/* Report error messages, build initializers, and perform some front-end optimizations for C++ compiler. Copyright (C) 1987, 1988, 1989, 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2004 Free Software Foundation, Inc. Hacked by Michael Tiemann (tiemann@cygnus.com) This file is part of GCC. GCC is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 2, or (at your option) any later version. GCC is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with GCC; see the file COPYING. If not, write to the Free Software Foundation, 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */ /* This file is part of the C++ front end. It contains routines to build C++ expressions given their operands, including computing the types of the result, C and C++ specific error checks, and some optimization. */ #include "config.h" #include "system.h" #include "coretypes.h" #include "tm.h" #include "tree.h" #include "cp-tree.h" #include "flags.h" #include "toplev.h" #include "output.h" #include "diagnostic.h" static tree process_init_constructor (tree, tree, tree *); /* Print an error message stemming from an attempt to use BASETYPE as a base class for TYPE. */ tree error_not_base_type (tree basetype, tree type) { if (TREE_CODE (basetype) == FUNCTION_DECL) basetype = DECL_CONTEXT (basetype); error ("type %qT is not a base type for type %qT", basetype, type); return error_mark_node; } tree binfo_or_else (tree base, tree type) { tree binfo = lookup_base (type, base, ba_unique, NULL); if (binfo == error_mark_node) return NULL_TREE; else if (!binfo) error_not_base_type (base, type); return binfo; } /* According to ARM $7.1.6, "A `const' object may be initialized, but its value may not be changed thereafter. Thus, we emit hard errors for these, rather than just pedwarns. If `SOFT' is 1, then we just pedwarn. (For example, conversions to references.) */ void readonly_error (tree arg, const char* string, int soft) { const char *fmt; void (*fn) (const char *, ...); if (soft) fn = pedwarn; else fn = error; if (TREE_CODE (arg) == COMPONENT_REF) { if (TYPE_READONLY (TREE_TYPE (TREE_OPERAND (arg, 0)))) fmt = "%s of data-member %qD in read-only structure"; else fmt = "%s of read-only data-member %qD"; (*fn) (fmt, string, TREE_OPERAND (arg, 1)); } else if (TREE_CODE (arg) == VAR_DECL) { if (DECL_LANG_SPECIFIC (arg) && DECL_IN_AGGR_P (arg) && !TREE_STATIC (arg)) fmt = "%s of constant field %qD"; else fmt = "%s of read-only variable %qD"; (*fn) (fmt, string, arg); } else if (TREE_CODE (arg) == PARM_DECL) (*fn) ("%s of read-only parameter %qD", string, arg); else if (TREE_CODE (arg) == INDIRECT_REF && TREE_CODE (TREE_TYPE (TREE_OPERAND (arg, 0))) == REFERENCE_TYPE && (TREE_CODE (TREE_OPERAND (arg, 0)) == VAR_DECL || TREE_CODE (TREE_OPERAND (arg, 0)) == PARM_DECL)) (*fn) ("%s of read-only reference %qD", string, TREE_OPERAND (arg, 0)); else if (TREE_CODE (arg) == RESULT_DECL) (*fn) ("%s of read-only named return value %qD", string, arg); else if (TREE_CODE (arg) == FUNCTION_DECL) (*fn) ("%s of function %qD", string, arg); else (*fn) ("%s of read-only location", string); } /* Structure that holds information about declarations whose type was incomplete and we could not check whether it was abstract or not. */ struct pending_abstract_type GTY((chain_next ("%h.next"))) { /* Declaration which we are checking for abstractness. It is either a DECL node, or an IDENTIFIER_NODE if we do not have a full declaration available. */ tree decl; /* Type which will be checked for abstractness. */ tree type; /* Position of the declaration. This is only needed for IDENTIFIER_NODEs, because DECLs already carry locus information. */ location_t locus; /* Link to the next element in list. */ struct pending_abstract_type* next; }; /* Compute the hash value of the node VAL. This function is used by the hash table abstract_pending_vars. */ static hashval_t pat_calc_hash (const void* val) { const struct pending_abstract_type* pat = val; return (hashval_t) TYPE_UID (pat->type); } /* Compare node VAL1 with the type VAL2. This function is used by the hash table abstract_pending_vars. */ static int pat_compare (const void* val1, const void* val2) { const struct pending_abstract_type* pat1 = val1; tree type2 = (tree)val2; return (pat1->type == type2); } /* Hash table that maintains pending_abstract_type nodes, for which we still need to check for type abstractness. The key of the table is the type of the declaration. */ static GTY ((param_is (struct pending_abstract_type))) htab_t abstract_pending_vars = NULL; /* This function is called after TYPE is completed, and will check if there are pending declarations for which we still need to verify the abstractness of TYPE, and emit a diagnostic (through abstract_virtuals_error) if TYPE turned out to be incomplete. */ void complete_type_check_abstract (tree type) { void **slot; struct pending_abstract_type *pat; location_t cur_loc = input_location; gcc_assert (COMPLETE_TYPE_P (type)); if (!abstract_pending_vars) return; /* Retrieve the list of pending declarations for this type. */ slot = htab_find_slot_with_hash (abstract_pending_vars, type, (hashval_t)TYPE_UID (type), NO_INSERT); if (!slot) return; pat = (struct pending_abstract_type*)*slot; gcc_assert (pat); /* If the type is not abstract, do not do anything. */ if (CLASSTYPE_PURE_VIRTUALS (type)) { struct pending_abstract_type *prev = 0, *next; /* Reverse the list to emit the errors in top-down order. */ for (; pat; pat = next) { next = pat->next; pat->next = prev; prev = pat; } pat = prev; /* Go through the list, and call abstract_virtuals_error for each element: it will issue a diagnostic if the type is abstract. */ while (pat) { gcc_assert (type == pat->type); /* Tweak input_location so that the diagnostic appears at the correct location. Notice that this is only needed if the decl is an IDENTIFIER_NODE, otherwise cp_error_at. */ input_location = pat->locus; abstract_virtuals_error (pat->decl, pat->type); pat = pat->next; } } htab_clear_slot (abstract_pending_vars, slot); input_location = cur_loc; } /* If TYPE has abstract virtual functions, issue an error about trying to create an object of that type. DECL is the object declared, or NULL_TREE if the declaration is unavailable. Returns 1 if an error occurred; zero if all was well. */ int abstract_virtuals_error (tree decl, tree type) { VEC (tree) *pure; /* This function applies only to classes. Any other entity can never be abstract. */ if (!CLASS_TYPE_P (type)) return 0; /* If the type is incomplete, we register it within a hash table, so that we can check again once it is completed. This makes sense only for objects for which we have a declaration or at least a name. */ if (!COMPLETE_TYPE_P (type)) { void **slot; struct pending_abstract_type *pat; gcc_assert (!decl || DECL_P (decl) || TREE_CODE (decl) == IDENTIFIER_NODE); if (!abstract_pending_vars) abstract_pending_vars = htab_create_ggc (31, &pat_calc_hash, &pat_compare, NULL); slot = htab_find_slot_with_hash (abstract_pending_vars, type, (hashval_t)TYPE_UID (type), INSERT); pat = GGC_NEW (struct pending_abstract_type); pat->type = type; pat->decl = decl; pat->locus = ((decl && DECL_P (decl)) ? DECL_SOURCE_LOCATION (decl) : input_location); pat->next = *slot; *slot = pat; return 0; } if (!TYPE_SIZE (type)) /* TYPE is being defined, and during that time CLASSTYPE_PURE_VIRTUALS holds the inline friends. */ return 0; pure = CLASSTYPE_PURE_VIRTUALS (type); if (!pure) return 0; if (decl) { if (TREE_CODE (decl) == RESULT_DECL) return 0; if (TREE_CODE (decl) == VAR_DECL) cp_error_at ("cannot declare variable %q+D to be of abstract " "type %qT", decl, type); else if (TREE_CODE (decl) == PARM_DECL) cp_error_at ("cannot declare parameter %q+D to be of abstract " "type %qT", decl, type); else if (TREE_CODE (decl) == FIELD_DECL) cp_error_at ("cannot declare field %q+D to be of abstract " "type %qT", decl, type); else if (TREE_CODE (decl) == FUNCTION_DECL && TREE_CODE (TREE_TYPE (decl)) == METHOD_TYPE) cp_error_at ("invalid abstract return type for member function %q+#D", decl); else if (TREE_CODE (decl) == FUNCTION_DECL) cp_error_at ("invalid abstract return type for function %q+#D", decl); else if (TREE_CODE (decl) == IDENTIFIER_NODE) /* Here we do not have location information, so use error instead of cp_error_at. */ error ("invalid abstract type %qT for %qE", type, decl); else cp_error_at ("invalid abstract type for %q+D", decl); } else error ("cannot allocate an object of abstract type %qT", type); /* Only go through this once. */ if (VEC_length (tree, pure)) { unsigned ix; tree fn; inform ("%J because the following virtual functions are pure " "within %qT:", TYPE_MAIN_DECL (type), type); for (ix = 0; VEC_iterate (tree, pure, ix, fn); ix++) inform ("%J\t%#D", fn, fn); /* Now truncate the vector. This leaves it non-null, so we know there are pure virtuals, but empty so we don't list them out again. */ VEC_truncate (tree, pure, 0); } else inform ("%J since type %qT has pure virtual functions", TYPE_MAIN_DECL (type), type); return 1; } /* Print an error message for invalid use of an incomplete type. VALUE is the expression that was used (or 0 if that isn't known) and TYPE is the type that was invalid. DIAG_TYPE indicates the type of diagnostic: 0 for an error, 1 for a warning, 2 for a pedwarn. */ void cxx_incomplete_type_diagnostic (tree value, tree type, int diag_type) { int decl = 0; void (*p_msg) (const char *, ...); void (*p_msg_at) (const char *, ...); if (diag_type == 1) { p_msg = warning; p_msg_at = cp_warning_at; } else if (diag_type == 2) { p_msg = pedwarn; p_msg_at = cp_pedwarn_at; } else { p_msg = error; p_msg_at = cp_error_at; } /* Avoid duplicate error message. */ if (TREE_CODE (type) == ERROR_MARK) return; if (value != 0 && (TREE_CODE (value) == VAR_DECL || TREE_CODE (value) == PARM_DECL || TREE_CODE (value) == FIELD_DECL)) { (*p_msg_at) ("%qD has incomplete type", value); decl = 1; } retry: /* We must print an error message. Be clever about what it says. */ switch (TREE_CODE (type)) { case RECORD_TYPE: case UNION_TYPE: case ENUMERAL_TYPE: if (!decl) (*p_msg) ("invalid use of undefined type %q#T", type); if (!TYPE_TEMPLATE_INFO (type)) (*p_msg_at) ("forward declaration of %q#T", type); else (*p_msg_at) ("declaration of %q#T", type); break; case VOID_TYPE: (*p_msg) ("invalid use of %qT", type); break; case ARRAY_TYPE: if (TYPE_DOMAIN (type)) { type = TREE_TYPE (type); goto retry; } (*p_msg) ("invalid use of array with unspecified bounds"); break; case OFFSET_TYPE: bad_member: (*p_msg) ("invalid use of member (did you forget the %<&%> ?)"); break; case TEMPLATE_TYPE_PARM: (*p_msg) ("invalid use of template type parameter"); break; case UNKNOWN_TYPE: if (value && TREE_CODE (value) == COMPONENT_REF) goto bad_member; else if (value && TREE_CODE (value) == ADDR_EXPR) (*p_msg) ("address of overloaded function with no contextual " "type information"); else if (value && TREE_CODE (value) == OVERLOAD) (*p_msg) ("overloaded function with no contextual type information"); else (*p_msg) ("insufficient contextual information to determine type"); break; default: gcc_unreachable (); } } /* Backward-compatibility interface to incomplete_type_diagnostic; required by ../tree.c. */ #undef cxx_incomplete_type_error void cxx_incomplete_type_error (tree value, tree type) { cxx_incomplete_type_diagnostic (value, type, 0); } /* The recursive part of split_nonconstant_init. DEST is an lvalue expression to which INIT should be assigned. INIT is a CONSTRUCTOR. */ static void split_nonconstant_init_1 (tree dest, tree init) { tree *pelt, elt, type = TREE_TYPE (dest); tree sub, code, inner_type = NULL; bool array_type_p = false; pelt = &CONSTRUCTOR_ELTS (init); switch (TREE_CODE (type)) { case ARRAY_TYPE: inner_type = TREE_TYPE (type); array_type_p = true; /* FALLTHRU */ case RECORD_TYPE: case UNION_TYPE: case QUAL_UNION_TYPE: while ((elt = *pelt)) { tree field_index = TREE_PURPOSE (elt); tree value = TREE_VALUE (elt); if (!array_type_p) inner_type = TREE_TYPE (field_index); if (TREE_CODE (value) == CONSTRUCTOR) { if (array_type_p) sub = build4 (ARRAY_REF, inner_type, dest, field_index, NULL_TREE, NULL_TREE); else sub = build3 (COMPONENT_REF, inner_type, dest, field_index, NULL_TREE); split_nonconstant_init_1 (sub, value); } else if (!initializer_constant_valid_p (value, inner_type)) { *pelt = TREE_CHAIN (elt); if (array_type_p) sub = build4 (ARRAY_REF, inner_type, dest, field_index, NULL_TREE, NULL_TREE); else sub = build3 (COMPONENT_REF, inner_type, dest, field_index, NULL_TREE); code = build2 (MODIFY_EXPR, inner_type, sub, value); code = build_stmt (EXPR_STMT, code); add_stmt (code); continue; } pelt = &TREE_CHAIN (elt); } break; case VECTOR_TYPE: if (!initializer_constant_valid_p (init, type)) { CONSTRUCTOR_ELTS (init) = NULL; code = build2 (MODIFY_EXPR, type, dest, init); code = build_stmt (EXPR_STMT, code); add_stmt (code); } break; default: gcc_unreachable (); } } /* A subroutine of store_init_value. Splits non-constant static initializer INIT into a constant part and generates code to perform the non-constant part of the initialization to DEST. Returns the code for the runtime init. */ static tree split_nonconstant_init (tree dest, tree init) { tree code; if (TREE_CODE (init) == CONSTRUCTOR) { code = push_stmt_list (); split_nonconstant_init_1 (dest, init); code = pop_stmt_list (code); DECL_INITIAL (dest) = init; TREE_READONLY (dest) = 0; } else code = build2 (INIT_EXPR, TREE_TYPE (dest), dest, init); return code; } /* Perform appropriate conversions on the initial value of a variable, store it in the declaration DECL, and print any error messages that are appropriate. If the init is invalid, store an ERROR_MARK. C++: Note that INIT might be a TREE_LIST, which would mean that it is a base class initializer for some aggregate type, hopefully compatible with DECL. If INIT is a single element, and DECL is an aggregate type, we silently convert INIT into a TREE_LIST, allowing a constructor to be called. If INIT is a TREE_LIST and there is no constructor, turn INIT into a CONSTRUCTOR and use standard initialization techniques. Perhaps a warning should be generated? Returns code to be executed if initialization could not be performed for static variable. In that case, caller must emit the code. */ tree store_init_value (tree decl, tree init) { tree value, type; /* If variable's type was invalidly declared, just ignore it. */ type = TREE_TYPE (decl); if (TREE_CODE (type) == ERROR_MARK) return NULL_TREE; if (IS_AGGR_TYPE (type)) { gcc_assert (TYPE_HAS_TRIVIAL_INIT_REF (type) || TREE_CODE (init) == CONSTRUCTOR); if (TREE_CODE (init) == TREE_LIST) { error ("constructor syntax used, but no constructor declared " "for type %qT", type); init = build_constructor (NULL_TREE, nreverse (init)); } } else if (TREE_CODE (init) == TREE_LIST && TREE_TYPE (init) != unknown_type_node) { if (TREE_CODE (decl) == RESULT_DECL) init = build_x_compound_expr_from_list (init, "return value initializer"); else if (TREE_CODE (init) == TREE_LIST && TREE_CODE (TREE_TYPE (decl)) == ARRAY_TYPE) { error ("cannot initialize arrays using this syntax"); return NULL_TREE; } else /* We get here with code like `int a (2);' */ init = build_x_compound_expr_from_list (init, "initializer"); } /* End of special C++ code. */ /* Digest the specified initializer into an expression. */ value = digest_init (type, init, (tree *) 0); /* If the initializer is not a constant, fill in DECL_INITIAL with the bits that are constant, and then return an expression that will perform the dynamic initialization. */ if (value != error_mark_node && (TREE_SIDE_EFFECTS (value) || ! initializer_constant_valid_p (value, TREE_TYPE (value)))) return split_nonconstant_init (decl, value); /* If the value is a constant, just put it in DECL_INITIAL. If DECL is an automatic variable, the middle end will turn this into a dynamic initialization later. */ DECL_INITIAL (decl) = value; return NULL_TREE; } /* Digest the parser output INIT as an initializer for type TYPE. Return a C expression of type TYPE to represent the initial value. If TAIL is nonzero, it points to a variable holding a list of elements of which INIT is the first. We update the list stored there by removing from the head all the elements that we use. Normally this is only one; we use more than one element only if TYPE is an aggregate and INIT is not a constructor. */ tree digest_init (tree type, tree init, tree* tail) { enum tree_code code = TREE_CODE (type); tree element = NULL_TREE; tree old_tail_contents = NULL_TREE; /* By default, assume we use one element from a list. We correct this later in the sole case where it is not true. */ if (tail) { old_tail_contents = *tail; *tail = TREE_CHAIN (*tail); } if (init == error_mark_node || (TREE_CODE (init) == TREE_LIST && TREE_VALUE (init) == error_mark_node)) return error_mark_node; if (TREE_CODE (init) == ERROR_MARK) /* __PRETTY_FUNCTION__'s initializer is a bogus expression inside a template function. This gets substituted during instantiation. */ return init; /* We must strip the outermost array type when completing the type, because the its bounds might be incomplete at the moment. */ if (!complete_type_or_else (TREE_CODE (type) == ARRAY_TYPE ? TREE_TYPE (type) : type, NULL_TREE)) return error_mark_node; /* Strip NON_LVALUE_EXPRs since we aren't using as an lvalue. */ if (TREE_CODE (init) == NON_LVALUE_EXPR) init = TREE_OPERAND (init, 0); if (BRACE_ENCLOSED_INITIALIZER_P (init) && CONSTRUCTOR_ELTS (init) != 0 && TREE_CHAIN (CONSTRUCTOR_ELTS (init)) == 0) { element = TREE_VALUE (CONSTRUCTOR_ELTS (init)); /* Strip NON_LVALUE_EXPRs since we aren't using as an lvalue. */ if (element && TREE_CODE (element) == NON_LVALUE_EXPR) element = TREE_OPERAND (element, 0); if (element == error_mark_node) return element; } /* Initialization of an array of chars from a string constant optionally enclosed in braces. */ if (code == ARRAY_TYPE) { tree typ1; if (TREE_CODE (init) == TREE_LIST) { error ("initializing array with parameter list"); return error_mark_node; } typ1 = TYPE_MAIN_VARIANT (TREE_TYPE (type)); if (char_type_p (typ1) && ((init && TREE_CODE (init) == STRING_CST) || (element && TREE_CODE (element) == STRING_CST))) { tree string = element ? element : init; if ((TYPE_MAIN_VARIANT (TREE_TYPE (TREE_TYPE (string))) != char_type_node) && TYPE_PRECISION (typ1) == BITS_PER_UNIT) { error ("char-array initialized from wide string"); return error_mark_node; } if ((TYPE_MAIN_VARIANT (TREE_TYPE (TREE_TYPE (string))) == char_type_node) && TYPE_PRECISION (typ1) != BITS_PER_UNIT) { error ("int-array initialized from non-wide string"); return error_mark_node; } TREE_TYPE (string) = type; if (TYPE_DOMAIN (type) != 0 && TREE_CONSTANT (TYPE_SIZE (type))) { int size = TREE_INT_CST_LOW (TYPE_SIZE (type)); size = (size + BITS_PER_UNIT - 1) / BITS_PER_UNIT; /* In C it is ok to subtract 1 from the length of the string because it's ok to ignore the terminating null char that is counted in the length of the constant, but in C++ this would be invalid. */ if (size < TREE_STRING_LENGTH (string)) pedwarn ("initializer-string for array of chars is too long"); } return string; } } /* Handle scalar types, including conversions, and signature pointers and references. */ if (code == INTEGER_TYPE || code == REAL_TYPE || code == POINTER_TYPE || code == ENUMERAL_TYPE || code == REFERENCE_TYPE || code == BOOLEAN_TYPE || code == COMPLEX_TYPE || TYPE_PTR_TO_MEMBER_P (type)) { if (BRACE_ENCLOSED_INITIALIZER_P (init)) { if (element == 0) { error ("initializer for scalar variable requires one element"); return error_mark_node; } init = element; } while (BRACE_ENCLOSED_INITIALIZER_P (init)) { pedwarn ("braces around scalar initializer for %qT", type); init = CONSTRUCTOR_ELTS (init); if (TREE_CHAIN (init)) pedwarn ("ignoring extra