T*)(p + off)); } TEST(AddressSanitizer, HasFeatureAddressSanitizerTest) { #if defined(__has_feature) && __has_feature(address_sanitizer) bool asan = 1; #elif defined(__SANITIZE_ADDRESS__) bool asan = 1; #else bool asan = 0; #endif EXPECT_EQ(true, asan); } TEST(AddressSanitizer, SimpleDeathTest) { EXPECT_DEATH(exit(1), ""); } TEST(AddressSanitizer, VariousMallocsTest) { int *a = (int*)malloc(100 * sizeof(int)); a[50] = 0; free(a); int *r = (int*)malloc(10); r = (int*)realloc(r, 2000 * sizeof(int)); r[1000] = 0; free(r); int *b = new int[100]; b[50] = 0; delete [] b; int *c = new int; *c = 0; delete c; #if !defined(__APPLE__) && !defined(ANDROID) && !defined(__ANDROID__) int *pm; int pm_res = posix_memalign((void**)&pm, kPageSize, kPageSize); EXPECT_EQ(0, pm_res); free(pm); #endif #if !defined(__APPLE__) int *ma = (int*)memalign(kPageSize, kPageSize); EXPECT_EQ(0U, (uintptr_t)ma % kPageSize); ma[123] = 0; free(ma); #endif // __APPLE__ } TEST(AddressSanitizer, CallocTest) { int *a = (int*)calloc(100, sizeof(int)); EXPECT_EQ(0, a[10]); free(a); } TEST(AddressSanitizer, VallocTest) { void *a = valloc(100); EXPECT_EQ(0U, (uintptr_t)a % kPageSize); free(a); } #ifndef __APPLE__ TEST(AddressSanitizer, PvallocTest) { char *a = (char*)pvalloc(kPageSize + 100); EXPECT_EQ(0U, (uintptr_t)a % kPageSize); a[kPageSize + 101] = 1; // we should not report an error here. free(a); a = (char*)pvalloc(0); // pvalloc(0) should allocate at least one page. EXPECT_EQ(0U, (uintptr_t)a % kPageSize); a[101] = 1; // we should not report an error here. free(a); } #endif // __APPLE__ void *TSDWorker(void *test_key) { if (test_key) { pthread_setspecific(*(pthread_key_t*)test_key, (void*)0xfeedface); } return NULL; } void TSDDestructor(void *tsd) { // Spawning a thread will check that the current thread id is not -1. pthread_t th; PTHREAD_CREATE(&th, NULL, TSDWorker, NULL); PTHREAD_JOIN(th, NULL); } // This tests triggers the thread-specific data destruction fiasco which occurs // if we don't manage the TSD destructors ourselves. We create a new pthread // key with a non-NULL destructor which is likely to be put after the destructor // of AsanThread in the list of destructors. // In this case the TSD for AsanThread will be destroyed before TSDDestructor // is called for the child thread, and a CHECK will fail when we call // pthread_create() to spawn the grandchild. TEST(AddressSanitizer, DISABLED_TSDTest) { pthread_t th; pthread_key_t test_key; pthread_key_create(&test_key, TSDDestructor); PTHREAD_CREATE(&th, NULL, TSDWorker, &test_key); PTHREAD_JOIN(th, NULL); pthread_key_delete(test_key); } TEST(AddressSanitizer, UAF_char) { const char *uaf_string = "AddressSanitizer:.*heap-use-after-free"; EXPECT_DEATH(uaf_test(1, 0), uaf_string); EXPECT_DEATH(uaf_test(10, 0), uaf_string); EXPECT_DEATH(uaf_test(10, 10), uaf_string); EXPECT_DEATH(uaf_test(kLargeMalloc, 0), uaf_string); EXPECT_DEATH(uaf_test(kLargeMalloc, kLargeMalloc / 2), uaf_string); } #if ASAN_HAS_BLACKLIST TEST(AddressSanitizer, IgnoreTest) { int *x = Ident(new int); delete Ident(x); *x = 0; } #endif // ASAN_HAS_BLACKLIST struct StructWithBitField { int bf1:1; int bf2:1; int bf3:1; int bf4:29; }; TEST(AddressSanitizer, BitFieldPositiveTest) { StructWithBitField *x = new StructWithBitField; delete Ident(x); EXPECT_DEATH(x->bf1 = 0, "use-after-free"); EXPECT_DEATH(x->bf2 = 0, "use-after-free"); EXPECT_DEATH(x->bf3 = 0, "use-after-free"); EXPECT_DEATH(x->bf4 = 0, "use-after-free"); } struct StructWithBitFields_8_24 { int a:8; int b:24; }; TEST(AddressSanitizer, BitFieldNegativeTest) { StructWithBitFields_8_24 *x = Ident(new StructWithBitFields_8_24); x->a = 0; x->b = 0; delete Ident(x); } TEST(AddressSanitizer, OutOfMemoryTest) { size_t size = SANITIZER_WORDSIZE == 64 ? (size_t)(1ULL << 48) : (0xf0000000); EXPECT_EQ(0, realloc(0, size)); EXPECT_EQ(0, realloc(0, ~Ident(0))); EXPECT_EQ(0, malloc(size)); EXPECT_EQ(0, malloc(~Ident(0))); EXPECT_EQ(0, calloc(1, size)); EXPECT_EQ(0, calloc(1, ~Ident(0))); } #if ASAN_NEEDS_SEGV namespace { const char kUnknownCrash[] = "AddressSanitizer: SEGV on unknown address"; const char kOverriddenHandler[] = "ASan signal handler has been overridden\n"; TEST(AddressSanitizer, WildAddressTest) { char *c = (char*)0x123; EXPECT_DEATH(*c = 0, kUnknownCrash); } void my_sigaction_sighandler(int, siginfo_t*, void*) { fprintf(stderr, kOverriddenHandler); exit(1); } void my_signal_sighandler(int signum) { fprintf(stderr, kOverriddenHandler); exit(1); } TEST(AddressSanitizer, SignalTest) { struct sigaction sigact; memset(&sigact, 0, sizeof(sigact)); sigact.sa_sigaction = my_sigaction_sighandler; sigact.sa_flags = SA_SIGINFO; // ASan should silently ignore sigaction()... EXPECT_EQ(0, sigaction(SIGSEGV, &sigact, 0)); #ifdef __APPLE__ EXPECT_EQ(0, sigaction(SIGBUS, &sigact, 0)); #endif char *c = (char*)0x123; EXPECT_DEATH(*c = 0, kUnknownCrash); // ... and signal(). EXPECT_EQ(0, signal(SIGSEGV, my_signal_sighandler)); EXPECT_DEATH(*c = 0, kUnknownCrash); } } // namespace #endif static void MallocStress(size_t n) { uint32_t seed = my_rand(); for (size_t iter = 0; iter < 10; iter++) { vector vec; for (size_t i = 0; i < n; i++) { if ((i % 3) == 0) { if (vec.empty()) continue; size_t idx = my_rand_r(&seed) % vec.size(); void *ptr = vec[idx]; vec[idx] = vec.back(); vec.pop_back(); free_aaa(ptr); } else { size_t size = my_rand_r(&seed) % 1000 + 1; #ifndef __APPLE__ size_t alignment = 1 << (my_rand_r(&seed) % 7 + 3); char *ptr = (char*)memalign_aaa(alignment, size); #else char *ptr = (char*) malloc_aaa(size); #endif vec.push_back(ptr); ptr[0] = 0; ptr[size-1] = 0; ptr[size/2] = 0; } } for (size_t i = 0; i < vec.size(); i++) free_aaa(vec[i]); } } TEST(AddressSanitizer, MallocStressTest) { MallocStress((ASAN_LOW_MEMORY) ? 20000 : 200000); } static void TestLargeMalloc(size_t size) { char buff[1024]; sprintf(buff, "is located 1 bytes to the left of %lu-byte", (long)size); EXPECT_DEATH(Ident((char*)malloc(size))[-1] = 0, buff); } TEST(AddressSanitizer, LargeMallocTest) { for (int i = 113; i < (1 << 28); i = i * 2 + 13) { TestLargeMalloc(i); } } #if ASAN_LOW_MEMORY != 1 TEST(AddressSanitizer, HugeMallocTest) { #ifdef __APPLE__ // It was empirically found out that 1215 megabytes is the maximum amount of // memory available to the process under AddressSanitizer on 32-bit Mac 10.6. // 32-bit Mac 10.7 gives even less (< 1G). // (the libSystem malloc() allows allocating up to 2300 megabytes without // ASan). size_t n_megs = SANITIZER_WORDSIZE == 32 ? 500 : 4100; #else size_t n_megs = SANITIZER_WORDSIZE == 32 ? 2600 : 4100; #endif TestLargeMalloc(n_megs << 20); } #endif #ifndef __APPLE__ void MemalignRun(size_t align, size_t size, int idx) { char *p = (char *)memalign(align, size); Ident(p)[idx] = 0; free(p); } TEST(AddressSanitizer, memalign) { for (int align = 16; align <= (1 << 23); align *= 2) { size_t size = align * 5; EXPECT_DEATH(MemalignRun(align, size, -1), "is located 1 bytes to the left"); EXPECT_DEATH(MemalignRun(align, size, size + 1), "is located 1 bytes to the right"); } } #endif TEST(AddressSanitizer, ThreadedMallocStressTest) { const int kNumThreads = 4; const int kNumIterations = (ASAN_LOW_MEMORY) ? 