summaryrefslogtreecommitdiffstats
path: root/libjava/java/awt/geom/QuadCurve2D.java
diff options
context:
space:
mode:
Diffstat (limited to 'libjava/java/awt/geom/QuadCurve2D.java')
-rw-r--r--libjava/java/awt/geom/QuadCurve2D.java1467
1 files changed, 0 insertions, 1467 deletions
diff --git a/libjava/java/awt/geom/QuadCurve2D.java b/libjava/java/awt/geom/QuadCurve2D.java
deleted file mode 100644
index 41021dbc683..00000000000
--- a/libjava/java/awt/geom/QuadCurve2D.java
+++ /dev/null
@@ -1,1467 +0,0 @@
-/* QuadCurve2D.java -- represents a parameterized quadratic curve in 2-D space
- Copyright (C) 2002, 2003, 2004 Free Software Foundation
-
-This file is part of GNU Classpath.
-
-GNU Classpath is free software; you can redistribute it and/or modify
-it under the terms of the GNU General Public License as published by
-the Free Software Foundation; either version 2, or (at your option)
-any later version.
-
-GNU Classpath is distributed in the hope that it will be useful, but
-WITHOUT ANY WARRANTY; without even the implied warranty of
-MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
-General Public License for more details.
-
-You should have received a copy of the GNU General Public License
-along with GNU Classpath; see the file COPYING. If not, write to the
-Free Software Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA
-02110-1301 USA.
-
-Linking this library statically or dynamically with other modules is
-making a combined work based on this library. Thus, the terms and
-conditions of the GNU General Public License cover the whole
-combination.
-
-As a special exception, the copyright holders of this library give you
-permission to link this library with independent modules to produce an
-executable, regardless of the license terms of these independent
-modules, and to copy and distribute the resulting executable under
-terms of your choice, provided that you also meet, for each linked
-independent module, the terms and conditions of the license of that
-module. An independent module is a module which is not derived from
-or based on this library. If you modify this library, you may extend
-this exception to your version of the library, but you are not
-obligated to do so. If you do not wish to do so, delete this
-exception statement from your version. */
-
-package java.awt.geom;
-
-import java.awt.Rectangle;
-import java.awt.Shape;
-import java.util.NoSuchElementException;
-
-/**
- * A two-dimensional curve that is parameterized with a quadratic
- * function.
- *
- * <p><img src="doc-files/QuadCurve2D-1.png" width="350" height="180"
- * alt="A drawing of a QuadCurve2D" />
- *
- * @author Eric Blake (ebb9@email.byu.edu)
- * @author Graydon Hoare (graydon@redhat.com)
- * @author Sascha Brawer (brawer@dandelis.ch)
- * @author Sven de Marothy (sven@physto.se)
- *
- * @since 1.2
- */
-public abstract class QuadCurve2D implements Shape, Cloneable
-{
- private static final double BIG_VALUE = java.lang.Double.MAX_VALUE / 10.0;
- private static final double EPSILON = 1E-10;
-
- /**
- * Constructs a new QuadCurve2D. Typical users will want to
- * construct instances of a subclass, such as {@link
- * QuadCurve2D.Float} or {@link QuadCurve2D.Double}.
- */
- protected QuadCurve2D()
- {
- }
-
- /**
- * Returns the <i>x</i> coordinate of the curve&#x2019;s start
- * point.
- */
- public abstract double getX1();
-
- /**
- * Returns the <i>y</i> coordinate of the curve&#x2019;s start
- * point.
- */
- public abstract double getY1();
-
- /**
- * Returns the curve&#x2019;s start point.
- */
- public abstract Point2D getP1();
-
- /**
- * Returns the <i>x</i> coordinate of the curve&#x2019;s control
- * point.
- */
- public abstract double getCtrlX();
-
- /**
- * Returns the <i>y</i> coordinate of the curve&#x2019;s control
- * point.
- */
- public abstract double getCtrlY();
-
- /**
- * Returns the curve&#x2019;s control point.
- */
- public abstract Point2D getCtrlPt();
-
- /**
- * Returns the <i>x</i> coordinate of the curve&#x2019;s end
- * point.
- */
- public abstract double getX2();
-
- /**
- * Returns the <i>y</i> coordinate of the curve&#x2019;s end
- * point.
- */
- public abstract double getY2();
-
- /**
- * Returns the curve&#x2019;s end point.
- */
- public abstract Point2D getP2();
-
- /**
- * Changes the curve geometry, separately specifying each coordinate
- * value.
- *
- * @param x1 the <i>x</i> coordinate of the curve&#x2019;s new start
- * point.
- *
- * @param y1 the <i>y</i> coordinate of the curve&#x2019;s new start
- * point.
- *
- * @param cx the <i>x</i> coordinate of the curve&#x2019;s new
- * control point.
- *
- * @param cy the <i>y</i> coordinate of the curve&#x2019;s new
- * control point.
- *
- * @param x2 the <i>x</i> coordinate of the curve&#x2019;s new end
- * point.
- *
- * @param y2 the <i>y</i> coordinate of the curve&#x2019;s new end
- * point.
- */
- public abstract void setCurve(double x1, double y1, double cx, double cy,
- double x2, double y2);
-
- /**
- * Changes the curve geometry, passing coordinate values in an
- * array.
- *
- * @param coords an array containing the new coordinate values. The
- * <i>x</i> coordinate of the new start point is located at
- * <code>coords[offset]</code>, its <i>y</i> coordinate at
- * <code>coords[offset + 1]</code>. The <i>x</i> coordinate of the
- * new control point is located at <code>coords[offset + 2]</code>,
- * its <i>y</i> coordinate at <code>coords[offset + 3]</code>. The
- * <i>x</i> coordinate of the new end point is located at
- * <code>coords[offset + 4]</code>, its <i>y</i> coordinate at
- * <code>coords[offset + 5]</code>.