initializers for %qT", type); init = TREE_VALUE (init); } return convert_for_initialization (0, type, init, LOOKUP_NORMAL, "initialization", NULL_TREE, 0); } /* Come here only for records and arrays (and unions with constructors). */ if (COMPLETE_TYPE_P (type) && ! TREE_CONSTANT (TYPE_SIZE (type))) { error ("variable-sized object of type %qT may not be initialized", type); return error_mark_node; } if (code == ARRAY_TYPE || code == VECTOR_TYPE || IS_AGGR_TYPE_CODE (code)) { if (BRACE_ENCLOSED_INITIALIZER_P (init)) { if (TYPE_NON_AGGREGATE_CLASS (type)) { error ("subobject of type %qT must be initialized by " "constructor, not by %qE", type, init); return error_mark_node; } return process_init_constructor (type, init, (tree *)0); } else if (can_convert_arg (type, TREE_TYPE (init), init) || TYPE_NON_AGGREGATE_CLASS (type)) /* These are never initialized from multiple constructor elements. */; else if (tail != 0) { *tail = old_tail_contents; return process_init_constructor (type, 0, tail); } if (code != ARRAY_TYPE) { int flags = LOOKUP_NORMAL; /* Initialization from { } is copy-initialization. */ if (tail) flags |= LOOKUP_ONLYCONVERTING; return convert_for_initialization (NULL_TREE, type, init, flags, "initialization", NULL_TREE, 0); } } error ("invalid initializer"); return error_mark_node; } /* Process a constructor for a variable of type TYPE. The constructor elements may be specified either with INIT or with ELTS, only one of which should be non-null. If INIT is specified, it is a CONSTRUCTOR node which is specifically and solely for initializing this datum. If ELTS is specified, it is the address of a variable containing a list of expressions. We take as many elements as we need from the head of the list and update the list. In the resulting constructor, TREE_CONSTANT is set if all elts are constant, and TREE_STATIC is set if, in addition, all elts are simple enough constants that the assembler and linker can compute them. */ static tree process_init_constructor (tree type, tree init, tree* elts) { tree tail; /* List of the elements of the result constructor, in reverse order. */ tree members = NULL; tree next1; tree result; int allconstant = 1; int allsimple = 1; int erroneous = 0; /* Make TAIL be the list of elements to use for the initialization, no matter how the data was given to us. */ if (elts) { if (warn_missing_braces) warning ("aggregate has a partly bracketed initializer"); tail = *elts; } else tail = CONSTRUCTOR_ELTS (init); /* Gobble as many elements as needed, and make a constructor or initial value for each element of this aggregate. Chain them together in result. If there are too few, use 0 for each scalar ultimate component. */ if (TREE_CODE (type) == ARRAY_TYPE || TREE_CODE (type) == VECTOR_TYPE) { long len; int i; if (TREE_CODE (type) == ARRAY_TYPE) { tree domain = TYPE_DOMAIN (type); if (domain) len = (TREE_INT_CST_LOW (TYPE_MAX_VALUE (domain)) - TREE_INT_CST_LOW (TYPE_MIN_VALUE (domain)) + 1); else len = -1; /* Take as many as there are. */ } else { /* Vectors are like simple fixed-size arrays. */ len = TYPE_VECTOR_SUBPARTS (type); } for (i = 0; len < 0 || i < len; i++) { if (tail) { if (TREE_PURPOSE (tail) && (TREE_CODE (TREE_PURPOSE (tail)) != INTEGER_CST || compare_tree_int (TREE_PURPOSE (tail), i) != 0)) sorry ("non-trivial labeled initializers"); if (TREE_VALUE (tail) != 0) { tree tail1 = tail; next1 = digest_init (TREE_TYPE (type), TREE_VALUE (tail), &tail1); if (next1 == error_mark_node) return next1; gcc_assert (same_type_ignoring_top_level_qualifiers_p (TREE_TYPE (type), TREE_TYPE (next1))); gcc_assert (!tail1 || TREE_CODE (tail1) == TREE_LIST); if (tail == tail1 && len < 0) { error ("non-empty initializer for array of empty elements"); /* Just ignore what we were supposed to use. */ tail1 = NULL_TREE; } tail = tail1; } else { next1 = error_mark_node; tail = TREE_CHAIN (tail); } } else if (len < 0) /* We're done. */ break; else if (TYPE_NEEDS_CONSTRUCTING (TREE_TYPE (type))) { /* If this type needs constructors run for default-initialization, we can't rely on the backend to do it for us, so build up TARGET_EXPRs. If the type in question is a class, just build one up; if it's an array, recurse. */ if (IS_AGGR_TYPE (TREE_TYPE (type))) next1 = build_functional_cast (TREE_TYPE (type), NULL_TREE); else next1 = build_constructor (NULL_TREE, NULL_TREE); next1 = digest_init (TREE_TYPE (type), next1, 0); } else if (! zero_init_p (TREE_TYPE (type))) next1 = build_zero_init (TREE_TYPE (type), /*nelts=*/NULL_TREE, /*static_storage_p=*/false); else /* The default zero-initialization is fine for us; don't add anything to the CONSTRUCTOR. */ break; if (next1 == error_mark_node) erroneous = 1; else if (!TREE_CONSTANT (next1)) allconstant = 0; else if (! initializer_constant_valid_p (next1, TREE_TYPE (next1))) allsimple = 0; members = tree_cons (size_int (i), next1, members); } } else if (TREE_CODE (type) == RECORD_TYPE) { tree field; if (tail) { gcc_assert (!CLASSTYPE_VBASECLASSES (type)); gcc_assert (!TYPE_BINFO (type) || !BINFO_N_BASE_BINFOS (TYPE_BINFO (type))); gcc_assert (!TYPE_POLYMORPHIC_P (type)); } for (field = TYPE_FIELDS (type); field; field = TREE_CHAIN (field)) { if (! DECL_NAME (field) && DECL_C_BIT_FIELD (field)) { members = tree_cons (field, integer_zero_node, members); continue; } if (TREE_CODE (field) != FIELD_DECL || DECL_ARTIFICIAL (field)) continue; if (tail) { if (TREE_PURPOSE (tail) && TREE_PURPOSE (tail) != field && TREE_PURPOSE (tail) != DECL_NAME (field)) sorry ("non-trivial labeled initializers"); if (TREE_VALUE (tail) != 0) { tree tail1 = tail; next1 = digest_init (TREE_TYPE (field), TREE_VALUE (tail), &tail1); gcc_assert (!tail1 || TREE_CODE (tail1) == TREE_LIST); tail = tail1; } else { next1 = error_mark_node; tail = TREE_CHAIN (tail); } } else if (TYPE_NEEDS_CONSTRUCTING (TREE_TYPE (field))) { /* If this type needs constructors run for default-initialization, we can't rely on the backend to do it for us, so build up TARGET_EXPRs. If the type in question is a class, just build one up; if it's an array, recurse. */ if (IS_AGGR_TYPE (TREE_TYPE (field))) next1 = build_functional_cast (TREE_TYPE (field), NULL_TREE); else { next1 = build_constructor (NULL_TREE, NULL_TREE); if (init) TREE_HAS_CONSTRUCTOR (next1) = TREE_HAS_CONSTRUCTOR (init); } next1 = digest_init (TREE_TYPE (field), next1, 0); /* Warn when some struct elements are implicitly initialized. */ if (warn_missing_field_initializers && (!init || BRACE_ENCLOSED_INITIALIZER_P (init))) warning ("missing initializer for member %qD", field); } else { if (TREE_READONLY (field)) error ("uninitialized const member %qD", field); else if (CLASSTYPE_READONLY_FIELDS_NEED_INIT (TREE_TYPE (field))) error ("member %qD with uninitialized const fields", field); else if (TREE_CODE (TREE_TYPE (field)) == REFERENCE_TYPE) error ("member %qD is uninitialized reference", field); /* Warn when some struct elements are implicitly initialized to zero. */ if (warn_missing_field_initializers && (!init || BRACE_ENCLOSED_INITIALIZER_P (init))) warning ("missing initializer for member %qD", field); if (! zero_init_p (TREE_TYPE (field))) next1 = build_zero_init (TREE_TYPE (field), /*nelts=*/NULL_TREE, /*static_storage_p=*/false); else /* The default zero-initialization is fine for us; don't add anything to the CONSTRUCTOR. */ continue; } if (next1 == error_mark_node) erroneous = 1; else if (!TREE_CONSTANT (next1)) allconstant = 0; else if (! initializer_constant_valid_p (next1, TREE_TYPE (next1))) allsimple = 0; members = tree_cons (field, next1, members); } } else if (TREE_CODE (type) == UNION_TYPE /* If the initializer was empty, use default zero initialization. */ && tail) { tree field = TYPE_FIELDS (type); /* Find the first named field. ANSI decided in September 1990 that only named fields count here. */ while (field && (!DECL_NAME (field) || TREE_CODE (field) != FIELD_DECL)) field = TREE_CHAIN (field); /* If this element specifies a field, initialize via that field. */ if (TREE_PURPOSE (tail) != NULL_TREE) { int win = 0; if (TREE_CODE (TREE_PURPOSE (tail)) == FIELD_DECL) /* Handle the case of a call by build_c_cast. */ field = TREE_PURPOSE (tail), win = 1; else if (TREE_CODE (TREE_PURPOSE (tail)) != IDENTIFIER_NODE) error ("index value instead of field name in union initializer"); else { tree temp; for (temp = TYPE_FIELDS (type); temp; temp = TREE_CHAIN (temp)) if (DECL_NAME (temp) == TREE_PURPOSE (tail)) break; if (temp) field = temp, win = 1; else error ("no field %qD in union being initialized", TREE_PURPOSE (tail)); } if (!win) TREE_VALUE (tail) = error_mark_node; } else if (field == 0) { error ("union %qT with no named members cannot be initialized", type); TREE_VALUE (tail) = error_mark_node; } if (TREE_VALUE (tail) != 0) { tree tail1 = tail; next1 = digest_init (TREE_TYPE (field), TREE_VALUE (tail), &tail1); gcc_assert (!tail1 || TREE_CODE (tail1) == TREE_LIST); tail = tail1; } else { next1 = error_mark_node; tail = TREE_CHAIN (tail); } if (next1 == error_mark_node) erroneous = 1; else if (!TREE_CONSTANT (next1)) allconstant = 0; else if (initializer_constant_valid_p (next1, TREE_TYPE (next1)) == 0) allsimple = 0; members = tree_cons (field, next1, members); } /* If arguments were specified as a list, just remove the ones we used. */ if (elts) *elts = tail; /* If arguments were specified as a constructor, complain unless we used all the elements of the constructor. */ else if (tail) pedwarn ("excess elements in aggregate initializer"); if (erroneous) return error_mark_node; result = build_constructor (type, nreverse (members)); if (TREE_CODE (type) == ARRAY_TYPE && TYPE_DOMAIN (type) == NULL_TREE) complete_array_type (type, result, /*do_default=*/0); if (init) TREE_HAS_CONSTRUCTOR (result) = TREE_HAS_CONSTRUCTOR (init); if (allconstant) { TREE_CONSTANT (result) = 1; TREE_INVARIANT (result) = 1; if (allsimple) TREE_STATIC (result) = 1; } return