10000 : 100000; pthread_t t[kNumThreads]; for (int i = 0; i < kNumThreads; i++) { PTHREAD_CREATE(&t[i], 0, (void* (*)(void *x))MallocStress, (void*)kNumIterations); } for (int i = 0; i < kNumThreads; i++) { PTHREAD_JOIN(t[i], 0); } } void *ManyThreadsWorker(void *a) { for (int iter = 0; iter < 100; iter++) { for (size_t size = 100; size < 2000; size *= 2) { free(Ident(malloc(size))); } } return 0; } TEST(AddressSanitizer, ManyThreadsTest) { const size_t kNumThreads = (SANITIZER_WORDSIZE == 32 || ASAN_AVOID_EXPENSIVE_TESTS) ? 30 : 1000; pthread_t t[kNumThreads]; for (size_t i = 0; i < kNumThreads; i++) { PTHREAD_CREATE(&t[i], 0, ManyThreadsWorker, (void*)i); } for (size_t i = 0; i < kNumThreads; i++) { PTHREAD_JOIN(t[i], 0); } } TEST(AddressSanitizer, ReallocTest) { const int kMinElem = 5; int *ptr = (int*)malloc(sizeof(int) * kMinElem); ptr[3] = 3; for (int i = 0; i < 10000; i++) { ptr = (int*)realloc(ptr, (my_rand() % 1000 + kMinElem) * sizeof(int)); EXPECT_EQ(3, ptr[3]); } free(ptr); // Realloc pointer returned by malloc(0). int *ptr2 = Ident((int*)malloc(0)); ptr2 = Ident((int*)realloc(ptr2, sizeof(*ptr2))); *ptr2 = 42; EXPECT_EQ(42, *ptr2); free(ptr2); } TEST(AddressSanitizer, ZeroSizeMallocTest) { // Test that malloc(0) and similar functions don't return NULL. void *ptr = Ident(malloc(0)); EXPECT_TRUE(NULL != ptr); free(ptr); #if !defined(__APPLE__) && !defined(ANDROID) && !defined(__ANDROID__) int pm_res = posix_memalign(&ptr, 1<<20, 0); EXPECT_EQ(0, pm_res); EXPECT_TRUE(NULL != ptr); free(ptr); #endif int *int_ptr = new int[0]; int *int_ptr2 = new int[0]; EXPECT_TRUE(NULL != int_ptr); EXPECT_TRUE(NULL != int_ptr2); EXPECT_NE(int_ptr, int_ptr2); delete[] int_ptr; delete[] int_ptr2; } #ifndef __APPLE__ static const char *kMallocUsableSizeErrorMsg = "AddressSanitizer: attempting to call malloc_usable_size()"; TEST(AddressSanitizer, MallocUsableSizeTest) { const size_t kArraySize = 100; char *array = Ident((char*)malloc(kArraySize)); int *int_ptr = Ident(new int); EXPECT_EQ(0U, malloc_usable_size(NULL)); EXPECT_EQ(kArraySize, malloc_usable_size(array)); EXPECT_EQ(sizeof(int), malloc_usable_size(int_ptr)); EXPECT_DEATH(malloc_usable_size((void*)0x123), kMallocUsableSizeErrorMsg); EXPECT_DEATH(malloc_usable_size(array + kArraySize / 2), kMallocUsableSizeErrorMsg); free(array); EXPECT_DEATH(malloc_usable_size(array), kMallocUsableSizeErrorMsg); } #endif void WrongFree() { int *x = (int*)malloc(100 * sizeof(int)); // Use the allocated memory, otherwise Clang will optimize it out. Ident(x); free(x + 1); } TEST(AddressSanitizer, WrongFreeTest) { EXPECT_DEATH(WrongFree(), "ERROR: AddressSanitizer: attempting free.*not malloc"); } void DoubleFree() { int *x = (int*)malloc(100 * sizeof(int)); fprintf(stderr, "DoubleFree: x=%p\n", x); free(x); free(x); fprintf(stderr, "should have failed in the second free(%p)\n", x); abort(); } TEST(AddressSanitizer, DoubleFreeTest) { EXPECT_DEATH(DoubleFree(), ASAN_PCRE_DOTALL "ERROR: AddressSanitizer: attempting double-free" ".*is located 0 bytes inside of 400-byte region" ".*freed by thread T0 here" ".*previously allocated by thread T0 here"); } template NOINLINE void SizedStackTest() { char a[kSize]; char *A = Ident((char*)&a); for (size_t i = 0; i < kSize; i++) A[i] = i; EXPECT_DEATH(A[-1] = 0, ""); EXPECT_DEATH(A[-20] = 0, ""); EXPECT_DEATH(A[-31] = 0, ""); EXPECT_DEATH(A[kSize] = 0, ""); EXPECT_DEATH(A[kSize + 1] = 0, ""); EXPECT_DEATH(A[kSize + 10] = 0, ""); EXPECT_DEATH(A[kSize + 31] = 0, ""); } TEST(AddressSanitizer, SimpleStackTest) { SizedStackTest<1>(); SizedStackTest<2>(); SizedStackTest<3>(); SizedStackTest<4>(); SizedStackTest<5>(); SizedStackTest<6>(); SizedStackTest<7>(); SizedStackTest<16>(); SizedStackTest<25>(); SizedStackTest<34>(); SizedStackTest<43>(); SizedStackTest<51>(); SizedStackTest<62>(); SizedStackTest<64>(); SizedStackTest<128>(); } TEST(AddressSanitizer, ManyStackObjectsTest) { char XXX[10]; char YYY[20]; char ZZZ[30]; Ident(XXX); Ident(YYY); EXPECT_DEATH(Ident(ZZZ)[-1] = 0, ASAN_PCRE_DOTALL "XXX.