- *
- * @param offset the offset of the first coordinate value in
- * <code>coords</code>.
- */
- public void setCurve(double[] coords, int offset)
- {
- setCurve(coords[offset++], coords[offset++], coords[offset++],
- coords[offset++], coords[offset++], coords[offset++]);
- }
-
- /**
- * Changes the curve geometry, specifying coordinate values in
- * separate Point objects.
- *
- * <p><img src="doc-files/QuadCurve2D-1.png" width="350" height="180"
- * alt="A drawing of a QuadCurve2D" />
- *
- * <p>The curve does not keep any reference to the passed point
- * objects. Therefore, a later change to <code>p1</code>,
- * <code>c</code> <code>p2</code> will not affect the curve
- * geometry.
- *
- * @param p1 the new start point.
- * @param c the new control point.
- * @param p2 the new end point.
- */
- public void setCurve(Point2D p1, Point2D c, Point2D p2)
- {
- setCurve(p1.getX(), p1.getY(), c.getX(), c.getY(), p2.getX(), p2.getY());
- }
-
- /**
- * Changes the curve geometry, specifying coordinate values in an
- * array of Point objects.
- *
- * <p><img src="doc-files/QuadCurve2D-1.png" width="350" height="180"
- * alt="A drawing of a QuadCurve2D" />
- *
- * <p>The curve does not keep references to the passed point
- * objects. Therefore, a later change to the <code>pts</code> array
- * or any of its elements will not affect the curve geometry.
- *
- * @param pts an array containing the points. The new start point
- * is located at <code>pts[offset]</code>, the new control
- * point at <code>pts[offset + 1]</code>, and the new end point
- * at <code>pts[offset + 2]</code>.
- *
- * @param offset the offset of the start point in <code>pts</code>.
- */
- public void setCurve(Point2D[] pts, int offset)
- {
- setCurve(pts[offset].getX(), pts[offset].getY(), pts[offset + 1].getX(),
- pts[offset + 1].getY(), pts[offset + 2].getX(),
- pts[offset + 2].getY());
- }
-
- /**
- * Changes the geometry of the curve to that of another curve.
- *
- * @param c the curve whose coordinates will be copied.
- */
- public void setCurve(QuadCurve2D c)
- {
- setCurve(c.getX1(), c.getY1(), c.getCtrlX(), c.getCtrlY(), c.getX2(),
- c.getY2());
- }
-
- /**
- * Calculates the squared flatness of a quadratic curve, directly
- * specifying each coordinate value. The flatness is the distance of
- * the control point to the line between start and end point.
- *
- * <p><img src="doc-files/QuadCurve2D-4.png" width="350" height="180"
- * alt="A drawing that illustrates the flatness" />
- *
- * <p>In the above drawing, the straight line connecting start point
- * P1 and end point P2 is depicted in gray. The result will be the
- * the square of the distance between C and the gray line, i.e.
- * the squared length of the red line.
- *
- * @param x1 the <i>x</i> coordinate of the start point P1.
- * @param y1 the <i>y</i> coordinate of the start point P1.
- * @param cx the <i>x</i> coordinate of the control point C.
- * @param cy the <i>y</i> coordinate of the control point C.
- * @param x2 the <i>x</i> coordinate of the end point P2.
- * @param y2 the <i>y</i> coordinate of the end point P2.
- */
- public static double getFlatnessSq(double x1, double y1, double cx,
- double cy, double x2, double y2)
- {
- return Line2D.ptSegDistSq(x1, y1, x2, y2, cx, cy);
- }
-
- /**
- * Calculates the flatness of a quadratic curve, directly specifying
- * each coordinate value. The flatness is the distance of the
- * control point to the line between start and end point.
- *
- * <p><img src="doc-files/QuadCurve2D-4.png" width="350" height="180"
- * alt="A drawing that illustrates the flatness" />
- *
- * <p>In the above drawing, the straight line connecting start point
- * P1 and end point P2 is depicted in gray. The result will be the
- * the distance between C and the gray line, i.e. the length of
- * the red line.
- *
- * @param x1 the <i>x</i> coordinate of the start point P1.
- * @param y1 the <i>y</i> coordinate of the start point P1.
- * @param cx the <i>x</i> coordinate of the control point C.
- * @param cy the <i>y</i> coordinate of the control point C.
- * @param x2 the <i>x</i> coordinate of the end point P2.
- * @param y2 the <i>y</i> coordinate of the end point P2.
- */
- public static double getFlatness(double x1, double y1, double cx, double cy,
- double x2, double y2)
- {
- return Line2D.ptSegDist(x1, y1, x2, y2, cx, cy);
- }
-
- /**
- * Calculates the squared flatness of a quadratic curve, specifying
- * the coordinate values in an array. The flatness is the distance
- * of the control point to the line between start and end point.
- *
- * <p><img src="doc-files/QuadCurve2D-4.png" width="350" height="180"
- * alt="A drawing that illustrates the flatness" />
- *
- * <p>In the above drawing, the straight line connecting start point
- * P1 and end point P2 is depicted in gray. The result will be the
- * the square of the distance between C and the gray line, i.e.
- * the squared length of the red line.
- *
- * @param coords an array containing the coordinate values. The
- * <i>x</i> coordinate of the start point P1 is located at
- * <code>coords[offset]</code>, its <i>y</i> coordinate at
- * <code>coords[offset + 1]</code>. The <i>x</i> coordinate of the
- * control point C is located at <code>coords[offset + 2]</code>,
- * its <i>y</i> coordinate at <code>coords[offset + 3]</code>. The
- * <i>x</i> coordinate of the end point P2 is located at
- * <code>coords[offset + 4]</code>, its <i>y</i> coordinate at
- * <code>coords[offset + 5]</code>.
