/* Parse C expressions for CCCP. Copyright (C) 1987, 1992, 1994, 1995, 1996 Free Software Foundation. This program is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 2, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program; if not, write to the Free Software Foundation, 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. In other words, you are welcome to use, share and improve this program. You are forbidden to forbid anyone else to use, share and improve what you give them. Help stamp out software-hoarding! Adapted from expread.y of GDB by Paul Rubin, July 1986. */ /* Parse a C expression from text in a string */ %{ #include "config.h" #include /* #define YYDEBUG 1 */ /* The following symbols should be autoconfigured: HAVE_STDLIB_H STDC_HEADERS In the mean time, we'll get by with approximations based on existing GCC configuration symbols. */ #ifdef POSIX # ifndef HAVE_STDLIB_H # define HAVE_STDLIB_H 1 # endif # ifndef STDC_HEADERS # define STDC_HEADERS 1 # endif #endif /* defined (POSIX) */ #if STDC_HEADERS # include #endif #if HAVE_STDLIB_H || defined (MULTIBYTE_CHARS) # include #endif #ifdef MULTIBYTE_CHARS #include #endif #include typedef unsigned char U_CHAR; /* This is used for communicating lists of keywords with cccp.c. */ struct arglist { struct arglist *next; U_CHAR *name; int length; int argno; }; /* Define a generic NULL if one hasn't already been defined. */ #ifndef NULL #define NULL 0 #endif #ifndef GENERIC_PTR #if defined (USE_PROTOTYPES) ? USE_PROTOTYPES : defined (__STDC__) #define GENERIC_PTR void * #else #define GENERIC_PTR char * #endif #endif #ifndef NULL_PTR #define NULL_PTR ((GENERIC_PTR)0) #endif /* Find the largest host integer type and set its size and type. Don't blindly use `long'; on some crazy hosts it is shorter than `int'. */ #ifndef HOST_BITS_PER_WIDE_INT #if HOST_BITS_PER_LONG > HOST_BITS_PER_INT #define HOST_BITS_PER_WIDE_INT HOST_BITS_PER_LONG #define HOST_WIDE_INT long #else #define HOST_BITS_PER_WIDE_INT HOST_BITS_PER_INT #define HOST_WIDE_INT int #endif #endif #if __GNUC__ < 2 || (__GNUC__ == 2 && __GNUC_MINOR__ < 6) # define __attribute__(x) #endif #ifndef PROTO # if defined (USE_PROTOTYPES) ? USE_PROTOTYPES : defined (__STDC__) # define PROTO(ARGS) ARGS # else # define PROTO(ARGS) () # endif #endif #if defined (__STDC__) && defined (HAVE_VPRINTF) # include # define VA_START(va_list, var) va_start (va_list, var) # define PRINTF_ALIST(msg) char *msg, ... # define PRINTF_DCL(msg) # define PRINTF_PROTO(ARGS, m, n) PROTO (ARGS) __attribute__ ((format (printf, m, n))) #else # include # define VA_START(va_list, var) va_start (va_list) # define PRINTF_ALIST(msg) msg, va_alist # define PRINTF_DCL(msg) char *msg; va_dcl # define PRINTF_PROTO(ARGS, m, n) () __attribute__ ((format (printf, m, n))) # define vfprintf(file, msg, args) \ { \ char *a0 = va_arg(args, char *); \ char *a1 = va_arg(args, char *); \ char *a2 = va_arg(args, char *); \ char *a3 = va_arg(args, char *); \ fprintf (file, msg, a0, a1, a2, a3); \ } #endif #define PRINTF_PROTO_1(ARGS) PRINTF_PROTO(ARGS, 1, 2) HOST_WIDE_INT parse_c_expression PROTO((char *)); static int yylex PROTO((void)); static void yyerror PROTO((char *)) __attribute__ ((noreturn)); static HOST_WIDE_INT expression_value; static jmp_buf parse_return_error; /* Nonzero means count most punctuation as part of a name. */ static int keyword_parsing = 0; /* Nonzero means do not evaluate this expression. This is a count, since unevaluated expressions can nest. */ static int skip_evaluation; /* some external tables of character types */ extern unsigned char