*YYY.*ZZZ"); } NOINLINE static void Frame0(int frame, char *a, char *b, char *c) { char d[4] = {0}; char *D = Ident(d); switch (frame) { case 3: a[5]++; break; case 2: b[5]++; break; case 1: c[5]++; break; case 0: D[5]++; break; } } NOINLINE static void Frame1(int frame, char *a, char *b) { char c[4] = {0}; Frame0(frame, a, b, c); break_optimization(0); } NOINLINE static void Frame2(int frame, char *a) { char b[4] = {0}; Frame1(frame, a, b); break_optimization(0); } NOINLINE static void Frame3(int frame) { char a[4] = {0}; Frame2(frame, a); break_optimization(0); } TEST(AddressSanitizer, GuiltyStackFrame0Test) { EXPECT_DEATH(Frame3(0), "located .*in frame <.*Frame0"); } TEST(AddressSanitizer, GuiltyStackFrame1Test) { EXPECT_DEATH(Frame3(1), "located .*in frame <.*Frame1"); } TEST(AddressSanitizer, GuiltyStackFrame2Test) { EXPECT_DEATH(Frame3(2), "located .*in frame <.*Frame2"); } TEST(AddressSanitizer, GuiltyStackFrame3Test) { EXPECT_DEATH(Frame3(3), "located .*in frame <.*Frame3"); } NOINLINE void LongJmpFunc1(jmp_buf buf) { // create three red zones for these two stack objects. int a; int b; int *A = Ident(&a); int *B = Ident(&b); *A = *B; longjmp(buf, 1); } NOINLINE void BuiltinLongJmpFunc1(jmp_buf buf) { // create three red zones for these two stack objects. int a; int b; int *A = Ident(&a); int *B = Ident(&b); *A = *B; __builtin_longjmp((void**)buf, 1); } NOINLINE void UnderscopeLongJmpFunc1(jmp_buf buf) { // create three red zones for these two stack objects. int a; int b; int *A = Ident(&a); int *B = Ident(&b); *A = *B; _longjmp(buf, 1); } NOINLINE void SigLongJmpFunc1(sigjmp_buf buf) { // create three red zones for these two stack objects. int a; int b; int *A = Ident(&a); int *B = Ident(&b); *A = *B; siglongjmp(buf, 1); } NOINLINE void TouchStackFunc() { int a[100]; // long array will intersect with redzones from LongJmpFunc1. int *A = Ident(a); for (int i = 0; i < 100; i++) A[i] = i*i; } // Test that we handle longjmp and do not report fals positives on stack. TEST(AddressSanitizer, LongJmpTest) { static jmp_buf buf; if (!setjmp(buf)) { LongJmpFunc1(buf); } else { TouchStackFunc(); } } #if not defined(__ANDROID__) TEST(AddressSanitizer, BuiltinLongJmpTest) { static jmp_buf buf; if (!__builtin_setjmp((void**)buf)) { BuiltinLongJmpFunc1(buf); } else { TouchStackFunc(); } } #endif // not defined(__ANDROID__) TEST(AddressSanitizer, UnderscopeLongJmpTest) { static jmp_buf buf; if (!_setjmp(buf)) { UnderscopeLongJmpFunc1(buf); } else { TouchStackFunc(); } } TEST(AddressSanitizer, SigLongJmpTest) { static sigjmp_buf buf; if (!sigsetjmp(buf, 1)) { SigLongJmpFunc1(buf); } else { TouchStackFunc(); } } #ifdef __EXCEPTIONS NOINLINE void ThrowFunc() { // create three red zones for these two stack objects. int a; int b; int *A = Ident(&a); int *B = Ident(&b); *A = *B; ASAN_THROW(1); } TEST(AddressSanitizer, CxxExceptionTest) { if (ASAN_UAR) return; // TODO(kcc): this test crashes on 32-bit for some reason... if (SANITIZER_WORDSIZE == 32) return; try { ThrowFunc(); } catch(...) {} TouchStackFunc(); } #endif void *ThreadStackReuseFunc1(void *unused) { // create