result; } /* Given a structure or union value DATUM, construct and return the structure or union component which results from narrowing that value to the base specified in BASETYPE. For example, given the hierarchy class L { int ii; }; class A : L { ... }; class B : L { ... }; class C : A, B { ... }; and the declaration C x; then the expression x.A::ii refers to the ii member of the L part of the A part of the C object named by X. In this case, DATUM would be x, and BASETYPE would be A. I used to think that this was nonconformant, that the standard specified that first we look up ii in A, then convert x to an L& and pull out the ii part. But in fact, it does say that we convert x to an A&; A here is known as the "naming class". (jason 2000-12-19) BINFO_P points to a variable initialized either to NULL_TREE or to the binfo for the specific base subobject we want to convert to. */ tree build_scoped_ref (tree datum, tree basetype, tree* binfo_p) { tree binfo; if (datum == error_mark_node) return error_mark_node; if (*binfo_p) binfo = *binfo_p; else binfo = lookup_base (TREE_TYPE (datum), basetype, ba_check, NULL); if (!binfo || binfo == error_mark_node) { *binfo_p = NULL_TREE; if (!binfo) error_not_base_type (basetype, TREE_TYPE (datum)); return error_mark_node; } *binfo_p = binfo; return build_base_path (PLUS_EXPR, datum, binfo, 1); } /* Build a reference to an object specified by the C++ `->' operator. Usually this just involves dereferencing the object, but if the `->' operator is overloaded, then such overloads must be performed until an object which does not have the `->' operator overloaded is found. An error is reported when circular pointer delegation is detected. */ tree build_x_arrow (tree expr) { tree orig_expr = expr; tree types_memoized = NULL_TREE; tree type = TREE_TYPE (expr); tree last_rval = NULL_TREE; if (type == error_mark_node) return error_mark_node; if (processing_template_decl) { if (type_dependent_expression_p (expr)) return build_min_nt (ARROW_EXPR, expr); expr = build_non_dependent_expr (expr); } if (IS_AGGR_TYPE (type)) { while ((expr = build_new_op (COMPONENT_REF, LOOKUP_NORMAL, expr, NULL_TREE, NULL_TREE, /*overloaded_p=*/NULL))) { if (expr == error_mark_node) return error_mark_node; if (value_member (TREE_TYPE (expr), types_memoized)) { error ("circular pointer delegation detected"); return error_mark_node; } else { types_memoized = tree_cons (NULL_TREE, TREE_TYPE (expr), types_memoized); } last_rval = expr; } if (last_rval == NULL_TREE) { error ("base operand of %<->%> has non-pointer type %qT", type); return error_mark_node; } if (TREE_CODE (TREE_TYPE (last_rval)) == REFERENCE_TYPE) last_rval = convert_from_reference (last_rval); } else last_rval = decay_conversion (expr); if (TREE_CODE (TREE_TYPE (last_rval)) == POINTER_TYPE) { if (processing_template_decl) { expr = build_min_non_dep (ARROW_EXPR, last_rval, orig_expr); /* It will be dereferenced. */ TREE_TYPE (expr) = TREE_TYPE (TREE_TYPE (last_rval)); return expr; } return build_indirect_ref (last_rval, NULL); } if (types_memoized) error ("result of %()%> yields non-pointer result"); else error ("base operand of %<->%> is not a pointer"); return error_mark_node; } /* Return an expression for "DATUM .* COMPONENT". DATUM has not already been checked out to be of aggregate type. */ tree build_m_component_ref (tree datum, tree component) { tree ptrmem_type; tree objtype; tree type; tree binfo; tree ctype; datum = decay_conversion (datum); if (datum == error_mark_node || component == error_mark_node) return error_mark_node; ptrmem_type = TREE_TYPE (component); if (!TYPE_PTR_TO_MEMBER_P (ptrmem_type)) { error ("%qE cannot be used as a member pointer, since it is of " "type %qT", component, ptrmem_type); return error_mark_node; } objtype = TYPE_MAIN_VARIANT (TREE_TYPE (datum)); if (! IS_AGGR_TYPE (objtype)) { error ("cannot apply member pointer %qE to %qE, which is of " "non-aggregate type %qT", component, datum, objtype); return error_mark_node; } type = TYPE_PTRMEM_POINTED_TO_TYPE (ptrmem_type); ctype = complete_type (TYPE_PTRMEM_CLASS_TYPE (ptrmem_type)); if (!COMPLETE_TYPE_P (ctype)) { if (!same_type_p (ctype, objtype)) goto mismatch; binfo = NULL; } else { binfo = lookup_base (objtype, ctype, ba_check, NULL); if (!binfo) { mismatch: error ("pointer to member type %qT incompatible with object " "type %qT", type, objtype); return error_mark_node; } else if (binfo == error_mark_node) return error_mark_node; } if (TYPE_PTRMEM_P (ptrmem_type)) { /* Compute the type of the field, as described in [expr.ref]. There's no such thing as a mutable pointer-to-member, so things are not as complex as they are for references to non-static data members. */ type = cp_build_qualified_type (type, (cp_type_quals (type) | cp_type_quals (TREE_TYPE (datum)))); datum = build_address (datum); /* Convert object to the correct base. */ if (binfo) datum = build_base_path (PLUS_EXPR, datum, binfo, 1); /* Build