- *
- * @param offset the offset of the first coordinate value in
- * <code>coords</code>.
- */
- public static double getFlatnessSq(double[] coords, int offset)
- {
- return Line2D.ptSegDistSq(coords[offset], coords[offset + 1],
- coords[offset + 4], coords[offset + 5],
- coords[offset + 2], coords[offset + 3]);
- }
-
- /**
- * Calculates the flatness of a quadratic curve, specifying the
- * coordinate values in an array. The flatness is the distance of
- * the control point to the line between start and end point.
- *
- * <p><img src="doc-files/QuadCurve2D-4.png" width="350" height="180"
- * alt="A drawing that illustrates the flatness" />
- *
- * <p>In the above drawing, the straight line connecting start point
- * P1 and end point P2 is depicted in gray. The result will be the
- * the the distance between C and the gray line, i.e. the length of
- * the red line.
- *
- * @param coords an array containing the coordinate values. The
- * <i>x</i> coordinate of the start point P1 is located at
- * <code>coords[offset]</code>, its <i>y</i> coordinate at
- * <code>coords[offset + 1]</code>. The <i>x</i> coordinate of the
- * control point C is located at <code>coords[offset + 2]</code>,
- * its <i>y</i> coordinate at <code>coords[offset + 3]</code>. The
- * <i>x</i> coordinate of the end point P2 is located at
- * <code>coords[offset + 4]</code>, its <i>y</i> coordinate at
- * <code>coords[offset + 5]</code>.
- *
- * @param offset the offset of the first coordinate value in
- * <code>coords</code>.
- */
- public static double getFlatness(double[] coords, int offset)
- {
- return Line2D.ptSegDist(coords[offset], coords[offset + 1],
- coords[offset + 4], coords[offset + 5],
- coords[offset + 2], coords[offset + 3]);
- }
-
- /**
- * Calculates the squared flatness of this curve. The flatness is
- * the distance of the control point to the line between start and
- * end point.
- *
- * <p><img src="doc-files/QuadCurve2D-4.png" width="350" height="180"
- * alt="A drawing that illustrates the flatness" />
- *
- * <p>In the above drawing, the straight line connecting start point
- * P1 and end point P2 is depicted in gray. The result will be the
- * the square of the distance between C and the gray line, i.e. the
- * squared length of the red line.
- */
- public double getFlatnessSq()
- {
- return Line2D.ptSegDistSq(getX1(), getY1(), getX2(), getY2(), getCtrlX(),
- getCtrlY());
- }
-
- /**
- * Calculates the flatness of this curve. The flatness is the
- * distance of the control point to the line between start and end
- * point.
- *
- * <p><img src="doc-files/QuadCurve2D-4.png" width="350" height="180"
- * alt="A drawing that illustrates the flatness" />
- *
- * <p>In the above drawing, the straight line connecting start point
- * P1 and end point P2 is depicted in gray. The result will be the
- * the distance between C and the gray line, i.e. the length of the
- * red line.
- */
- public double getFlatness()
- {
- return Line2D.ptSegDist(getX1(), getY1(), getX2(), getY2(), getCtrlX(),
- getCtrlY());
- }
-
- /**
- * Subdivides this curve into two halves.
- *
- * <p><img src="doc-files/QuadCurve2D-3.png" width="700"
- * height="180" alt="A drawing that illustrates the effects of
- * subdividing a QuadCurve2D" />
- *
- * @param left a curve whose geometry will be set to the left half
- * of this curve, or <code>null</code> if the caller is not
- * interested in the left half.
- *
- * @param right a curve whose geometry will be set to the right half
- * of this curve, or <code>null</code> if the caller is not
- * interested in the right half.
- */
- public void subdivide(QuadCurve2D left, QuadCurve2D right)
- {
- // Use empty slots at end to share single array.
- double[] d = new double[]
- {
- getX1(), getY1(), getCtrlX(), getCtrlY(), getX2(), getY2(),
- 0, 0, 0, 0
- };
- subdivide(d, 0, d, 0, d, 4);
- if (left != null)
- left.setCurve(d, 0);
- if (right != null)
- right.setCurve(d, 4);
- }
-
- /**
- * Subdivides a quadratic curve into two halves.
- *
- * <p><img src="doc-files/QuadCurve2D-3.png" width="700"
- * height="180" alt="A drawing that illustrates the effects of
- * subdividing a QuadCurve2D" />
- *
- * @param src the curve to be subdivided.
- *
- * @param left a curve whose geometry will be set to the left half
- * of <code>src</code>, or <code>null</code> if the caller is not
- * interested in the left half.
- *
- * @param right a curve whose geometry will be set to the right half
- * of <code>src</code>, or <code>null</code> if the caller is not
- * interested in the right half.
- */
- public static void subdivide(QuadCurve2D src, QuadCurve2D left,
- QuadCurve2D right)
- {
- src.subdivide(left, right);
- }
-
- /**
- * Subdivides a quadratic curve into two halves, passing all
- * coordinates in an array.
- *
- * <p><img src="doc-files/QuadCurve2D-3.png" width="700"
- * height="180" alt="A drawing that illustrates the effects of
- * subdividing a QuadCurve2D" />
- *
- * <p>The left end point and the right start point will always be
- * identical. Memory-concious programmers thus may want to pass the
- * same array for both <code>left</code> and <code>right</code>, and
- * set <code>rightOff</code> to <code>leftOff + 4</code>.