three red zones for these two stack objects. int a; int b; int *A = Ident(&a); int *B = Ident(&b); *A = *B; pthread_exit(0); return 0; } void *ThreadStackReuseFunc2(void *unused) { TouchStackFunc(); return 0; } TEST(AddressSanitizer, ThreadStackReuseTest) { pthread_t t; PTHREAD_CREATE(&t, 0, ThreadStackReuseFunc1, 0); PTHREAD_JOIN(t, 0); PTHREAD_CREATE(&t, 0, ThreadStackReuseFunc2, 0); PTHREAD_JOIN(t, 0); } #if defined(__i386__) || defined(__x86_64__) TEST(AddressSanitizer, Store128Test) { char *a = Ident((char*)malloc(Ident(12))); char *p = a; if (((uintptr_t)a % 16) != 0) p = a + 8; assert(((uintptr_t)p % 16) == 0); __m128i value_wide = _mm_set1_epi16(0x1234); EXPECT_DEATH(_mm_store_si128((__m128i*)p, value_wide), "AddressSanitizer: heap-buffer-overflow"); EXPECT_DEATH(_mm_store_si128((__m128i*)p, value_wide), "WRITE of size 16"); EXPECT_DEATH(_mm_store_si128((__m128i*)p, value_wide), "located 0 bytes to the right of 12-byte"); free(a); } #endif string RightOOBErrorMessage(int oob_distance, bool is_write) { assert(oob_distance >= 0); char expected_str[100]; sprintf(expected_str, ASAN_PCRE_DOTALL "%s.*located %d bytes to the right", is_write ? "WRITE" : "READ", oob_distance); return string(expected_str); } string RightOOBWriteMessage(int oob_distance) { return RightOOBErrorMessage(oob_distance, /*is_write*/true); } string RightOOBReadMessage(int oob_distance) { return RightOOBErrorMessage(oob_distance, /*is_write*/false); } string LeftOOBErrorMessage(int oob_distance, bool is_write) { assert(oob_distance > 0); char expected_str[100]; sprintf(expected_str, ASAN_PCRE_DOTALL "%s.*located %d bytes to the left", is_write ? "WRITE" : "READ", oob_distance); return string(expected_str); } string LeftOOBWriteMessage(int oob_distance) { return LeftOOBErrorMessage(oob_distance, /*is_write*/true); } string LeftOOBReadMessage(int oob_distance) { return LeftOOBErrorMessage(oob_distance, /*is_write*/false); } string LeftOOBAccessMessage(int oob_distance) { assert(oob_distance > 0); char expected_str[100]; sprintf(expected_str, "located %d bytes to the left", oob_distance); return string(expected_str); } char* MallocAndMemsetString(size_t size, char ch) { char *s = Ident((char*)malloc(size)); memset(s, ch, size); return s; } char* MallocAndMemsetString(size_t size) { return MallocAndMemsetString(size, 'z'); } #if defined(__linux__) && !defined(ANDROID) && !defined(__ANDROID__) #define READ_TEST(READ_N_BYTES) \ char *x = new char[10]; \ int fd = open("/proc/self/stat", O_RDONLY); \ ASSERT_GT(fd, 0); \ EXPECT_DEATH(READ_N_BYTES, \ ASAN_PCRE_DOTALL \ "AddressSanitizer: heap-buffer-overflow" \ ".* is located 0 bytes to the right of 10-byte region"); \ close(fd); \ delete [] x; \ TEST(AddressSanitizer, pread) { READ_TEST(pread(fd, x, 15, 0)); } TEST(AddressSanitizer, pread64) { READ_TEST(pread64(fd, x, 15, 0)); } TEST(AddressSanitizer, read) { READ_TEST(read(fd, x, 15)); } #endif // defined(__linux__) && !defined(ANDROID) && !defined(__ANDROID__) // This test case fails // Clang optimizes memcpy/memset calls which lead to unaligned access TEST(AddressSanitizer, DISABLED_MemIntrinsicUnalignedAccessTest) { int size = Ident(4096); char *s = Ident((char*)malloc(size)); EXPECT_DEATH(memset(s + size - 1, 0, 2), RightOOBWriteMessage(0)); free(s); } // TODO(samsonov): Add a test with malloc(0) // TODO(samsonov): Add tests for str* and mem* functions. NOINLINE static int LargeFunction(bool do_bad_access) { int *x = new int[100]; x[0]++; x[1]++; x[2]++; x[3]++; x[4]++; x[5]++; x[6]++; x[7]++; x[8]++; x[9]++; x[do_bad_access ? 