/* Support routines for the various generation passes. Copyright (C) 2000, 2001 Free Software Foundation, Inc. This file is part of GNU CC. GNU CC is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 2, or (at your option) any later version. GNU CC is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with GNU CC; see the file COPYING. If not, write to the Free Software Foundation, 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */ #include "hconfig.h" #include "system.h" #include "rtl.h" #include "obstack.h" #include "errors.h" #include "gensupport.h" static struct obstack obstack; struct obstack *rtl_obstack = &obstack; #define obstack_chunk_alloc xmalloc #define obstack_chunk_free free static int sequence_num; static int errors; static int predicable_default; static const char *predicable_true; static const char *predicable_false; /* We initially queue all patterns, process the define_insn and define_cond_exec patterns, then return them one at a time. */ struct queue_elem { rtx data; int lineno; struct queue_elem *next; }; static struct queue_elem *define_attr_queue; static struct queue_elem **define_attr_tail = &define_attr_queue; static struct queue_elem *define_insn_queue; static struct queue_elem **define_insn_tail = &define_insn_queue; static struct queue_elem *define_cond_exec_queue; static struct queue_elem **define_cond_exec_tail = &define_cond_exec_queue; static struct queue_elem *other_queue; static struct queue_elem **other_tail = &other_queue; static void queue_pattern PARAMS ((rtx, struct queue_elem ***, int)); static void remove_constraints PARAMS ((rtx)); static void process_rtx PARAMS ((rtx, int)); static int is_predicable PARAMS ((struct queue_elem *)); static void identify_predicable_attribute PARAMS ((void)); static int n_alternatives PARAMS ((const char *)); static void collect_insn_data PARAMS ((rtx, int *, int *)); static rtx alter_predicate_for_insn PARAMS ((rtx, int, int, int)); static const char *alter_test_for_insn PARAMS ((struct queue_elem *, struct queue_elem *)); static char *shift_output_template PARAMS ((char *, const char *, int)); static const char *alter_output_for_insn PARAMS ((struct queue_elem *, struct queue_elem *, int, int)); static void process_one_cond_exec PARAMS ((struct queue_elem *)); static void process_define_cond_exec PARAMS ((void)); void message_with_line VPARAMS ((int lineno, const char *msg, ...)) { #ifndef ANSI_PROTOTYPES int lineno; const char *msg; #endif va_list ap; VA_START (ap, msg); #ifndef ANSI_PROTOTYPES lineno = va_arg (ap, int); msg = va_arg (ap, const char *); #endif fprintf (stderr, "%s:%d: ", read_rtx_filename, lineno); vfprintf (stderr, msg, ap); fputc ('\n', stderr); va_end (ap); } /* Queue PATTERN on LIST_TAIL. */ static void queue_pattern (pattern, list_tail, lineno) rtx pattern; struct queue_elem ***list_tail; int lineno; { struct queue_elem *e = (struct queue_elem *) xmalloc (sizeof (*e)); e->data = pattern; e->lineno = lineno; e->next = NULL; **list_tail = e; *list_tail = &e->next; } /* Recursively remove constraints from an rtx. */ static void remove_constraints (part) rtx part; { register int i, j; register const char *format_ptr; if (part == 0) return; if (GET_CODE (part) == MATCH_OPERAND) XSTR (part, 2) = ""; else if (GET_CODE (part) == MATCH_SCRATCH) XSTR (part, 1) = ""; format_ptr = GET_RTX_FORMAT (GET_CODE (part)); for (i = 0; i < GET_RTX_LENGTH (GET_CODE (part)); i++) switch (*format_ptr++) { case 'e': case 'u': remove_constraints (XEXP (part, i)); break; case 'E': if (XVEC (part, i) != NULL) for (j = 0; j < XVECLEN (part, i); j++) remove_constraints (XVECEXP (part, i, j)); break; } } /* Process a top level rtx in some way, queueing as appropriate. */ static void process_rtx (desc, lineno) rtx desc; int lineno; { switch (GET_CODE (desc)) { case DEFINE_INSN: queue_pattern (desc, &define_insn_tail, lineno); break; case DEFINE_COND_EXEC: queue_pattern (desc, &define_cond_exec_tail, lineno); break; case DEFINE_ATTR: queue_pattern (desc, &define_attr_tail, lineno); break; case DEFINE_INSN_AND_SPLIT: { const char *split_cond; rtx split; rtvec attr; int i; /* Create a split with values from the insn_and_split. */ split = rtx_alloc (DEFINE_SPLIT); i = XVECLEN (desc, 1); XVEC (split, 0) = rtvec_alloc (i); while (--i >= 0) { XVECEXP (split, 0, i) = copy_rtx (XVECEXP (desc, 1, i)); remove_constraints (XVECEXP (split, 0, i)); } /* If the split condition starts with "&&", append it to the insn condition to create the new split condition. */ split_cond = XSTR (desc, 4); if (split_cond[0] == '&' && split_cond[1] == '&') { const char *insn_cond = XSTR (desc, 2); size_t insn_cond_len = strlen (insn_cond); size_t split_cond_len = strlen (split_cond); char *combined; combined = (char *) xmalloc (insn_cond_len + split_cond_len + 1); memcpy (combined, insn_cond, insn_cond_len); memcpy (combined + insn_cond_len, split_cond, split_cond_len + 1); split_cond = combined; } XSTR (split, 1) = split_cond; XVEC (split, 2) = XVEC (desc, 5); XSTR (split, 3) = XSTR (desc, 6); /* Fix up the DEFINE_INSN. */ attr = XVEC (desc, 7); PUT_CODE (desc, DEFINE_INSN); XVEC (desc, 4) = attr; /* Queue them. */ queue_pattern (desc, &define_insn_tail, lineno); queue_pattern (split, &other_tail, lineno); break; } default: queue_pattern (desc, &other_tail, lineno); break; } } /* Return true if attribute PREDICABLE is true for ELEM, which holds a DEFINE_INSN. */ static int is_predicable (elem) struct queue_elem *elem; { rtvec vec = XVEC (elem->data, 4); const char *value; int i; if (! vec) return predicable_default; for (i = GET_NUM_ELEM (vec) - 1; i >= 0; --i) { rtx sub = RTVEC_ELT (vec, i); switch (GET_CODE (sub)) { case SET_ATTR: if (strcmp (XSTR (sub, 0), "predicable") == 0) { value = XSTR (sub, 1); goto found; } break; case SET_ATTR_ALTERNATIVE: if (strcmp (XSTR (sub, 0), "predicable") == 0) { message_with_line (elem->lineno, "multiple alternatives for `predicable'"); errors = 1; return 0; } break; case SET: if (GET_CODE (SET_DEST (sub)) != ATTR || strcmp (XSTR (SET_DEST (sub), 0), "predicable") != 0) break; sub = SET_SRC (sub); if (GET_CODE (sub) == CONST_STRING) { value = XSTR (sub, 0); goto found; } /* ??? It would be possible to handle this if we really tried. It's not easy though, and I'm not going to bother until it really proves necessary. */ message_with_line (elem->lineno, "non-constant value for `predicable'"); errors = 1; return 0; default: abort (); } } return predicable_default; found: /* Verify that predicability does not vary on the alternative. */ /* ??? It should be possible to handle this by simply eliminating the non-predicable alternatives from the insn. FRV would like to do this. Delay this until we've got the basics solid. */ if (strchr (value, ',') != NULL) { message_with_line (elem->lineno, "multiple alternatives for `predicable'"); errors = 1; return 0; } /* Find out which value we're looking at. */ if (strcmp (value, predicable_true) == 0) return 1; if (strcmp (value, predicable_false) == 0) return 0; message_with_line (elem->lineno, "Unknown value `%s' for `predicable' attribute", value); errors = 1; return 0; } /* Examine the attribute "predicable"; discover its boolean values