- *
- * @param src an array containing the coordinates of the curve to be
- * subdivided. The <i>x</i> coordinate of the start point is
- * located at <code>src[srcOff]</code>, its <i>y</i> at
- * <code>src[srcOff + 1]</code>. The <i>x</i> coordinate of the
- * control point is located at <code>src[srcOff + 2]</code>, its
- * <i>y</i> at <code>src[srcOff + 3]</code>. The <i>x</i>
- * coordinate of the end point is located at <code>src[srcOff +
- * 4]</code>, its <i>y</i> at <code>src[srcOff + 5]</code>.
- *
- * @param srcOff an offset into <code>src</code>, specifying
- * the index of the start point&#x2019;s <i>x</i> coordinate.
- *
- * @param left an array that will receive the coordinates of the
- * left half of <code>src</code>. It is acceptable to pass
- * <code>src</code>. A caller who is not interested in the left half
- * can pass <code>null</code>.
- *
- * @param leftOff an offset into <code>left</code>, specifying the
- * index where the start point&#x2019;s <i>x</i> coordinate will be
- * stored.
- *
- * @param right an array that will receive the coordinates of the
- * right half of <code>src</code>. It is acceptable to pass
- * <code>src</code> or <code>left</code>. A caller who is not
- * interested in the right half can pass <code>null</code>.
- *
- * @param rightOff an offset into <code>right</code>, specifying the
- * index where the start point&#x2019;s <i>x</i> coordinate will be
- * stored.
- */
- public static void subdivide(double[] src, int srcOff, double[] left,
- int leftOff, double[] right, int rightOff)
- {
- double x1;
- double y1;
- double xc;
- double yc;
- double x2;
- double y2;
-
- x1 = src[srcOff];
- y1 = src[srcOff + 1];
- xc = src[srcOff + 2];
- yc = src[srcOff + 3];
- x2 = src[srcOff + 4];
- y2 = src[srcOff + 5];
-
- if (left != null)
- {
- left[leftOff] = x1;
- left[leftOff + 1] = y1;
- }
-
- if (right != null)
- {
- right[rightOff + 4] = x2;
- right[rightOff + 5] = y2;
- }
-
- x1 = (x1 + xc) / 2;
- x2 = (xc + x2) / 2;
- xc = (x1 + x2) / 2;
- y1 = (y1 + yc) / 2;
- y2 = (y2 + yc) / 2;
- yc = (y1 + y2) / 2;
-
- if (left != null)
- {
- left[leftOff + 2] = x1;
- left[leftOff + 3] = y1;
- left[leftOff + 4] = xc;
- left[leftOff + 5] = yc;
- }
-
- if (right != null)
- {
- right[rightOff] = xc;
- right[rightOff + 1] = yc;
- right[rightOff + 2] = x2;
- right[rightOff + 3] = y2;
- }
- }
-
- /**
- * Finds the non-complex roots of a quadratic equation, placing the
- * results into the same array as the equation coefficients. The
- * following equation is being solved:
- *
- * <blockquote><code>eqn[2]</code> &#xb7; <i>x</i><sup>2</sup>
- * + <code>eqn[1]</code> &#xb7; <i>x</i>
- * + <code>eqn[0]</code>
- * = 0
- * </blockquote>
- *
- * <p>For some background about solving quadratic equations, see the
- * article <a href=
- * "http://planetmath.org/encyclopedia/QuadraticFormula.html"
- * >&#x201c;Quadratic Formula&#x201d;</a> in <a href=
- * "http://planetmath.org/">PlanetMath</a>. For an extensive library
- * of numerical algorithms written in the C programming language,
- * see the <a href="http://www.gnu.org/software/gsl/">GNU Scientific
- * Library</a>.
- *
- * @see #solveQuadratic(double[], double[])
- * @see CubicCurve2D#solveCubic(double[], double[])
- *
- * @param eqn an array with the coefficients of the equation. When
- * this procedure has returned, <code>eqn</code> will contain the
- * non-complex solutions of the equation, in no particular order.
- *
- * @return the number of non-complex solutions. A result of 0
- * indicates that the equation has no non-complex solutions. A
- * result of -1 indicates that the equation is constant (i.e.,
- * always or never zero).
- *
- * @author Brian Gough (bjg@network-theory.com)
- * (original C implementation in the <a href=
- * "http://www.gnu.org/software/gsl/">GNU Scientific Library</a>)
- *
- * @author Sascha Brawer (brawer@dandelis.ch)
- * (adaptation to Java)
- */
- public static int solveQuadratic(double[] eqn)
- {
- return solveQuadratic(eqn, eqn);
- }
-
- /**
- * Finds the non-complex roots of a quadratic equation. The
- * following equation is being solved:
- *
- * <blockquote><code>eqn[2]</code> &#xb7; <i>x</i><sup>2</sup>
- * + <code>eqn[1]</code> &#xb7; <i>x</i>
- * + <code>eqn[0]</code>
- * = 0
- * </blockquote>
- *
- * <p>For some background about solving quadratic equations, see the
- * article <a href=
- * "http://planetmath.org/encyclopedia/QuadraticFormula.html"
- * >&#x201c;Quadratic Formula&#x201d;</a> in <a href=
- * "http://planetmath.org/">PlanetMath</a>. For an extensive library
- * of numerical algorithms written in the C programming language,
- * see the <a href="http://www.gnu.org/software/gsl/">GNU Scientific
- * Library</a>.
- *
- * @see CubicCurve2D#solveCubic(double[],double[])
- *
- * @param eqn an array with the coefficients of the equation.
- *
- * @param res an array into which the non-complex roots will be
- * stored. The results may be in an arbitrary order. It is safe to
- * pass the same array object reference for both <code>eqn</code>
- * and <code>res</code>.