100 : 0]++; int res = __LINE__; x[10]++; x[11]++; x[12]++; x[13]++; x[14]++; x[15]++; x[16]++; x[17]++; x[18]++; x[19]++; delete x; return res; } // Test the we have correct debug info for the failing instruction. // This test requires the in-process symbolizer to be enabled by default. TEST(AddressSanitizer, DISABLED_LargeFunctionSymbolizeTest) { int failing_line = LargeFunction(false); char expected_warning[128]; sprintf(expected_warning, "LargeFunction.*asan_test.*:%d", failing_line); EXPECT_DEATH(LargeFunction(true), expected_warning); } // Check that we unwind and symbolize correctly. TEST(AddressSanitizer, DISABLED_MallocFreeUnwindAndSymbolizeTest) { int *a = (int*)malloc_aaa(sizeof(int)); *a = 1; free_aaa(a); EXPECT_DEATH(*a = 1, "free_ccc.*free_bbb.*free_aaa.*" "malloc_fff.*malloc_eee.*malloc_ddd"); } static bool TryToSetThreadName(const char *name) { #if defined(__linux__) && defined(PR_SET_NAME) return 0 == prctl(PR_SET_NAME, (unsigned long)name, 0, 0, 0); #else return false; #endif } void *ThreadedTestAlloc(void *a) { EXPECT_EQ(true, TryToSetThreadName("AllocThr")); int **p = (int**)a; *p = new int; return 0; } void *ThreadedTestFree(void *a) { EXPECT_EQ(true, TryToSetThreadName("FreeThr")); int **p = (int**)a; delete *p; return 0; } void *ThreadedTestUse(void *a) { EXPECT_EQ(true, TryToSetThreadName("UseThr")); int **p = (int**)a; **p = 1; return 0; } void ThreadedTestSpawn() { pthread_t t; int *x; PTHREAD_CREATE(&t, 0, ThreadedTestAlloc, &x); PTHREAD_JOIN(t, 0); PTHREAD_CREATE(&t, 0, ThreadedTestFree, &x); PTHREAD_JOIN(t, 0); PTHREAD_CREATE(&t, 0, ThreadedTestUse, &x); PTHREAD_JOIN(t, 0); } TEST(AddressSanitizer, ThreadedTest) { EXPECT_DEATH(ThreadedTestSpawn(), ASAN_PCRE_DOTALL "Thread T.*created" ".*Thread T.*created" ".*Thread T.*created"); } void *ThreadedTestFunc(void *unused) { // Check if prctl(PR_SET_NAME) is supported. Return if not. if (!TryToSetThreadName("TestFunc")) return 0; EXPECT_DEATH(ThreadedTestSpawn(), ASAN_PCRE_DOTALL "WRITE .*thread T. .UseThr." ".*freed by thread T. .FreeThr. here:" ".*previously allocated by thread T. .AllocThr. here:" ".*Thread T. .UseThr. created by T.*TestFunc" ".*Thread T. .FreeThr. created by T" ".*Thread T. .AllocThr. created by T" ""); return 0; } TEST(AddressSanitizer, ThreadNamesTest) { // Run ThreadedTestFunc in a separate thread because it tries to set a // thread name and we don't want to change the main thread's name. pthread_t t; PTHREAD_CREATE(&t, 0, ThreadedTestFunc, 0); PTHREAD_JOIN(t, 0); } #if ASAN_NEEDS_SEGV TEST(AddressSanitizer, ShadowGapTest) { #if SANITIZER_WORDSIZE == 32 char *addr = (char*)0x22000000; #else char *addr = (char*)0x0000100000080000; #endif EXPECT_DEATH(*addr = 1, "AddressSanitizer: SEGV on unknown"); } #endif // ASAN_NEEDS_SEGV extern "C" { NOINLINE static void UseThenFreeThenUse() { char *x = Ident((char*)malloc(8)); *x = 1; free_aaa(x); *x = 2; } } TEST(AddressSanitizer, UseThenFreeThenUseTest) { EXPECT_DEATH(UseThenFreeThenUse(), "freed by thread"); } TEST(AddressSanitizer, StrDupTest) { free(strdup(Ident("123"))); } // Currently we create and poison redzone at right of global variables. static char static110[110]; const char ConstGlob[7] = {1, 2, 3, 4, 5, 6, 7}; static const char StaticConstGlob[3] = {9, 8, 7}; TEST(AddressSanitizer, GlobalTest) { static char func_static15[15]; static char fs1[10]; static char fs2[10]; static char fs3[10]; glob5[Ident(0)] = 0; glob5[Ident(1)] = 0; glob5[Ident(2)] = 0; glob5[Ident(3)] = 0; glob5[Ident(4)] = 0; EXPECT_DEATH(glob5[Ident(5)] = 0, "0 bytes to the right of global variable.*glob5.