and its default. */ static void identify_predicable_attribute () { struct queue_elem *elem; char *p_true, *p_false; const char *value; size_t len; /* Look for the DEFINE_ATTR for `predicable', which must exist. */ for (elem = define_attr_queue; elem ; elem = elem->next) if (strcmp (XSTR (elem->data, 0), "predicable") == 0) goto found; message_with_line (define_cond_exec_queue->lineno, "Attribute `predicable' not defined"); errors = 1; return; found: value = XSTR (elem->data, 1); len = strlen (value); p_false = (char *) xmalloc (len + 1); memcpy (p_false, value, len + 1); p_true = strchr (p_false, ','); if (p_true == NULL || strchr (++p_true, ',') != NULL) { message_with_line (elem->lineno, "Attribute `predicable' is not a boolean"); errors = 1; return; } p_true[-1] = '\0'; predicable_true = p_true; predicable_false = p_false; switch (GET_CODE (XEXP (elem->data, 2))) { case CONST_STRING: value = XSTR (XEXP (elem->data, 2), 0); break; case CONST: message_with_line (elem->lineno, "Attribute `predicable' cannot be const"); errors = 1; return; default: message_with_line (elem->lineno, "Attribute `predicable' must have a constant default"); errors = 1; return; } if (strcmp (value, p_true) == 0) predicable_default = 1; else if (strcmp (value, p_false) == 0) predicable_default = 0; else { message_with_line (elem->lineno, "Unknown value `%s' for `predicable' attribute", value); errors = 1; } } /* Return the number of alternatives in constraint S. */ static int n_alternatives (s) const char *s; { int n = 1; if (s) while (*s) n += (*s++ == ','); return n; } /* Determine how many alternatives there are in INSN, and how many operands. */ static void collect_insn_data (pattern, palt, pmax) rtx pattern; int *palt, *pmax; { const char *fmt; enum rtx_code code; int i, j, len; code = GET_CODE (pattern); switch (code) { case MATCH_OPERAND: i = n_alternatives (XSTR (pattern, 2)); *palt = (i > *palt ? i : *palt); /* FALLTHRU */ case MATCH_OPERATOR: case MATCH_SCRATCH: case MATCH_PARALLEL: case MATCH_INSN: i = XINT (pattern, 0); if (i > *pmax) *pmax = i; break; default: break; } fmt = GET_RTX_FORMAT (code); len = GET_RTX_LENGTH (code); for (i = 0; i < len; i++) { switch (fmt[i]) { case 'e': case 'u': collect_insn_data (XEXP (pattern, i), palt, pmax); break; case 'V': if (XVEC (pattern, i) == NULL) break; /* FALLTHRU */ case 'E': for (j = XVECLEN (pattern, i) - 1; j >= 0; --j) collect_insn_data (XVECEXP (pattern, i, j), palt, pmax); break; case 'i': case 'w': case '0': case 's': case 'S': case 'T': break; default: abort (); } } } static rtx alter_predicate_for_insn (pattern, alt, max_op, lineno) rtx pattern; int alt, max_op, lineno; { const char *fmt; enum rtx_code code; int i, j, len; code = GET_CODE (pattern); switch (code) { case MATCH_OPERAND: { const char *c = XSTR (pattern, 2); if (n_alternatives (c) != 1) { message_with_line (lineno, "Too many alternatives for operand %d", XINT (pattern, 0)); errors = 1; return NULL; } /* Replicate C as needed to fill out ALT alternatives. */ if (c && *c && alt > 1) { size_t c_len = strlen (c); size_t len = alt * (c_len + 1); char *new_c = (char *) xmalloc (len); memcpy (new_c, c, c_len); for (i = 1; i < alt; ++i) { new_c[i * (c_len + 1) - 1] = ','; memcpy (&new_c[i * (c_len + 1)], c, c_len); } new_c[len - 1] = '\0'; XSTR (pattern, 2) = new_c; } } /* FALLTHRU */ case MATCH_OPERATOR: case MATCH_SCRATCH: case MATCH_PARALLEL: case MATCH_INSN: XINT (pattern, 0) += max_op; break; default: break; } fmt = GET_RTX_FORMAT (code); len = GET_RTX_LENGTH (code); for (i = 0; i < len; i++) { rtx r; switch (fmt[i]) { case 