- *
- * @return the number of non-complex solutions. A result of 0
- * indicates that the equation has no non-complex solutions. A
- * result of -1 indicates that the equation is constant (i.e.,
- * always or never zero).
- *
- * @author Brian Gough (bjg@network-theory.com)
- * (original C implementation in the <a href=
- * "http://www.gnu.org/software/gsl/">GNU Scientific Library</a>)
- *
- * @author Sascha Brawer (brawer@dandelis.ch)
- * (adaptation to Java)
- */
- public static int solveQuadratic(double[] eqn, double[] res)
- {
- // Taken from poly/solve_quadratic.c in the GNU Scientific Library
- // (GSL), cvs revision 1.7 of 2003-07-26. For the original source,
- // see http://www.gnu.org/software/gsl/
- //
- // Brian Gough, the author of that code, has granted the
- // permission to use it in GNU Classpath under the GNU Classpath
- // license, and has assigned the copyright to the Free Software
- // Foundation.
- //
- // The Java implementation is very similar to the GSL code, but
- // not a strict one-to-one copy. For example, GSL would sort the
- // result.
- double a;
- double b;
- double c;
- double disc;
-
- c = eqn[0];
- b = eqn[1];
- a = eqn[2];
-
- // Check for linear or constant functions. This is not done by the
- // GNU Scientific Library. Without this special check, we
- // wouldn't return -1 for constant functions, and 2 instead of 1
- // for linear functions.
- if (a == 0)
- {
- if (b == 0)
- return -1;
-
- res[0] = -c / b;
- return 1;
- }
-
- disc = b * b - 4 * a * c;
-
- if (disc < 0)
- return 0;
-
- if (disc == 0)
- {
- // The GNU Scientific Library returns two identical results here.
- // We just return one.
- res[0] = -0.5 * b / a;
- return 1;
- }
-
- // disc > 0
- if (b == 0)
- {
- double r;
-
- r = Math.abs(0.5 * Math.sqrt(disc) / a);
- res[0] = -r;
- res[1] = r;
- }
- else
- {
- double sgnb;
- double temp;
-
- sgnb = (b > 0 ? 1 : -1);
- temp = -0.5 * (b + sgnb * Math.sqrt(disc));
-
- // The GNU Scientific Library sorts the result here. We don't.
- res[0] = temp / a;
- res[1] = c / temp;
- }
- return 2;
- }
-
- /**
- * Determines whether a point is inside the area bounded
- * by the curve and the straight line connecting its end points.
- *
- * <p><img src="doc-files/QuadCurve2D-5.png" width="350" height="180"
- * alt="A drawing of the area spanned by the curve" />
- *
- * <p>The above drawing illustrates in which area points are
- * considered &#x201c;inside&#x201d; a QuadCurve2D.
- */
- public boolean contains(double x, double y)
- {
- if (! getBounds2D().contains(x, y))
- return false;
-
- return ((getAxisIntersections(x, y, true, BIG_VALUE) & 1) != 0);
- }
-
- /**
- * Determines whether a point is inside the area bounded
- * by the curve and the straight line connecting its end points.
- *
- * <p><img src="doc-files/QuadCurve2D-5.png" width="350" height="180"
- * alt="A drawing of the area spanned by the curve" />
- *
- * <p>The above drawing illustrates in which area points are
- * considered &#x201c;inside&#x201d; a QuadCurve2D.
- */
- public boolean contains(Point2D p)
- {
- return contains(p.getX(), p.getY());
- }
-
- /**
- * Determines whether any part of a rectangle is inside the area bounded
- * by the curve and the straight line connecting its end points.
- *
- * <p><img src="doc-files/QuadCurve2D-5.png" width="350" height="180"
- * alt="A drawing of the area spanned by the curve" />
- *
- * <p>The above drawing illustrates in which area points are
- * considered &#x201c;inside&#x201d; in a CubicCurve2D.
- */
- public boolean intersects(double x, double y, double w, double h)
- {
- if (! getBounds2D().contains(x, y, w, h))
- return false;
-
- /* Does any edge intersect? */
- if (getAxisIntersections(x, y, true, w) != 0 /* top */
- || getAxisIntersections(x, y + h, true, w) != 0 /* bottom */
- || getAxisIntersections(x + w, y, false, h) != 0 /* right */
- || getAxisIntersections(x, y, false, h) != 0) /* left */
- return true;
-
- /* No intersections, is any point inside? */
- if ((getAxisIntersections(x, y, true, BIG_VALUE) & 1) != 0)
- return true;
-
- return false;
- }
-
- /**
- * Determines whether any part of a Rectangle2D is inside the area bounded
- * by the curve and the straight line connecting its end points.
- * @see #intersects(double, double, double, double)
- */
- public boolean intersects(Rectangle2D r)
- {
- return intersects(r.getX(), r.getY(), r.getWidth(), r.getHeight());
- }
-
- /**
- * Determines whether a rectangle is entirely inside the area bounded
- * by the curve and the straight line connecting its end points.
- *
- * <p><img src="doc-files/QuadCurve2D-5.png" width="350" height="180"
- * alt="A drawing of the area spanned by the curve" />
- *
- * <p>The above drawing illustrates in which area points are
- * considered &#x201c;inside&#x201d; a QuadCurve2D.
- * @see #contains(double, double)
- */
- public boolean contains(double x, double y, double w, double h)
- {
- if (! getBounds2D().intersects(x, y, w, h))
- return false;
-
- /* Does any edge intersect? */
- if (getAxisIntersections(x, y, true, w) != 0 /* top */
- || getAxisIntersections(x, y + h, true, w) != 0 /* bottom */
- || getAxisIntersections(x + w, y, false, h) != 0 /* right */
- || getAxisIntersections(x, y, false, h) != 0) /* left */
- return false;
-
- /* No intersections, is any point inside? */
- if ((getAxisIntersections(x, y, true, BIG_VALUE) & 1) != 0)
- return true;
-
- return false;
- }
-
- /**
- * Determines whether a Rectangle2D is entirely inside the area that is
- * bounded by the curve and the straight line connecting its end points.