is_idstart[], is_idchar[], is_hor_space[]; /* Flag for -pedantic. */ extern int pedantic; /* Flag for -traditional. */ extern int traditional; #ifndef CHAR_TYPE_SIZE #define CHAR_TYPE_SIZE BITS_PER_UNIT #endif #ifndef INT_TYPE_SIZE #define INT_TYPE_SIZE BITS_PER_WORD #endif #ifndef LONG_TYPE_SIZE #define LONG_TYPE_SIZE BITS_PER_WORD #endif #ifndef WCHAR_TYPE_SIZE #define WCHAR_TYPE_SIZE INT_TYPE_SIZE #endif #ifndef MAX_CHAR_TYPE_SIZE #define MAX_CHAR_TYPE_SIZE CHAR_TYPE_SIZE #endif #ifndef MAX_INT_TYPE_SIZE #define MAX_INT_TYPE_SIZE INT_TYPE_SIZE #endif #ifndef MAX_LONG_TYPE_SIZE #define MAX_LONG_TYPE_SIZE LONG_TYPE_SIZE #endif #ifndef MAX_WCHAR_TYPE_SIZE #define MAX_WCHAR_TYPE_SIZE WCHAR_TYPE_SIZE #endif #if MAX_CHAR_TYPE_SIZE < HOST_BITS_PER_WIDE_INT #define MAX_CHAR_TYPE_MASK (~ (~ (HOST_WIDE_INT) 0 << MAX_CHAR_TYPE_SIZE)) #else #define MAX_CHAR_TYPE_MASK (~ (HOST_WIDE_INT) 0) #endif #if MAX_WCHAR_TYPE_SIZE < HOST_BITS_PER_WIDE_INT #define MAX_WCHAR_TYPE_MASK (~ (~ (HOST_WIDE_INT) 0 << MAX_WCHAR_TYPE_SIZE)) #else #define MAX_WCHAR_TYPE_MASK (~ (HOST_WIDE_INT) 0) #endif /* Suppose A1 + B1 = SUM1, using 2's complement arithmetic ignoring overflow. Suppose A, B and SUM have the same respective signs as A1, B1, and SUM1. Suppose SIGNEDP is negative if the result is signed, zero if unsigned. Then this yields nonzero if overflow occurred during the addition. Overflow occurs if A and B have the same sign, but A and SUM differ in sign, and SIGNEDP is negative. Use `^' to test whether signs differ, and `< 0' to isolate the sign. */ #define overflow_sum_sign(a, b, sum, signedp) \ ((~((a) ^ (b)) & ((a) ^ (sum)) & (signedp)) < 0) struct constant; GENERIC_PTR xmalloc PROTO((size_t)); HOST_WIDE_INT parse_escape PROTO((char **, HOST_WIDE_INT)); int check_assertion PROTO((U_CHAR *, int, int, struct arglist *)); struct hashnode *lookup PROTO((U_CHAR *, int, int)); void error PRINTF_PROTO_1((char *, ...)); void pedwarn PRINTF_PROTO_1((char *, ...)); void warning PRINTF_PROTO_1((char *, ...)); static int parse_number PROTO((int)); static HOST_WIDE_INT left_shift PROTO((struct constant *, unsigned HOST_WIDE_INT)); static HOST_WIDE_INT right_shift PROTO((struct constant *, unsigned HOST_WIDE_INT)); static void integer_overflow PROTO((void)); /* `signedp' values */ #define SIGNED (~0) #define UNSIGNED 0 %} %union { struct constant {HOST_WIDE_INT value; int signedp;} integer; struct name {U_CHAR *address; int length;} name; struct arglist *keywords; } %type exp exp1 start %type keywords %token INT CHAR %token NAME %token ERROR %right '?' ':' %left ',' %left OR %left AND %left '|' %left '^' %left '&' %left EQUAL NOTEQUAL %left '<' '>' LEQ GEQ %left LSH RSH %left '+' '-' %left '*' '/' '%' %right UNARY /* %expect 40 */ %% start : exp1 { expression_value = $1.value; } ; /* Expressions, including the comma operator. */ exp1 : exp | exp1 ',' exp { if (pedantic) pedwarn ("comma operator in operand of `#if'"); $$ = $3; } ; /* Expressions, not including the comma operator. */ exp : '-' exp %prec UNARY { $$.value = - $2.value; $$.signedp = $2.signedp; if (($$.value & $2.value & $$.signedp) < 0) integer_overflow (); } | '!' exp %prec UNARY { $$.value = ! $2.value; $$.signedp = SIGNED; } | '+' exp %prec UNARY { $$ = $2; } | '~' exp %prec UNARY { $$.value = ~ $2.value; $$.signedp = $2.signedp; } | '#' NAME { $$.value = check_assertion ($2.address, $2.length, 0, NULL_PTR); $$.signedp = SIGNED; } | '#' NAME { keyword_parsing = 1; } '(' keywords ')' { $$.value = check_assertion ($2.address, $2.length, 1, $5); keyword_parsing = 0; $$.signedp = SIGNED; } | '(' exp1 ')' { $$ = $2; } ; /* Binary