an expression for "object + offset" where offset is the value stored in the pointer-to-data-member. */ datum = build2 (PLUS_EXPR, build_pointer_type (type), datum, build_nop (ptrdiff_type_node, component)); return build_indirect_ref (datum, 0); } else return build2 (OFFSET_REF, type, datum, component); } /* Return a tree node for the expression TYPENAME '(' PARMS ')'. */ tree build_functional_cast (tree exp, tree parms) { /* This is either a call to a constructor, or a C cast in C++'s `functional' notation. */ tree type; if (exp == error_mark_node || parms == error_mark_node) return error_mark_node; if (TREE_CODE (exp) == TYPE_DECL) type = TREE_TYPE (exp); else type = exp; if (processing_template_decl) { tree t = build_min (CAST_EXPR, type, parms); /* We don't know if it will or will not have side effects. */ TREE_SIDE_EFFECTS (t) = 1; return t; } if (! IS_AGGR_TYPE (type)) { /* This must build a C cast. */ if (parms == NULL_TREE) parms = integer_zero_node; else parms = build_x_compound_expr_from_list (parms, "functional cast"); return build_c_cast (type, parms); } /* Prepare to evaluate as a call to a constructor. If this expression is actually used, for example, return X (arg1, arg2, ...); then the slot being initialized will be filled in. */ if (!complete_type_or_else (type, NULL_TREE)) return error_mark_node; if (abstract_virtuals_error (NULL_TREE, type)) return error_mark_node; if (parms && TREE_CHAIN (parms) == NULL_TREE) return build_c_cast (type, TREE_VALUE (parms)); /* We need to zero-initialize POD types. Let's do that for everything that doesn't need a constructor. */ if (parms == NULL_TREE && !TYPE_NEEDS_CONSTRUCTING (type) && TYPE_HAS_DEFAULT_CONSTRUCTOR (type)) { exp = build_constructor (type, NULL_TREE); return get_target_expr (exp); } exp = build_special_member_call (NULL_TREE, complete_ctor_identifier, parms, type, LOOKUP_NORMAL); if (exp == error_mark_node) return error_mark_node; return build_cplus_new (type, exp); } /* Add new exception specifier SPEC, to the LIST we currently have. If it's already in LIST then do nothing. Moan if it's bad and we're allowed to. COMPLAIN < 0 means we know what we're doing. */ tree add_exception_specifier (tree list, tree spec, int complain) { bool ok; tree core = spec; bool is_ptr; int diag_type = -1; /* none */ if (spec == error_mark_node) return list; gcc_assert (spec && (!list || TREE_VALUE (list))); /* [except.spec] 1, type in an exception specifier shall not be incomplete, or pointer or ref to incomplete other than pointer to cv void. */ is_ptr = TREE_CODE (core) == POINTER_TYPE; if (is_ptr || TREE_CODE (core) == REFERENCE_TYPE) core = TREE_TYPE (core); if (complain < 0) ok = true; else if (VOID_TYPE_P (core)) ok = is_ptr; else if (TREE_CODE (core) == TEMPLATE_TYPE_PARM) ok = true; else if (processing_template_decl) ok = true; else { ok = true; /* 15.4/1 says that types in an exception specifier must be complete, but it seems more reasonable to only require this on definitions and calls. So just give a pedwarn at this point; we will give an error later if we hit one of those two cases. */ if (!COMPLETE_TYPE_P (complete_type (core))) diag_type = 2; /* pedwarn */ } if (ok) { tree probe; for (probe = list; probe; probe = TREE_CHAIN (probe)) if (same_type_p (TREE_VALUE (probe), spec)) break; if (!probe) list = tree_cons (NULL_TREE, spec, list); } else diag_type = 0; /* error */ if (diag_type >= 0 && complain) cxx_incomplete_type_diagnostic (NULL_TREE, core, diag_type); return list; } /* Combine the two exceptions specifier lists LIST and ADD, and return their union. */ tree merge_exception_specifiers (tree list, tree add) { if (!list || !add) return NULL_TREE; else if (!TREE_VALUE (list)) return add; else if (!TREE_VALUE (add)) return list; else { tree orig_list = list; for (; add; add = TREE_CHAIN (add)) { tree spec = TREE_VALUE (add); tree probe; for (probe = orig_list; probe; probe = TREE_CHAIN (probe)) if (same_type_p (TREE_VALUE (probe), spec)) break; if (!probe) { spec = build_tree_list (NULL_TREE, spec); TREE_CHAIN (spec) = list; list = spec; } } } return list; } /* Subroutine of build_call. Ensure that each of the types in the exception specification is complete. Technically, 15.4/1 says that they need to be complete when we see a declaration of the function, but we should be able to get away with only requiring this when the function is defined or called. See also add_exception_specifier. */ void require_complete_eh_spec_types (tree fntype, tree decl) { tree raises; /* Don't complain about calls to op new. */ if (decl && DECL_ARTIFICIAL (decl)) return; for (raises = TYPE_RAISES_EXCEPTIONS (fntype); raises; raises = TREE_CHAIN (raises)) { tree type = TREE_VALUE (raises); if (type && !COMPLETE_TYPE_P (type)) { if (decl) error ("call to function %qD which throws incomplete type %q#T", decl, type); else error ("call to function which throws incomplete type %q#T", decl); } } } #include "gt-cp-typeck2.h"