- * @see #contains(double, double, double, double)
- */
- public boolean contains(Rectangle2D r)
- {
- return contains(r.getX(), r.getY(), r.getWidth(), r.getHeight());
- }
-
- /**
- * Determines the smallest rectangle that encloses the
- * curve&#x2019;s start, end and control point. As the illustration
- * below shows, the invisible control point may cause the bounds to
- * be much larger than the area that is actually covered by the
- * curve.
- *
- * <p><img src="doc-files/QuadCurve2D-2.png" width="350" height="180"
- * alt="An illustration of the bounds of a QuadCurve2D" />
- */
- public Rectangle getBounds()
- {
- return getBounds2D().getBounds();
- }
-
- public PathIterator getPathIterator(final AffineTransform at)
- {
- return new PathIterator()
- {
- /** Current coordinate. */
- private int current = 0;
-
- public int getWindingRule()
- {
- return WIND_NON_ZERO;
- }
-
- public boolean isDone()
- {
- return current >= 2;
- }
-
- public void next()
- {
- current++;
- }
-
- public int currentSegment(float[] coords)
- {
- int result;
- switch (current)
- {
- case 0:
- coords[0] = (float) getX1();
- coords[1] = (float) getY1();
- result = SEG_MOVETO;
- break;
- case 1:
- coords[0] = (float) getCtrlX();
- coords[1] = (float) getCtrlY();
- coords[2] = (float) getX2();
- coords[3] = (float) getY2();
- result = SEG_QUADTO;
- break;
- default:
- throw new NoSuchElementException("quad iterator out of bounds");
- }
- if (at != null)
- at.transform(coords, 0, coords, 0, 2);
- return result;
- }
-
- public int currentSegment(double[] coords)
- {
- int result;
- switch (current)
- {
- case 0:
- coords[0] = getX1();
- coords[1] = getY1();
- result = SEG_MOVETO;
- break;
- case 1:
- coords[0] = getCtrlX();
- coords[1] = getCtrlY();
- coords[2] = getX2();
- coords[3] = getY2();
- result = SEG_QUADTO;
- break;
- default:
- throw new NoSuchElementException("quad iterator out of bounds");
- }
- if (at != null)
- at.transform(coords, 0, coords, 0, 2);
- return result;
- }
- };
- }
-
- public PathIterator getPathIterator(AffineTransform at, double flatness)
- {
- return new FlatteningPathIterator(getPathIterator(at), flatness);
- }
-
- /**
- * Creates a new curve with the same contents as this one.
- *
- * @return the clone.
- */
- public Object clone()
- {
- try
- {
- return super.clone();
- }
- catch (CloneNotSupportedException e)
- {
- throw (Error) new InternalError().initCause(e); // Impossible
- }
- }
-
- /**
- * Helper method used by contains() and intersects() methods
- * Return the number of curve/line intersections on a given axis
- * extending from a certain point. useYaxis is true for using the Y axis,
- * @param x x coordinate of the origin point
- * @param y y coordinate of the origin point
- * @param useYaxis axis to follow, if true the positive Y axis is used,
- * false uses the positive X axis.
- *
- * This is an implementation of the line-crossings algorithm,
- * Detailed in an article on Eric Haines' page:
- * http://www.acm.org/tog/editors/erich/ptinpoly/
- */
- private int getAxisIntersections(double x, double y, boolean useYaxis,
- double distance)
- {
- int nCrossings = 0;
- double a0;
- double a1;
- double a2;
- double b0;
- double b1;
- double b2;
- double[] r = new double[3];
- int nRoots;
-
- a0 = a2 = 0.0;
-
- if (useYaxis)
- {
- a0 = getY1() - y;
- a1 = getCtrlY() - y;
- a2 = getY2() - y;
- b0 = getX1() - x;
- b1 = getCtrlX() - x;
- b2 = getX2() - x;
- }
- else
- {
- a0 = getX1() - x;
- a1 = getCtrlX() - x;
- a2 = getX2() - x;
- b0 = getY1() - y;
- b1 = getCtrlY() - y;
- b2 = getY2() - y;
- }
-
- /* If the axis intersects a start/endpoint, shift it up by some small
- amount to guarantee the line is 'inside'
- If this is not done,bad behaviour may result for points on that axis. */
- if (a0 == 0.0 || a2 == 0.0)
- {
- double small = getFlatness() * EPSILON;
- if (a0 == 0.0)
- a0 -= small;
-
- if (a2 == 0.0)
- a2 -= small;
- }
-
- r[0] = a0;
- r[1] = 2 * (a1 - a0);
- r[2] = (a2 - 2 * a1 + a0);
-
- nRoots = solveQuadratic(r);
- for (int i = 0; i < nRoots; i++)
- {
- double t = r[i];
- if (t >= 0.0 && t <= 1.0)
- {
- double crossing = t * t * (b2 - 2 * b1 + b0) + 2 * t * (b1 - b0)
- + b0;
- /* single root is always doubly degenerate in quads */
- if (crossing > 0 && crossing < distance)
- nCrossings += (nRoots == 1) ? 2 : 1;
- }
- }
-
- if (useYaxis)
- {
- if (Line2D.linesIntersect(b0, a0, b2, a2, EPSILON, 0.0, distance, 0.0))
- nCrossings++;
- }
- else
- {
- if (Line2D.linesIntersect(a0, b0, a2, b2, 0.0, EPSILON, 0.0, distance))
- nCrossings++;
- }
-
- return (nCrossings);
- }
-
- /**
- * A two-dimensional curve that is parameterized with a quadratic
- * function and stores coordinate values in double-precision
- * floating-point format.