operators in order of decreasing precedence. */ exp : exp '*' exp { $$.signedp = $1.signedp & $3.signedp; if ($$.signedp) { $$.value = $1.value * $3.value; if ($1.value && ($$.value / $1.value != $3.value || ($$.value & $1.value & $3.value) < 0)) integer_overflow (); } else $$.value = ((unsigned HOST_WIDE_INT) $1.value * $3.value); } | exp '/' exp { if ($3.value == 0) { if (!skip_evaluation) error ("division by zero in #if"); $3.value = 1; } $$.signedp = $1.signedp & $3.signedp; if ($$.signedp) { $$.value = $1.value / $3.value; if (($$.value & $1.value & $3.value) < 0) integer_overflow (); } else $$.value = ((unsigned HOST_WIDE_INT) $1.value / $3.value); } | exp '%' exp { if ($3.value == 0) { if (!skip_evaluation) error ("division by zero in #if"); $3.value = 1; } $$.signedp = $1.signedp & $3.signedp; if ($$.signedp) $$.value = $1.value % $3.value; else $$.value = ((unsigned HOST_WIDE_INT) $1.value % $3.value); } | exp '+' exp { $$.value = $1.value + $3.value; $$.signedp = $1.signedp & $3.signedp; if (overflow_sum_sign ($1.value, $3.value, $$.value, $$.signedp)) integer_overflow (); } | exp '-' exp { $$.value = $1.value - $3.value; $$.signedp = $1.signedp & $3.signedp; if (overflow_sum_sign ($$.value, $3.value, $1.value, $$.signedp)) integer_overflow (); } | exp LSH exp { $$.signedp = $1.signedp; if (($3.value & $3.signedp) < 0) $$.value = right_shift (&$1, -$3.value); else $$.value = left_shift (&$1, $3.value); } | exp RSH exp { $$.signedp = $1.signedp; if (($3.value & $3.signedp) < 0) $$.value = left_shift (&$1, -$3.value); else $$.value = right_shift (&$1, $3.value); } | exp EQUAL exp { $$.value = ($1.value == $3.value); $$.signedp = SIGNED; } | exp NOTEQUAL exp { $$.value = ($1.value != $3.value); $$.signedp = SIGNED; } | exp LEQ exp { $$.signedp = SIGNED; if ($1.signedp & $3.signedp) $$.value = $1.value <= $3.value; else $$.value = ((unsigned HOST_WIDE_INT) $1.value <= $3.value); } | exp GEQ exp { $$.signedp = SIGNED; if ($1.signedp & $3.signedp) $$.value = $1.value >= $3.value; else $$.value = ((unsigned HOST_WIDE_INT) $1.value >= $3.value); } | exp '<' exp { $$.signedp = SIGNED; if ($1.signedp & $3.signedp) $$.value = $1.value < $3.value; else $$.value = ((unsigned HOST_WIDE_INT) $1.value < $3.value); } | exp '>' exp { $$.signedp = SIGNED; if ($1.signedp & $3.signedp) $$.value = $1.value > $3.value; else $$.value = ((unsigned HOST_WIDE_INT) $1.value > $3.value); } | exp '&' exp { $$.value = $1.value & $3.value; $$.signedp = $1.signedp & $3.signedp; } | exp '^' exp { $$.value = $1.value ^ $3.value; $$.signedp = $1.signedp & $3.signedp; } | exp '|' exp { $$.value = $1.value | $3.value; $$.signedp = $1.signedp & $3.signedp; } | exp AND { skip_evaluation += !$1.value; } exp { skip_evaluation -= !$1.value; $$.value = ($1.value && $4.value); $$.signedp = SIGNED; } | exp OR { skip_evaluation += !!$1.value; } exp { skip_evaluation -= !!$1.value; $$.value = ($1.value || $4.value); $$.signedp = SIGNED; } | exp '?' { skip_evaluation += !$1.value; } exp ':' { skip_evaluation += !!$1.value - !$1.value; } exp { skip_evaluation -= !!