* size 5"); EXPECT_DEATH(glob5[Ident(5+6)] = 0, "6 bytes to the right of global variable.*glob5.* size 5"); Ident(static110); // avoid optimizations static110[Ident(0)] = 0; static110[Ident(109)] = 0; EXPECT_DEATH(static110[Ident(110)] = 0, "0 bytes to the right of global variable"); EXPECT_DEATH(static110[Ident(110+7)] = 0, "7 bytes to the right of global variable"); Ident(func_static15); // avoid optimizations func_static15[Ident(0)] = 0; EXPECT_DEATH(func_static15[Ident(15)] = 0, "0 bytes to the right of global variable"); EXPECT_DEATH(func_static15[Ident(15 + 9)] = 0, "9 bytes to the right of global variable"); Ident(fs1); Ident(fs2); Ident(fs3); // We don't create left redzones, so this is not 100% guaranteed to fail. // But most likely will. EXPECT_DEATH(fs2[Ident(-1)] = 0, "is located.*of global variable"); EXPECT_DEATH(Ident(Ident(ConstGlob)[8]), "is located 1 bytes to the right of .*ConstGlob"); EXPECT_DEATH(Ident(Ident(StaticConstGlob)[5]), "is located 2 bytes to the right of .*StaticConstGlob"); // call stuff from another file. GlobalsTest(0); } TEST(AddressSanitizer, GlobalStringConstTest) { static const char *zoo = "FOOBAR123"; const char *p = Ident(zoo); EXPECT_DEATH(Ident(p[15]), "is ascii string 'FOOBAR123'"); } TEST(AddressSanitizer, FileNameInGlobalReportTest) { static char zoo[10]; const char *p = Ident(zoo); // The file name should be present in the report. EXPECT_DEATH(Ident(p[15]), "zoo.*asan_test."); } int *ReturnsPointerToALocalObject() { int a = 0; return Ident(&a); } #if ASAN_UAR == 1 TEST(AddressSanitizer, LocalReferenceReturnTest) { int *(*f)() = Ident(ReturnsPointerToALocalObject); int *p = f(); // Call 'f' a few more times, 'p' should still be poisoned. for (int i = 0; i < 32; i++) f(); EXPECT_DEATH(*p = 1, "AddressSanitizer: stack-use-after-return"); EXPECT_DEATH(*p = 1, "is located.*in frame .*ReturnsPointerToALocal"); } #endif template NOINLINE static void FuncWithStack() { char x[kSize]; Ident(x)[0] = 0; Ident(x)[kSize-1] = 0; } static void LotsOfStackReuse() { int LargeStack[10000]; Ident(LargeStack)[0] = 0; for (int i = 0; i < 10000; i++) { FuncWithStack<128 * 1>(); FuncWithStack<128 * 2>(); FuncWithStack<128 * 4>(); FuncWithStack<128 * 8>(); FuncWithStack<128 * 16>(); FuncWithStack<128 * 32>(); FuncWithStack<128 * 64>(); FuncWithStack<128 * 128>(); FuncWithStack<128 * 256>(); FuncWithStack<128 * 512>(); Ident(LargeStack)[0] = 0; } } TEST(AddressSanitizer, StressStackReuseTest) { LotsOfStackReuse(); } TEST(AddressSanitizer, ThreadedStressStackReuseTest) { const int kNumThreads = 20; pthread_t t[kNumThreads]; for (int i = 0; i < kNumThreads; i++) { PTHREAD_CREATE(&t[i], 0, (void* (*)(void *x))LotsOfStackReuse, 0); } for (int i = 0; i < kNumThreads; i++) { PTHREAD_JOIN(t[i], 0); } } static void *PthreadExit(void *a) { pthread_exit(0); return 0; } TEST(AddressSanitizer, PthreadExitTest) { pthread_t t; for (int i = 0; i < 1000; i++) { PTHREAD_CREATE(&t, 0, PthreadExit, 0); PTHREAD_JOIN(t, 0); } } #ifdef __EXCEPTIONS NOINLINE static void StackReuseAndException() { int large_stack[1000]; Ident(large_stack); ASAN_THROW(1); } // TODO(kcc): support exceptions with use-after-return. TEST(AddressSanitizer, DISABLED_StressStackReuseAndExceptionsTest) { for (int i = 0; i < 10000; i++) { try { StackReuseAndException(); } catch(...) { } } } #endif TEST(AddressSanitizer, MlockTest) { EXPECT_EQ(0, mlockall(MCL_CURRENT)); EXPECT_EQ(0, mlock((void*)0x12345, 0x5678)); EXPECT_EQ(0, munlockall()); EXPECT_EQ(0, munlock((void*)0x987, 0x654)); } struct LargeStruct { int foo[100]; }; // Test for bug