- *
- * @see QuadCurve2D.Float
- *
- * @author Eric Blake (ebb9@email.byu.edu)
- * @author Sascha Brawer (brawer@dandelis.ch)
- */
- public static class Double extends QuadCurve2D
- {
- /**
- * The <i>x</i> coordinate of the curve&#x2019;s start point.
- */
- public double x1;
-
- /**
- * The <i>y</i> coordinate of the curve&#x2019;s start point.
- */
- public double y1;
-
- /**
- * The <i>x</i> coordinate of the curve&#x2019;s control point.
- */
- public double ctrlx;
-
- /**
- * The <i>y</i> coordinate of the curve&#x2019;s control point.
- */
- public double ctrly;
-
- /**
- * The <i>x</i> coordinate of the curve&#x2019;s end point.
- */
- public double x2;
-
- /**
- * The <i>y</i> coordinate of the curve&#x2019;s end point.
- */
- public double y2;
-
- /**
- * Constructs a new QuadCurve2D that stores its coordinate values
- * in double-precision floating-point format. All points are
- * initially at position (0, 0).
- */
- public Double()
- {
- }
-
- /**
- * Constructs a new QuadCurve2D that stores its coordinate values
- * in double-precision floating-point format, specifying the
- * initial position of each point.
- *
- * @param x1 the <i>x</i> coordinate of the curve&#x2019;s start
- * point.
- *
- * @param y1 the <i>y</i> coordinate of the curve&#x2019;s start
- * point.
- *
- * @param cx the <i>x</i> coordinate of the curve&#x2019;s control
- * point.
- *
- * @param cy the <i>y</i> coordinate of the curve&#x2019;s control
- * point.
- *
- * @param x2 the <i>x</i> coordinate of the curve&#x2019;s end
- * point.
- *
- * @param y2 the <i>y</i> coordinate of the curve&#x2019;s end
- * point.
- */
- public Double(double x1, double y1, double cx, double cy, double x2,
- double y2)
- {
- this.x1 = x1;
- this.y1 = y1;
- ctrlx = cx;
- ctrly = cy;
- this.x2 = x2;
- this.y2 = y2;
- }
-
- /**
- * Returns the <i>x</i> coordinate of the curve&#x2019;s start
- * point.
- */
- public double getX1()
- {
- return x1;
- }
-
- /**
- * Returns the <i>y</i> coordinate of the curve&#x2019;s start
- * point.
- */
- public double getY1()
- {
- return y1;
- }
-
- /**
- * Returns the curve&#x2019;s start point.
- */
- public Point2D getP1()
- {
- return new Point2D.Double(x1, y1);
- }
-
- /**
- * Returns the <i>x</i> coordinate of the curve&#x2019;s control
- * point.
- */
- public double getCtrlX()
- {
- return ctrlx;
- }
-
- /**
- * Returns the <i>y</i> coordinate of the curve&#x2019;s control
- * point.
- */
- public double getCtrlY()
- {
- return ctrly;
- }
-
- /**
- * Returns the curve&#x2019;s control point.
- */
- public Point2D getCtrlPt()
- {
- return new Point2D.Double(ctrlx, ctrly);
- }
-
- /**
- * Returns the <i>x</i> coordinate of the curve&#x2019;s end
- * point.
- */
- public double getX2()
- {
- return x2;
- }
-
- /**
- * Returns the <i>y</i> coordinate of the curve&#x2019;s end
- * point.
- */
- public double getY2()
- {
- return y2;
- }
-
- /**
- * Returns the curve&#x2019;s end point.
- */
- public Point2D getP2()
- {
- return new Point2D.Double(x2, y2);
- }
-
- /**
- * Changes the geometry of the curve.
- *
- * @param x1 the <i>x</i> coordinate of the curve&#x2019;s new
- * start point.
- *
- * @param y1 the <i>y</i> coordinate of the curve&#x2019;s new
- * start point.
- *
- * @param cx the <i>x</i> coordinate of the curve&#x2019;s new
- * control point.
- *
- * @param cy the <i>y</i> coordinate of the curve&#x2019;s new
- * control point.
- *
- * @param x2 the <i>x</i> coordinate of the curve&#x2019;s new
- * end point.
- *
- * @param y2 the <i>y</i> coordinate of the curve&#x2019;s new
- * end point.
- */
- public void setCurve(double x1, double y1, double cx, double cy,
- double x2, double y2)
- {
- this.x1 = x1;
- this.y1 = y1;
- ctrlx = cx;
- ctrly = cy;
- this.x2 = x2;
- this.y2 = y2;
- }
-
- /**
- * Determines the smallest rectangle that encloses the
- * curve&#x2019;s start, end and control point. As the
- * illustration below shows, the invisible control point may cause
- * the bounds to be much larger than the area that is actually
- * covered by the curve.
- *
- * <p><img src="doc-files/QuadCurve2D-2.png" width="350" height="180"
- * alt="An illustration of the bounds of a QuadCurve2D" />
- */
- public Rectangle2D getBounds2D()
- {
- double nx1 = Math.min(Math.min(x1, ctrlx), x2);
- double ny1 = Math.min(Math.min(y1, ctrly), y2);
- double nx2 = Math.max(Math.max(x1, ctrlx), x2);
- double ny2 = Math.max(Math.max(y1, ctrly), y2);
- return new Rectangle2D.Double(nx1, ny1, nx2 - nx1, ny2 - ny1);
- }
- }
-
- /**
- * A two-dimensional curve that is parameterized with a quadratic
- * function and stores coordinate values in single-precision
- * floating-point format.