$1.value; $$.value = $1.value ? $4.value : $7.value; $$.signedp = $4.signedp & $7.signedp; } | INT { $$ = yylval.integer; } | CHAR { $$ = yylval.integer; } | NAME { $$.value = 0; $$.signedp = SIGNED; } ; keywords : { $$ = 0; } | '(' keywords ')' keywords { struct arglist *temp; $$ = (struct arglist *) xmalloc (sizeof (struct arglist)); $$->next = $2; $$->name = (U_CHAR *) "("; $$->length = 1; temp = $$; while (temp != 0 && temp->next != 0) temp = temp->next; temp->next = (struct arglist *) xmalloc (sizeof (struct arglist)); temp->next->next = $4; temp->next->name = (U_CHAR *) ")"; temp->next->length = 1; } | NAME keywords { $$ = (struct arglist *) xmalloc (sizeof (struct arglist)); $$->name = $1.address; $$->length = $1.length; $$->next = $2; } ; %% /* During parsing of a C expression, the pointer to the next character is in this variable. */ static char *lexptr; /* Take care of parsing a number (anything that starts with a digit). Set yylval and return the token type; update lexptr. LEN is the number of characters in it. */ /* maybe needs to actually deal with floating point numbers */ static int parse_number (olen) int olen; { register char *p = lexptr; register int c; register unsigned HOST_WIDE_INT n = 0, nd, max_over_base; register int base = 10; register int len = olen; register int overflow = 0; register int digit, largest_digit = 0; int spec_long = 0; yylval.integer.signedp = SIGNED; if (*p == '0') { base = 8; if (len >= 3 && (p[1] == 'x' || p[1] == 'X')) { p += 2; base = 16; len -= 2; } } max_over_base = (unsigned HOST_WIDE_INT) -1 / base; for (; len > 0; len--) { c = *p++; if (c >= '0' && c <= '9') digit = c - '0'; else if (base == 16 && c >= 'a' && c <= 'f') digit = c - 'a' + 10; else if (base == 16 && c >= 'A' && c <= 'F') digit = c - 'A' + 10; else { /* `l' means long, and `u' means unsigned. */ while (1) { if (c == 'l' || c == 'L') { if (spec_long) yyerror ("two `l's in integer constant"); spec_long = 1; } else if (c == 'u' || c == 'U') { if (! yylval.integer.signedp) yyerror ("two `u's in integer constant"); yylval.integer.signedp = UNSIGNED; } else { if (c == '.' || c == 'e' || c == 'E') yyerror ("Floating point numbers not allowed in #if expressions"); else { char *buf = (char *) alloca (p - lexptr + 40); sprintf (buf, "missing white space after number `%.*s'", (int) (p - lexptr - 1), lexptr); yyerror (buf); } } if (--len == 0) break; c = *p++; } /* Don't look for any more digits after the suffixes. */ break; } if (largest_digit < digit) largest_digit = digit; nd = n * base + digit; overflow |= (max_over_base < n) | (nd < n); n = nd; } if (base <= largest_digit) warning ("integer constant contains digits beyond the radix"); if (overflow) warning ("integer constant out of range"); /* If too big to be signed, consider it unsigned. */ if (((HOST_WIDE_INT) n & yylval.integer.signedp) < 0) { if (base == 10) warning ("integer constant is so large that it is unsigned"); yylval.integer.signedp = UNSIGNED; } lexptr = p; yylval.integer.value = n; return INT; } struct token { char *operator; int token; }; static struct token tokentab2[] = { {"&&", AND}, {"||", OR}, {"<<", LSH}, {">>", RSH}, {"==", EQUAL}, {"!=", NOTEQUAL}, {"<=", LEQ}, {">=", GEQ}, {"++", ERROR}, {"--", ERROR}, {NULL, ERROR} }; /* Read one token, getting characters through lexptr. */ static int yylex () { register int c; register int namelen; register unsigned char *tokstart; register struct token *toktab; int wide_flag; HOST_WIDE_INT mask; retry: tokstart = (unsigned char *) lexptr; c = *tokstart; /* See if it is a special token of length 2. */ if (! keyword_parsing) for (toktab = tokentab2; toktab->operator != NULL; toktab++) if (c == *toktab->operator && tokstart[1] == toktab->operator[1]) { lexptr += 2; if (toktab->token == ERROR) { char *buf = (char *) alloca (40); sprintf (buf, "`%s' not allowed in operand of `#if'", toktab->operator); yyerror (buf); } return toktab->token; } switch (c) { case '\n': return 0; case ' ': case '\t': case '\r': lexptr++; goto retry; case 'L': /* Capital L may start a wide-string or wide-character constant. */ if (lexptr[1] == '\'') { lexptr++; wide_flag = 1; mask = MAX_WCHAR_TYPE_MASK; goto char_constant; } if (lexptr[1] == '"') { lexptr++; wide_flag = 1; mask = MAX_WCHAR_TYPE_MASK; goto string_constant; } break; case '\'': wide_flag = 0; mask = MAX_CHAR_TYPE_MASK; char_constant: lexptr++; if (keyword_parsing) { char *start_ptr = lexptr - 1; while (1) { c = *lexptr++; if (c == '\\') c = parse_escape (&lexptr, mask); else if (c == '\'') break; } yylval.name.address = tokstart; yylval.name.length = lexptr - start_ptr; return NAME; } /* This code for reading a character constant handles multicharacter constants and wide characters. It is mostly copied from c-lex.c. */ { register HOST_WIDE_INT result = 0; register num_chars = 0; unsigned width = MAX_CHAR_TYPE_SIZE; int max_chars; char *token_buffer; if (wide_flag) { width = MAX_WCHAR_TYPE_SIZE; #ifdef MULTIBYTE_CHARS max_chars = MB_CUR_MAX; #else max_chars = 1; #endif } else max_chars = MAX_LONG_TYPE_SIZE / width; token_buffer = (char *) alloca (max_chars + 1); while (1) { c = *lexptr++; if (c == '\'' || c == EOF) break; if (c == '\\') { c = parse_escape (&lexptr, mask); } num_chars++; /* Merge character into result; ignore excess chars. */ if (num_chars <= max_chars) { if (width < HOST_BITS_PER_WIDE_INT) result = (result << width) | c; else result = c; token_buffer[num_chars - 1] = c; } } token_buffer[num_chars] = 0; if (c != '\'') error ("malformatted character constant"); else if (num_chars == 0) error ("empty character constant"); else if (num_chars > max_chars) { num_chars = max_chars; error ("character constant too long"); } else if (num_chars != 1 && ! traditional) warning ("multi-character character constant"); /* If char type is signed, sign-extend the constant. */ if (! wide_flag) { int num_bits = num_chars * width; if (lookup ("__CHAR_UNSIGNED__", sizeof ("__CHAR_UNSIGNED__")-1, -1) || ((result >> (num_bits - 1)) & 1) == 0) yylval.integer.value = result & (~ (unsigned HOST_WIDE_INT) 0 >> (HOST_BITS_PER_WIDE_INT - num_bits)); else yylval.integer.value = result | ~(~ (unsigned HOST_WIDE_INT) 0 >> (HOST_BITS_PER_WIDE_INT - num_bits)); } else { #ifdef MULTIBYTE_CHARS /* Set the initial shift state and convert the next sequence. */ result = 0; /* In all locales L'\0' is zero and mbtowc will return zero, so don't use it. */ if (num_chars > 1 || (num_chars == 1 && token_buffer[0] != '\0')) { wchar_t wc; (void) mbtowc (NULL_PTR, NULL_PTR, 0); if (mbtowc (& wc, token_buffer, num_chars) == num_chars) result = wc; else warning ("Ignoring invalid multibyte character"); } #endif yylval.integer.value = result; } } /* This is always a signed type. */ yylval.integer.signedp = SIGNED; return CHAR; /* some of these chars are invalid in constant expressions; maybe do something about them later */ case '/': case '+': case '-': case '*': case '%': case '|': case '&': case '^': case '~': case '!': case '@': case '<': case '>': case '[': case ']': case '.': case '?': case ':': case '=': case '{': case '}': case ',': case '#': if (keyword_parsing) break; case '(': case ')': lexptr++; return c; case '"': mask = MAX_CHAR_TYPE_MASK; string_constant: if (keyword_parsing) { char *start_ptr = lexptr; lexptr++; while (1) { c = *lexptr++; if (c == '\\') c = parse_escape (&lexptr, mask); else if (c == '"') break; } yylval.name.address = tokstart; yylval.name.length = lexptr - start_ptr; return NAME; } yyerror ("string constants not allowed in #if expressions"); return ERROR; } if (c >= '0' && c <= '9' && !keyword_parsing) { /* It's a number */ for (namelen = 1; ; namelen++) { int d = tokstart[namelen]; if (! ((is_idchar[d] || d == '.') || ((d == '-' || d == '+') && (c == 'e' || c == 'E') && ! traditional))) break; c = d; } return parse_number (namelen); } /* It is a name. See how long it is. */ if (keyword_parsing) { for (namelen = 0;; namelen++) { if (is_hor_space[tokstart[namelen]]) break; if (tokstart[namelen] == '(' || tokstart[namelen] == ')') break; if (tokstart[namelen] == '"' || tokstart[namelen] == '\'') break; } } else { if (!is_idstart[c]) { yyerror ("Invalid token in expression"); return ERROR; } for (namelen = 0; is_idchar[tokstart[namelen]]; namelen++) ; } lexptr += namelen; yylval.name.address = tokstart; yylval.name.length = namelen; return NAME; } /* Parse a C escape sequence. STRING_PTR points to a variable containing a pointer to the string to parse. That pointer is updated past the characters we use. The value of the escape sequence is returned. RESULT_MASK is used to mask out the result; an error is reported if bits are lost thereby. A negative value means the sequence \ newline was seen, which is supposed to be equivalent to nothing at all. If \ is followed by a null character, we return a negative value and leave the string pointer pointing at the null character. If \ is followed by 000, we return 0 and leave the string pointer after the zeros. A value of 0 does not mean end of string. */ HOST_WIDE_INT parse_escape (string_ptr, result_mask) char **string_ptr; HOST_WIDE_INT result_mask; { register int c = *(*string_ptr)++; switch (c) { case 'a': return TARGET_BELL; case 'b': return TARGET_BS; case 'e': case 'E': if (pedantic) pedwarn ("non-ANSI-standard escape sequence, `\\%c'", c); return 033; case 'f': return TARGET_FF; case 'n': return TARGET_NEWLINE; case 'r': return TARGET_CR; case 't': return TARGET_TAB; case 'v': return TARGET_VT; case '\n': return -2; case 0: (*string_ptr)--; return 0; case '0': case '1': case '2': case '3': case '4': case '5': case '6': case '7': { register HOST_WIDE_INT i = c - '0'; register int count = 0; while (++count < 3) { c = *(*string_ptr)++; if (c >= '0' && c <= '7') i = (i << 3) + c - '0'; else { (*string_ptr)--; break; } } if (i != (i & result_mask)) { i &= result_mask; pedwarn ("octal escape sequence out of range"); } return i; } case 'x': { register unsigned HOST_WIDE_INT i = 0, overflow = 0; register int digits_found = 0, digit; for (;;) { c = *(*string_ptr)++; if (c >= '0' && c <= '9') digit = c - '0'; else if (c >= 'a' && c <= 'f') digit = c - 'a' + 10; else if (c >= 'A' && c <= 'F') digit = c - 'A' + 10; else { (*string_ptr)--; break; } overflow |= i ^ (i << 4 >> 4); i = (i << 4) + digit; digits_found = 1; } if (!digits_found) yyerror ("\\x used with no following hex digits"); if (overflow | (i != (i & result_mask))) { i &= result_mask; pedwarn ("hex escape sequence out of range"); } return i; } default: return c; } } static void yyerror (s) char *s; { error ("%s", s); skip_evaluation = 0; longjmp (parse_return_error, 1); } static void integer_overflow () { if (!skip_evaluation && pedantic) pedwarn ("integer overflow in preprocessor expression"); } static HOST_WIDE_INT left_shift (a, b) struct constant *a; unsigned HOST_WIDE_INT b; { /* It's unclear from the C standard whether shifts can overflow. The following code ignores overflow; perhaps a C standard interpretation ruling is needed. */ if (b >= HOST_BITS_PER_WIDE_INT) return 0; else return (unsigned HOST_WIDE_INT) a->value << b; } static HOST_WIDE_INT right_shift (a, b) struct constant *a; unsigned HOST_WIDE_INT b; { if (b >= HOST_BITS_PER_WIDE_INT) return a->signedp ? a->value >> (HOST_BITS_PER_WIDE_INT - 1) : 0; else if (a->signedp) return a->value >> b; else return (unsigned