/* Handle types for the GNU compiler for the Java(TM) language. Copyright (C) 1996, 97-98, 1999 Free Software Foundation, Inc. This file is part of GNU CC. GNU CC is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 2, or (at your option) any later version. GNU CC is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with GNU CC; see the file COPYING. If not, write to the Free Software Foundation, 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. Java and all Java-based marks are trademarks or registered trademarks of Sun Microsystems, Inc. in the United States and other countries. The Free Software Foundation is independent of Sun Microsystems, Inc. */ /* Written by Per Bothner */ #include "config.h" #include "system.h" #include "tree.h" #include "obstack.h" #include "flags.h" #include "java-tree.h" #include "jcf.h" #include "convert.h" #include "toplev.h" static tree convert_ieee_real_to_integer PROTO ((tree, tree)); static tree parse_signature_type PROTO ((const unsigned char **, const unsigned char *)); tree * type_map; extern struct obstack permanent_obstack; /* Set the type of the local variable with index SLOT to TYPE. */ void set_local_type (slot, type) int slot; tree type; { int max_locals = DECL_MAX_LOCALS(current_function_decl); int nslots = TYPE_IS_WIDE (type) ? 2 : 1; if (slot < 0 || slot + nslots - 1 >= max_locals) fatal ("invalid local variable index"); type_map[slot] = type; while (--nslots > 0) type_map[++slot] = void_type_node; } /* Convert an IEEE real to an integer type. The result of such a conversion when the source operand is a NaN isn't defined by IEEE754, but by the Java language standard: it must be zero. Also, overflows must be clipped to within range. This conversion produces something like: ((expr >= (float)MAX_INT) ? MAX_INT : ((expr <= (float)MIN_INT) ? MIN_INT : ((expr != expr) ? 0 : (int)expr))) */ static tree convert_ieee_real_to_integer (type, expr) tree type, expr; { tree result; expr = save_expr (expr); result = build (COND_EXPR, type, build (NE_EXPR, boolean_type_node, expr, expr), convert (type, integer_zero_node), convert_to_integer (type, expr)); result = build (COND_EXPR, type, build (LE_EXPR, boolean_type_node, expr, convert (TREE_TYPE (expr), TYPE_MIN_VALUE (type))), TYPE_MIN_VALUE (type), result); result = build (COND_EXPR, type, build (GE_EXPR, boolean_type_node, expr, convert (TREE_TYPE (expr), TYPE_MAX_VALUE (type))), TYPE_MAX_VALUE (type), result); return result; } /* Create an expression whose value is that of EXPR, converted to type TYPE. The TREE_TYPE of the value is always TYPE. This function implements all reasonable conversions; callers should filter out those that are not permitted by the language being compiled. */ tree convert (type, expr) tree type, expr; { register enum tree_code code = TREE_CODE (type); if (do_not_fold) return build1 (NOP_EXPR, type, expr); if (type == TREE_TYPE (expr) || TREE_CODE (expr) == ERROR_MARK) return expr; if (TREE_CODE (TREE_TYPE (expr)) == ERROR_MARK) return error_mark_node; if (code == VOID_TYPE) return build1 (CONVERT_EXPR, type, expr); if (code == BOOLEAN_TYPE) return fold (convert_to_boolean (type, expr)); if (code == INTEGER_TYPE) { if (! flag_fast_math && ! flag_emit_class_files && TREE_CODE (TREE_TYPE (expr)) == REAL_TYPE && TARGET_FLOAT_FORMAT == IEEE_FLOAT_FORMAT) return fold (convert_ieee_real_to_integer (type, expr)); else return fold (convert_to_integer (type, expr)); } if (code == REAL_TYPE) return fold (convert_to_real (type, expr)); if (code == CHAR_TYPE) return fold (convert_to_char (type, expr)); if (code == POINTER_TYPE) return fold (convert_to_pointer (type, expr)); error ("conversion to non-scalar type requested"); return error_mark_node; } tree convert_to_char (type, expr) tree type, expr; { return build1 (NOP_EXPR, type, expr); } tree convert_to_boolean (type, expr) tree type, expr; { return build1 (NOP_EXPR, type, expr); } /* Print an error message for invalid use of an incomplete type. VALUE is the expression that was used (or 0 if that isn't known) and TYPE is the type that was invalid. */ void incomplete_type_error (value, type) tree value ATTRIBUTE_UNUSED; tree type ATTRIBUTE_UNUSED; { error ("internal error - use of undefined type"); } /* Return a data type that has machine mode MODE. If the mode is an integer, then UNSIGNEDP selects between signed and unsigned types. */ tree type_for_mode (mode, unsignedp) enum machine_mode mode; int unsignedp; { if (mode == TYPE_MODE (int_type_node)) return unsignedp ? unsigned_int_type_node : int_type_node; if (mode == TYPE_MODE (long_type_node)) return unsignedp ? unsigned_long_type_node : long_type_node; if (mode == TYPE_MODE (short_type_node)) return unsignedp ? unsigned_short_type_node : short_type_node; if (mode == TYPE_MODE (byte_type_node)) return unsignedp ? unsigned_byte_type_node : byte_type_node; if (mode == TYPE_MODE (float_type_node)) return float_type_node; if (mode == TYPE_MODE (double_type_node)) return double_type_node; return 0; } /* Return an integer type with BITS bits of precision, that is unsigned if UNSIGNEDP is nonzero, otherwise signed. */ tree type_for_size (bits, unsignedp) unsigned bits; int unsignedp; { if (bits <= TYPE_PRECISION (byte_type_node)) return unsignedp ? unsigned_byte_type_node : byte_type_node; if (bits <= TYPE_PRECISION (short_type_node)) return unsignedp ? unsigned_short_type_node : short_type_node; if (bits <= TYPE_PRECISION (int_type_node)) return unsignedp ? unsigned_int_type_node : int_type_node; if (bits <= TYPE_PRECISION (long_type_node)) return unsignedp ? unsigned_long_type_node : long_type_node; return 0; } /* Return a type the same as TYPE except unsigned or signed according to UNSIGNEDP. */ tree signed_or_unsigned_type (unsignedp, type) int unsignedp; tree type; { if (! INTEGRAL_TYPE_P (type)) return type; if (TYPE_PRECISION (type) == TYPE_PRECISION (int_type_node)) return unsignedp ? unsigned_int_type_node : int_type_node; if (TYPE_PRECISION (type) == TYPE_PRECISION (byte_type_node)) return unsignedp ? unsigned_byte_type_node : byte_type_node; if (TYPE_PRECISION (type) == TYPE_PRECISION (short_type_node)) return unsignedp ? unsigned_short_type_node : short_type_node; if (TYPE_PRECISION (type) == TYPE_PRECISION (long_type_node)) return unsignedp ? unsigned_long_type_node : long_type_node; return type; } /* Return a signed type the same as TYPE in other respects. */ tree signed_type (type) tree type; { return signed_or_unsigned_type (0, type); } /* Return an unsigned type the same as TYPE in other respects. */ tree unsigned_type (type) tree type; { return signed_or_unsigned_type (1, type); } /* Mark EXP saying that we need to be able to take the address of it; it should not be allocated in a register. Value is 1 if successful. */ int mark_addressable (exp) tree exp; { register tree x = exp; while (1) switch (TREE_CODE (x)) { case ADDR_EXPR: case COMPONENT_REF: case ARRAY_REF: case REALPART_EXPR: case IMAGPART_EXPR: x = TREE_OPERAND (x, 0); break; case TRUTH_ANDIF_EXPR: case TRUTH_ORIF_EXPR: case COMPOUND_EXPR: x = TREE_OPERAND (x, 1); break; case COND_EXPR: return mark_addressable (TREE_OPERAND (x, 1)) & mark_addressable (TREE_OPERAND (x, 2)); case CONSTRUCTOR: TREE_ADDRESSABLE (x) = 1; return 1; case INDIRECT_REF: /* We sometimes add a cast *(TYPE*)&FOO to handle type and mode incompatibility problems. Handle this case by marking FOO. */ if (TREE_CODE (TREE_OPERAND (x, 0)) == NOP_EXPR && TREE_CODE (TREE_OPERAND (TREE_OPERAND (x, 0), 0)) == ADDR_EXPR) { x = TREE_OPERAND (TREE_OPERAND (x, 0), 0); break; } if (TREE_CODE (TREE_OPERAND (x, 0)) == ADDR_EXPR) { x = TREE_OPERAND (x, 0); break; } return 1; case VAR_DECL: case CONST_DECL: case PARM_DECL: case RESULT_DECL: case FUNCTION_DECL: TREE_ADDRESSABLE (x) = 1; #if 0 /* poplevel deals with this now. */ if (DECL_CONTEXT (x) == 0) TREE_ADDRESSABLE (DECL_ASSEMBLER_NAME (x)) = 1; #endif /* drops through */ default: return 1; } } /* Thorough checking of the arrayness of TYPE. */ int is_array_type_p (type) tree type; { return TREE_CODE (type) == POINTER_TYPE && TREE_CODE (TREE_TYPE (type)) == RECORD_TYPE && TYPE_ARRAY_P (TREE_TYPE (type)); } /* Return the length of a Java array type. Return -1 if the length is unknown or non-constant. */ HOST_WIDE_INT java_array_type_length (array_type) tree array_type; { tree arfld; if (TREE_CODE (array_type) == POINTER_TYPE) array_type = TREE_TYPE (array_type); arfld = TREE_CHAIN (TREE_CHAIN (TYPE_FIELDS (array_type))); if (arfld != NULL_TREE) { tree index_type = TYPE_DOMAIN (TREE_TYPE (arfld)); tree high = TYPE_MAX_VALUE (index_type); if (TREE_CODE (high) == INTEGER_CST) return TREE_INT_CST_LOW (high) + 1; } return -1; } tree build_prim_array_type (element_type, length) tree element_type; HOST_WIDE_INT length; { tree max_index = build_int_2 (length - 1, 0); TREE_TYPE (max_index) = sizetype; return build_array_type (element_type, build_index_type (max_index)); } /* Return a Java array type with a given ELEMENT_TYPE and LENGTH. These are hashed (shared) using IDENTIFIER_SIGNATURE_TYPE. The LENGTH is -1 if the length is unknown. */ tree build_java_array_type (element_type, length) tree element_type; HOST_WIDE_INT length; { tree sig, t, fld; char buf[12]; tree elsig = build_java_signature (element_type); tree el_name = element_type; sprintf (buf, length >= 0 ? "[%d" : "[", length); sig = ident_subst (IDENTIFIER_POINTER (elsig), IDENTIFIER_LENGTH (elsig), buf, 0, 0, ""); t = IDENTIFIER_SIGNATURE_TYPE (sig); if (t != NULL_TREE) return TREE_TYPE (t); t = make_class (); IDENTIFIER_SIGNATURE_TYPE (sig) = build_pointer_type (t); TYPE_ARRAY_P (t) = 1; if (TREE_CODE (el_name) == POINTER_TYPE) el_name = TREE_TYPE (el_name); el_name = TYPE_NAME (el_name); if (TREE_CODE (el_name) == TYPE_DECL) el_name = DECL_NAME (el_name); TYPE_NAME (t) = identifier_subst (el_name, "", '.', '.', "[]"); set_java_signature (t, sig); set_super_info (0, t, object_type_node, 0); if (TREE_CODE (element_type) == RECORD_TYPE) element_type = promote_type (element_type); TYPE_ARRAY_ELEMENT (t) = element_type; /* Add length pseudo-field. */ push_obstacks (&permanent_obstack, &permanent_obstack); fld = build_decl (FIELD_DECL, get_identifier ("length"), int_type_node); TYPE_FIELDS (t) = fld; DECL_CONTEXT (fld) = t; FIELD_PUBLIC (fld) = 1; FIELD_FINAL (fld) = 1; if (length >= 0) { tree atype = build_prim_array_type (element_type, length); tree arfld = build_decl (FIELD_DECL, get_identifier ("data"), atype); DECL_CONTEXT (arfld) = t; TREE_CHAIN (fld) = arfld; } else TYPE_ALIGN (t) = TYPE_ALIGN (element_type); pop_obstacks (); /* We could layout_class, but that loads java.lang.Object prematurely. * This is called by the parser, and it is a bad idea to do load_class * in the middle of parsing, because of possible circularity problems. */ push_super_field (t, object_type_node); layout_type (t); return t; } /* Promote TYPE to the type actually used for fields and parameters. */ tree promote_type (type) tree type; { switch (TREE_CODE (type)) { case RECORD_TYPE: return build_pointer_type (CLASS_TO_HANDLE_TYPE (type)); case BOOLEAN_TYPE: if (type == boolean_type_node) return promoted_boolean_type_node; goto handle_int; case CHAR_TYPE: if (type == char_type_node) return promoted_char_type_node; goto handle_int; case INTEGER_TYPE: handle_int: if (TYPE_PRECISION (type) < TYPE_PRECISION (int_type_node)) { if (type == short_type_node) return promoted_short_type_node; if (type == byte_type_node) return promoted_byte_type_node; return int_type_node; } /* ... else fall through ... */ default: return type; } } /* Parse a signature string, starting at *PTR and ending at LIMIT. Return the seen TREE_TYPE, updating *PTR. */ static tree parse_signature_type (ptr, limit) const unsigned char **ptr, *limit; { tree type; if ((*ptr) >= limit) fatal ("bad signature string"); switch (*(*ptr)) { case 'B': (*ptr)++; return byte_type_node; case 'C': (*ptr)++; return char_type_node; case 'D': (*ptr)++; return double_type_node; case 'F': (*ptr)++; return float_type_node; case 'S': (*ptr)++; return short_type_node; case 'I': (*ptr)++; return int_type_node; case 'J': (*ptr)++; return long_type_node; case 'Z': (*ptr)++; return boolean_type_node; case 'V': (*ptr)++; return void_type_node; case '[': for ((*ptr)++; (*ptr) < limit && ISDIGIT (**ptr); ) (*ptr)++; type = parse_signature_type (ptr, limit); type = build_java_array_type (type, -1); break; case 'L': { const unsigned char *start = ++(*ptr); register const unsigned char *str = start; for ( ; ; str++) { if (str >= limit) fatal ("bad signature string"); if (*str == ';') break; } *ptr = str+1; type = lookup_class (unmangle_classname (start, str - start)); break; } default: fatal ("unrecognized signature string"); } return promote_type (type); } /* Parse a Java "mangled" signature string, starting at SIG_STRING, and SIG_LENGTH bytes long. Return a gcc type node. */ tree parse_signature_string (sig_string, sig_length) const unsigned char *sig_string; int sig_length; { tree result_type; const unsigned char *str = sig_string; const unsigned char *limit = str + sig_length; push_obstacks (&permanent_obstack, &permanent_obstack); if (str < limit && str[0] == '(') { tree argtype_list = NULL_TREE; str++; while (str < limit && str[0] != ')') { tree argtype = parse_signature_type (&str, limit); argtype_list = tree_cons (NULL_TREE, argtype, argtype_list); } if (str++, str >= limit) fatal ("bad signature string"); result_type = parse_signature_type (&str, limit); argtype_list = chainon (nreverse (argtype_list), end_params_node); result_type = build_function_type (result_type, argtype_list); } else result_type = parse_signature_type (&str, limit); if (str != limit) error ("junk at end of signature string"); pop_obstacks (); return result_type; } /* Convert a signature to its type. * Uses IDENTIFIER_SIGNATURE_TYPE as a cache (except for primitive types). */ tree get_type_from_signature (tree signature) { const unsigned char *sig = (const unsigned char *) IDENTIFIER_POINTER (signature); int len = IDENTIFIER_LENGTH (signature); tree type; /* Primitive types aren't cached. */ if (len <= 1) return parse_signature_string (sig, len); type = IDENTIFIER_SIGNATURE_TYPE (signature); if (type == NULL_TREE) { type = parse_signature_string (sig, len); IDENTIFIER_SIGNATURE_TYPE (signature) = type; } return type; } /* Return the signature string for the arguments of method type TYPE. */ tree build_java_argument_signature (type) tree type; { extern struct obstack temporary_obstack; tree sig = TYPE_ARGUMENT_SIGNATURE (type); if (sig == NULL_TREE) { tree args = TYPE_ARG_TYPES (type); if (TREE_CODE (type) == METHOD_TYPE) args = TREE_CHAIN (args); /* Skip "this" argument. */ for (; args != end_params_node; args = TREE_CHAIN (args)) { tree t = build_java_signature (TREE_VALUE (args)); obstack_grow (&temporary_obstack, IDENTIFIER_POINTER (t), IDENTIFIER_LENGTH (t)); } obstack_1grow (&temporary_obstack, '\0'); sig = get_identifier (obstack_base (&temporary_obstack)); TYPE_ARGUMENT_SIGNATURE (type) = sig; obstack_free (&temporary_obstack, obstack_base (&temporary_obstack)); } return sig; } /* Return the signature of the given TYPE. */ tree build_java_signature (type) tree type; { tree sig, t; push_obstacks (&permanent_obstack, &permanent_obstack); while (TREE_CODE (type) == POINTER_TYPE) type = TREE_TYPE (type); if (TYPE_LANG_SPECIFIC (type) == NULL) { TYPE_LANG_SPECIFIC (type) = (struct lang_type *) perm_calloc (1, sizeof (struct lang_type)); } sig = TYPE_LANG_SPECIFIC (type)->signature; if (sig == NULL_TREE) { char sg[2]; switch (TREE_CODE (type)) { case BOOLEAN_TYPE: sg[0] = 'Z'; goto native; case CHAR_TYPE: sg[0] = 'C'; goto native; case VOID_TYPE: sg[0] = 'V'; goto native; case INTEGER_TYPE: switch (TYPE_PRECISION (type)) { case 8: sg[0] = 'B'; goto native; case 16: sg[0] = 'S'; goto native; case 32: sg[0] = 'I'; goto native; case 64: sg[0] = 'J'; goto native; default: goto bad_type; } case REAL_TYPE: switch (TYPE_PRECISION (type)) { case 32: sg[0] = 'F'; goto native; case 64: sg[0] = 'D'; goto native; default: goto bad_type; } native: sg[1] = 0; sig = get_identifier (sg); break; case RECORD_TYPE: if (TYPE_ARRAY_P (type)) { t = build_java_signature (TYPE_ARRAY_ELEMENT (type)); sig = ident_subst (IDENTIFIER_POINTER (t), IDENTIFIER_LENGTH (t), "[", 0, 0, ""); } else { t = DECL_NAME (TYPE_NAME (type)); sig = ident_subst (IDENTIFIER_POINTER (t), IDENTIFIER_LENGTH (t), "L", '.', '/', ";"); } break; case METHOD_TYPE: case FUNCTION_TYPE: { extern struct obstack temporary_obstack; sig = build_java_argument_signature (type); obstack_1grow (&temporary_obstack, '('); obstack_grow (&temporary_obstack, IDENTIFIER_POINTER (sig), IDENTIFIER_LENGTH (sig)); obstack_1grow (&temporary_obstack, ')'); t = build_java_signature (TREE_TYPE (type)); obstack_grow0 (&temporary_obstack, IDENTIFIER_POINTER (t), IDENTIFIER_LENGTH (t)); sig = get_identifier (obstack_base (&temporary_obstack)); obstack_free (&temporary_obstack, obstack_base (&temporary_obstack)); } break; bad_type: default: fatal ("internal error - build_java_signature passed invalid type"); } TYPE_LANG_SPECIFIC (type)->signature = sig; } pop_obstacks (); return sig; } /* Save signature string SIG (an IDENTIFIER_NODE) in TYPE for future use. */ void set_java_signature (type, sig) tree type; tree sig; { tree old_sig; while (TREE_CODE (type) == POINTER_TYPE) type = TREE_TYPE (type); if (TYPE_LANG_SPECIFIC (type) == NULL) { TYPE_LANG_SPECIFIC (type) = (struct lang_type *) perm_calloc (1, sizeof (struct lang_type)); } old_sig = TYPE_LANG_SPECIFIC (type)->signature; if (old_sig != NULL_TREE && old_sig != sig) fatal ("internal error - set_java_signature"); TYPE_LANG_SPECIFIC (type)->signature = sig; #if 0 /* careful about METHOD_TYPE */ if (IDENTIFIER_SIGNATURE_TYPE (sig) == NULL_TREE && TREE_PERMANENT (type)) IDENTIFIER_SIGNATURE_TYPE (sig) = type; #endif } /* Search in class CLAS (and its superclasses) for a method matching METHOD_NAME and argument signature METHOD_SIGNATURE. Return a FUNCTION_DECL on success, or NULL_TREE if none found. (Contrast lookup_java_method, which takes into account return type.) */ tree lookup_argument_method (clas, method_name, method_signature) tree clas, method_name, method_signature; { tree method; while (clas != NULL_TREE) { for (method = TYPE_METHODS (clas); method != NULL_TREE; method = TREE_CHAIN (method)) { tree method_sig = build_java_argument_signature (TREE_TYPE (method)); tree name = DECL_NAME (method); if ((TREE_CODE (name) == EXPR_WITH_FILE_LOCATION ? EXPR_WFL_NODE (name) : name) == method_name && method_sig == method_signature) return method; } clas = CLASSTYPE_SUPER (clas); } return NULL_TREE; } /* Search in class CLAS (and its superclasses) for a method matching METHOD_NAME and signature METHOD_SIGNATURE. Return a FUNCTION_DECL on success, or NULL_TREE if none found. (Contrast lookup_argument_method, which ignores return type.) */ tree lookup_java_method (clas, method_name, method_signature) tree clas, method_name, method_signature; { tree method; while (clas != NULL_TREE) { for (method = TYPE_METHODS (clas); method != NULL_TREE; method = TREE_CHAIN (method)) { tree method_sig = build_java_signature (TREE_TYPE (method)); if (DECL_NAME (method) == method_name && method_sig == method_signature) return method; } clas = CLASSTYPE_SUPER (clas); } return NULL_TREE; } /* Search in class CLAS for a constructor matching METHOD_SIGNATURE. Return a FUNCTION_DECL on success, or NULL_TREE if none found. */ tree lookup_java_constructor (clas, method_signature) tree clas, method_signature; { tree method = TYPE_METHODS (clas); for ( ; method != NULL_TREE; method = TREE_CHAIN (method)) { tree method_sig = build_java_signature (TREE_TYPE (method)); if (DECL_CONSTRUCTOR_P (method) && method_sig == method_signature) return method; } return NULL_TREE; } /* Return a type which is the Binary Numeric Promotion of the pair T1, T2 and convert EXP1 and/or EXP2. See 5.6.2 Binary Numeric Promotion. It assumes that both T1 and T2 are elligible to BNP. */ tree binary_numeric_promotion (t1, t2, exp1, exp2) tree t1; tree t2; tree *exp1; tree *exp2; { if (t1 == double_type_node || t2 == double_type_node) { if (t1 != double_type_node) *exp1 = convert (double_type_node, *exp1); if (t2 != double_type_node) *exp2 = convert (double_type_node, *exp2); return double_type_node; } if (t1 == float_type_node || t2 == float_type_node) { if (t1 != float_type_node) *exp1 = convert (float_type_node, *exp1); if (t2 != float_type_node) *exp2 = convert (float_type_node, *exp2); return float_type_node; } if (t1 == long_type_node || t2 == long_type_node) { if (t1 != long_type_node) *exp1 = convert (long_type_node, *exp1); if (t2 != long_type_node) *exp2 = convert (long_type_node, *exp2); return long_type_node; } if (t1 != int_type_node) *exp1 = convert (int_type_node, *exp1); if (t2 != int_type_node) *exp2 = convert (int_type_node, *exp2); return int_type_node; }