'e': case 'u': r = alter_predicate_for_insn (XEXP (pattern, i), alt, max_op, lineno); if (r == NULL) return r; break; case 'E': for (j = XVECLEN (pattern, i) - 1; j >= 0; --j) { r = alter_predicate_for_insn (XVECEXP (pattern, i, j), alt, max_op, lineno); if (r == NULL) return r; } break; case 'i': case 'w': case '0': case 's': break; default: abort (); } } return pattern; } static const char * alter_test_for_insn (ce_elem, insn_elem) struct queue_elem *ce_elem, *insn_elem; { const char *ce_test, *insn_test; char *new_test; size_t len, ce_len, insn_len; ce_test = XSTR (ce_elem->data, 1); insn_test = XSTR (insn_elem->data, 2); if (!ce_test || *ce_test == '\0') return insn_test; if (!insn_test || *insn_test == '\0') return ce_test; ce_len = strlen (ce_test); insn_len = strlen (insn_test); len = 1 + ce_len + 1 + 4 + 1 + insn_len + 1 + 1; new_test = (char *) xmalloc (len); sprintf (new_test, "(%s) && (%s)", ce_test, insn_test); return new_test; } /* Adjust all of the operand numbers in OLD to match the shift they'll get from an operand displacement of DISP. Return a pointer after the adjusted string. */ static char * shift_output_template (new, old, disp) char *new; const char *old; int disp; { while (*old) { char c = *old++; *new++ = c; if (c == '%') { c = *old++; if (ISDIGIT ((unsigned char) c)) c += disp; else if (ISUPPER ((unsigned char) c) || ISLOWER ((unsigned char) c)) { *new++ = c; c = *old++ + disp; } *new++ = c; } } return new; } static const char * alter_output_for_insn (ce_elem, insn_elem, alt, max_op) struct queue_elem *ce_elem, *insn_elem; int alt, max_op; { const char *ce_out, *insn_out; char *new, *p; size_t len, ce_len, insn_len; /* ??? Could coordinate with genoutput to not duplicate code here. */ ce_out = XSTR (ce_elem->data, 2); insn_out = XSTR (insn_elem->data, 3); if (!ce_out || *ce_out == '\0') return insn_out; ce_len = strlen (ce_out); insn_len = strlen (insn_out); if (*insn_out == '*') /* You must take care of the predicate yourself. */ return insn_out; if (*insn_out == '@') { len = (ce_len + 1) * alt + insn_len + 1; p = new = xmalloc (len); do { do *p++ = *insn_out++; while (ISSPACE ((unsigned char) *insn_out)); if (*insn_out != '#') { p = shift_output_template (p, ce_out, max_op); *p++ = ' '; } do *p++ = *insn_out++; while (*insn_out && *insn_out != '\n'); } while (*insn_out); *p = '\0'; } else { len = ce_len + 1 + insn_len + 1; new = xmalloc (len); p = shift_output_template (new, ce_out, max_op); *p++ = ' '; memcpy (p, insn_out, insn_len + 1); } return new; } /* Replicate insns as appropriate for the given DEFINE_COND_EXEC. */ static void process_one_cond_exec (ce_elem) struct queue_elem *ce_elem; { struct queue_elem *insn_elem; for (insn_elem = define_insn_queue; insn_elem ; insn_elem = insn_elem->next) { int alternatives, max_operand; rtx pred, insn, pattern; if (! is_predicable (insn_elem)) continue; alternatives = 1; max_operand = -1; collect_insn_data (insn_elem->data, &alternatives, &max_operand); max_operand += 1; if (XVECLEN (ce_elem->data, 0) != 1) { message_with_line (ce_elem->lineno, "too many patterns in predicate"); errors = 1; return; } pred = copy_rtx (XVECEXP (ce_elem->data, 0, 0)); pred = alter_predicate_for_insn (pred, alternatives, max_operand, ce_elem->lineno); if (pred == NULL) return; /* Construct a new pattern for the new insn. */ insn = copy_rtx (insn_elem->data); XSTR (insn, 0) = ""; pattern = rtx_alloc (COND_EXEC); XEXP (pattern, 0) = pred; if (XVECLEN (insn, 1) == 1) { XEXP (pattern, 1) = XVECEXP (insn, 1, 0); XVECEXP (insn, 1, 0) = pattern; PUT_NUM_ELEM (XVEC (insn, 1), 1); } else { XEXP (pattern, 1) = rtx_alloc (PARALLEL); XVEC (XEXP (pattern, 1), 0) = XVEC (insn, 1); XVEC (insn, 1) = rtvec_alloc (1); XVECEXP (insn, 1, 0) = pattern; } XSTR (insn, 2) = alter_test_for_insn (ce_elem, insn_elem); XSTR (insn, 3) = alter_output_for_insn (ce_elem, insn_elem, alternatives, max_operand); /* ??? Set `predicable' to false. Not crucial since it's really only used here, and we won't reprocess this new pattern. */ /* Put the new pattern on the `other' list so that it (a) is not reprocessed by other define_cond_exec patterns (b) appears after all normal define_insn patterns. ??? B is debatable. If one has normal insns that match cond_exec patterns, they will be preferred over these generated patterns. Whether this matters in practice, or if it's a good thing, or whether we should thread these new patterns into the define_insn chain just after their generator is something we'll have to experiment with. */ queue_pattern (insn, &other_tail, insn_elem->lineno); } } /* If we have any DEFINE_COND_EXEC patterns, expand the DEFINE_INSN patterns appropriately. */ static void process_define_cond_exec () { struct queue_elem *elem; identify_predicable_attribute (); if (errors) return; for (elem = define_cond_exec_queue; elem ; elem = elem->next) process_one_cond_exec (elem); } /* The entry point for initializing the reader. */ int init_md_reader (filename) const char *filename; { FILE *input_file; int c; read_rtx_filename = filename; input_file = fopen (filename, "r"); if (input_file == 0) { perror (filename); return FATAL_EXIT_CODE; } obstack_init (rtl_obstack); errors = 0; sequence_num = 0; /* Read the entire file. */ while (1) { rtx desc; int lineno; c = read_skip_spaces (input_file); if (c == EOF) break; ungetc (c, input_file); lineno = read_rtx_lineno; desc = read_rtx (input_file); process_rtx (desc, lineno); } fclose (input_file); /* Process define_cond_exec patterns. */ if (define_cond_exec_queue != NULL) process_define_cond_exec (); return errors ? FATAL_EXIT_CODE : SUCCESS_EXIT_CODE; } /* The entry point for reading a single rtx from an md file. */ rtx read_md_rtx (lineno, seqnr) int *lineno; int *seqnr; { struct queue_elem **queue, *elem; rtx desc; /* Read all patterns from a given queue before moving on to the next. */ if (define_attr_queue != NULL) queue = &define_attr_queue; else if (define_insn_queue != NULL) queue = &define_insn_queue; else if (other_queue != NULL) queue = &other_queue; else return NULL_RTX; elem = *queue; *queue = elem->next; desc = elem->data; *lineno = elem->lineno; *seqnr = sequence_num; free (elem); switch (GET_CODE (desc)) { case DEFINE_INSN: case DEFINE_EXPAND: case DEFINE_SPLIT: case DEFINE_PEEPHOLE: case DEFINE_PEEPHOLE2: sequence_num++; break; default: break; } return desc; } /* Until we can use the versions in libiberty. */ char * xstrdup (input) const char *input; { register size_t len = strlen (input) + 1; register char *output = xmalloc (len); memcpy (output, input, len); return output; } PTR xcalloc (nelem, elsize) size_t nelem, elsize; { PTR newmem; if (nelem == 0 || elsize == 0) nelem = elsize = 1; newmem = really_call_calloc (nelem, elsize); if (!newmem) fatal ("virtual memory exhausted"); return (newmem); } PTR xrealloc (old, size) PTR old; size_t size; { register PTR ptr; if (old) ptr = (PTR) really_call_realloc (old, size); else ptr = (PTR) really_call_malloc (size); if (!ptr) fatal ("virtual memory exhausted"); return ptr; } PTR xmalloc (size) size_t size; { register PTR val = (PTR) really_call_malloc (size); if (val == 0) fatal ("virtual memory exhausted"); return val; }