HOST_WIDE_INT) a->value >> b; } /* This page contains the entry point to this file. */ /* Parse STRING as an expression, and complain if this fails to use up all of the contents of STRING. */ /* STRING may contain '\0' bytes; it is terminated by the first '\n' outside a string constant, so that we can diagnose '\0' properly. */ /* We do not support C comments. They should be removed before this function is called. */ HOST_WIDE_INT parse_c_expression (string) char *string; { lexptr = string; if (lexptr == 0 || *lexptr == 0) { error ("empty #if expression"); return 0; /* don't include the #if group */ } /* if there is some sort of scanning error, just return 0 and assume the parsing routine has printed an error message somewhere. there is surely a better thing to do than this. */ if (setjmp (parse_return_error)) return 0; if (yyparse ()) return 0; /* actually this is never reached the way things stand. */ if (*lexptr != '\n') error ("Junk after end of expression."); return expression_value; /* set by yyparse () */ } #ifdef TEST_EXP_READER #if YYDEBUG extern int yydebug; #endif int pedantic; int traditional; int main PROTO((int, char **)); static void initialize_random_junk PROTO((void)); /* Main program for testing purposes. */ int main (argc, argv) int argc; char **argv; { int n, c; char buf[1024]; pedantic = 1 < argc; traditional = 2 < argc; #if YYDEBUG yydebug = 3 < argc; #endif initialize_random_junk (); for (;;) { printf ("enter expression: "); n = 0; while ((buf[n] = c = getchar ()) != '\n' && c != EOF) n++; if (c == EOF) break; printf ("parser returned %ld\n", (long) parse_c_expression (buf)); } return 0; } /* table to tell if char can be part of a C identifier. */ unsigned char is_idchar[256]; /* table to tell if char can be first char of a c identifier. */ unsigned char is_idstart[256]; /* table to tell if c is horizontal space. isspace () thinks that newline is space; this is not a good idea for this program. */ unsigned char is_hor_space[256]; /* * initialize random junk in the hash table and maybe other places */ static void initialize_random_junk () { register int i; /* * Set up is_idchar and is_idstart tables. These should be * faster than saying (is_alpha (c) || c == '_'), etc. * Must do set up these things before calling any routines tthat * refer to them. */ for (i = 'a'; i <= 'z'; i++) { ++is_idchar[i - 'a' + 'A']; ++is_idchar[i]; ++is_idstart[i - 'a' + 'A']; ++is_idstart[i]; } for (i = '0'; i <= '9'; i++) ++is_idchar[i]; ++is_idchar['_']; ++is_idstart['_']; #if DOLLARS_IN_IDENTIFIERS ++is_idchar['$']; ++is_idstart['$']; #endif /* horizontal space table */ ++is_hor_space[' ']; ++is_hor_space['\t']; } void error (PRINTF_ALIST (msg)) PRINTF_DCL (msg) { va_list args; VA_START (args, msg); fprintf (stderr, "error: "); vfprintf (stderr, msg, args); fprintf (stderr, "\n"); va_end (args); } void pedwarn (PRINTF_ALIST (msg)) PRINTF_DCL (msg) { va_list args; VA_START (args, msg); fprintf (stderr, "pedwarn: "); vfprintf (stderr, msg, args); fprintf (stderr, "\n"); va_end (args); } void warning (PRINTF_ALIST (msg)) PRINTF_DCL (msg) { va_list args; VA_START (args, msg); fprintf (stderr, "warning: "); vfprintf (stderr, msg, args); fprintf (stderr, "\n"); va_end (args); } int check_assertion (name, sym_length, tokens_specified, tokens) U_CHAR *name; int sym_length; int tokens_specified; struct arglist *tokens; { return 0; } struct hashnode * lookup (name, len, hash) U_CHAR *name; int len; int hash; { return (DEFAULT_SIGNED_CHAR) ? 0 : ((struct hashnode *) -1); } GENERIC_PTR xmalloc (size) size_t size; { return (GENERIC_PTR) malloc (size); } #endif