http://llvm.org/bugs/show_bug.cgi?id=11763. // Struct copy should not cause asan warning even if lhs == rhs. TEST(AddressSanitizer, LargeStructCopyTest) { LargeStruct a; *Ident(&a) = *Ident(&a); } ATTRIBUTE_NO_ADDRESS_SAFETY_ANALYSIS static void NoAddressSafety() { char *foo = new char[10]; Ident(foo)[10] = 0; delete [] foo; } TEST(AddressSanitizer, AttributeNoAddressSafetyTest) { Ident(NoAddressSafety)(); } // It doesn't work on Android, as calls to new/delete go through malloc/free. #if !defined(ANDROID) && !defined(__ANDROID__) static string MismatchStr(const string &str) { return string("AddressSanitizer: alloc-dealloc-mismatch \\(") + str; } TEST(AddressSanitizer, AllocDeallocMismatch) { EXPECT_DEATH(free(Ident(new int)), MismatchStr("operator new vs free")); EXPECT_DEATH(free(Ident(new int[2])), MismatchStr("operator new \\[\\] vs free")); EXPECT_DEATH(delete (Ident(new int[2])), MismatchStr("operator new \\[\\] vs operator delete")); EXPECT_DEATH(delete (Ident((int*)malloc(2 * sizeof(int)))), MismatchStr("malloc vs operator delete")); EXPECT_DEATH(delete [] (Ident(new int)), MismatchStr("operator new vs operator delete \\[\\]")); EXPECT_DEATH(delete [] (Ident((int*)malloc(2 * sizeof(int)))), MismatchStr("malloc vs operator delete \\[\\]")); } #endif // ------------------ demo tests; run each one-by-one ------------- // e.g. --gtest_filter=*DemoOOBLeftHigh --gtest_also_run_disabled_tests TEST(AddressSanitizer, DISABLED_DemoThreadedTest) { ThreadedTestSpawn(); } void *SimpleBugOnSTack(void *x = 0) { char a[20]; Ident(a)[20] = 0; return 0; } TEST(AddressSanitizer, DISABLED_DemoStackTest) { SimpleBugOnSTack(); } TEST(AddressSanitizer, DISABLED_DemoThreadStackTest) { pthread_t t; PTHREAD_CREATE(&t, 0, SimpleBugOnSTack, 0); PTHREAD_JOIN(t, 0); } TEST(AddressSanitizer, DISABLED_DemoUAFLowIn) { uaf_test(10, 0); } TEST(AddressSanitizer, DISABLED_DemoUAFLowLeft) { uaf_test(10, -2); } TEST(AddressSanitizer, DISABLED_DemoUAFLowRight) { uaf_test(10, 10); } TEST(AddressSanitizer, DISABLED_DemoUAFHigh) { uaf_test(kLargeMalloc, 0); } TEST(AddressSanitizer, DISABLED_DemoOOM) { size_t size = SANITIZER_WORDSIZE == 64 ? (size_t)(1ULL << 40) : (0xf0000000); printf("%p\n", malloc(size)); } TEST(AddressSanitizer, DISABLED_DemoDoubleFreeTest) { DoubleFree(); } TEST(AddressSanitizer, DISABLED_DemoNullDerefTest) { int *a = 0; Ident(a)[10] = 0; } TEST(AddressSanitizer, DISABLED_DemoFunctionStaticTest) { static char a[100]; static char b[100]; static char c[100]; Ident(a); Ident(b); Ident(c); Ident(a)[5] = 0; Ident(b)[105] = 0; Ident(a)[5] = 0; } TEST(AddressSanitizer, DISABLED_DemoTooMuchMemoryTest) { const size_t kAllocSize = (1 << 28) - 1024; size_t total_size = 0; while (true) { char *x = (char*)malloc(kAllocSize); memset(x, 0, kAllocSize); total_size += kAllocSize; fprintf(stderr, "total: %ldM %p\n", (long)total_size >> 20, x); } } // http://code.google.com/p/address-sanitizer/issues/detail?id=66 TEST(AddressSanitizer, BufferOverflowAfterManyFrees) { for (int i = 0; i < 1000000; i++) { delete [] (Ident(new char [8644])); } char *x = new char[8192]; EXPECT_DEATH(x[Ident(8192)] = 0, "AddressSanitizer: heap-buffer-overflow"); delete [] Ident(x); } // Test that instrumentation of stack allocations takes into account // AllocSize of a type, and not its StoreSize (16 vs 10 bytes for long double). // See http://llvm.org/bugs/show_bug.cgi?id=12047 for more details. TEST(AddressSanitizer, LongDoubleNegativeTest) { long double a, b; static long double c; memcpy(Ident(&a), Ident(&b), sizeof(long double)); memcpy(Ident(&c), Ident(&b), sizeof(long double)); }