- *
- * @see QuadCurve2D.Double
- *
- * @author Eric Blake (ebb9@email.byu.edu)
- * @author Sascha Brawer (brawer@dandelis.ch)
- */
- public static class Float extends QuadCurve2D
- {
- /**
- * The <i>x</i> coordinate of the curve&#x2019;s start point.
- */
- public float x1;
-
- /**
- * The <i>y</i> coordinate of the curve&#x2019;s start point.
- */
- public float y1;
-
- /**
- * The <i>x</i> coordinate of the curve&#x2019;s control point.
- */
- public float ctrlx;
-
- /**
- * The <i>y</i> coordinate of the curve&#x2019;s control point.
- */
- public float ctrly;
-
- /**
- * The <i>x</i> coordinate of the curve&#x2019;s end point.
- */
- public float x2;
-
- /**
- * The <i>y</i> coordinate of the curve&#x2019;s end point.
- */
- public float y2;
-
- /**
- * Constructs a new QuadCurve2D that stores its coordinate values
- * in single-precision floating-point format. All points are
- * initially at position (0, 0).
- */
- public Float()
- {
- }
-
- /**
- * Constructs a new QuadCurve2D that stores its coordinate values
- * in single-precision floating-point format, specifying the
- * initial position of each point.
- *
- * @param x1 the <i>x</i> coordinate of the curve&#x2019;s start
- * point.
- *
- * @param y1 the <i>y</i> coordinate of the curve&#x2019;s start
- * point.
- *
- * @param cx the <i>x</i> coordinate of the curve&#x2019;s control
- * point.
- *
- * @param cy the <i>y</i> coordinate of the curve&#x2019;s control
- * point.
- *
- * @param x2 the <i>x</i> coordinate of the curve&#x2019;s end
- * point.
- *
- * @param y2 the <i>y</i> coordinate of the curve&#x2019;s end
- * point.
- */
- public Float(float x1, float y1, float cx, float cy, float x2, float y2)
- {
- this.x1 = x1;
- this.y1 = y1;
- ctrlx = cx;
- ctrly = cy;
- this.x2 = x2;
- this.y2 = y2;
- }
-
- /**
- * Returns the <i>x</i> coordinate of the curve&#x2019;s start
- * point.
- */
- public double getX1()
- {
- return x1;
- }
-
- /**
- * Returns the <i>y</i> coordinate of the curve&#x2019;s start
- * point.
- */
- public double getY1()
- {
- return y1;
- }
-
- /**
- * Returns the curve&#x2019;s start point.
- */
- public Point2D getP1()
- {
- return new Point2D.Float(x1, y1);
- }
-
- /**
- * Returns the <i>x</i> coordinate of the curve&#x2019;s control
- * point.
- */
- public double getCtrlX()
- {
- return ctrlx;
- }
-
- /**
- * Returns the <i>y</i> coordinate of the curve&#x2019;s control
- * point.
- */
- public double getCtrlY()
- {
- return ctrly;
- }
-
- /**
- * Returns the curve&#x2019;s control point.
- */
- public Point2D getCtrlPt()
- {
- return new Point2D.Float(ctrlx, ctrly);
- }
-
- /**
- * Returns the <i>x</i> coordinate of the curve&#x2019;s end
- * point.
- */
- public double getX2()
- {
- return x2;
- }
-
- /**
- * Returns the <i>y</i> coordinate of the curve&#x2019;s end
- * point.
- */
- public double getY2()
- {
- return y2;
- }
-
- /**
- * Returns the curve&#x2019;s end point.
- */
- public Point2D getP2()
- {
- return new Point2D.Float(x2, y2);
- }
-
- /**
- * Changes the geometry of the curve, specifying coordinate values
- * as double-precision floating-point numbers.
- *
- * @param x1 the <i>x</i> coordinate of the curve&#x2019;s new
- * start point.
- *
- * @param y1 the <i>y</i> coordinate of the curve&#x2019;s new
- * start point.
- *
- * @param cx the <i>x</i> coordinate of the curve&#x2019;s new
- * control point.
- *
- * @param cy the <i>y</i> coordinate of the curve&#x2019;s new
- * control point.
- *
- * @param x2 the <i>x</i> coordinate of the curve&#x2019;s new
- * end point.
- *
- * @param y2 the <i>y</i> coordinate of the curve&#x2019;s new
- * end point.
- */
- public void setCurve(double x1, double y1, double cx, double cy,
- double x2, double y2)
- {
- this.x1 = (float) x1;
- this.y1 = (float) y1;
- ctrlx = (float) cx;
- ctrly = (float) cy;
- this.x2 = (float) x2;
- this.y2 = (float) y2;
- }
-
- /**
- * Changes the geometry of the curve, specifying coordinate values
- * as single-precision floating-point numbers.
- *
- * @param x1 the <i>x</i> coordinate of the curve&#x2019;s new
- * start point.
- *
- * @param y1 the <i>y</i> coordinate of the curve&#x2019;s new
- * start point.
- *
- * @param cx the <i>x</i> coordinate of the curve&#x2019;s new
- * control point.
- *
- * @param cy the <i>y</i> coordinate of the curve&#x2019;s new
- * control point.
- *
- * @param x2 the <i>x</i> coordinate of the curve&#x2019;s new
- * end point.
- *
- * @param y2 the <i>y</i> coordinate of the curve&#x2019;s new
- * end point.
- */
- public void setCurve(float x1, float y1, float cx, float cy, float x2,
- float y2)
- {
- this.x1 = x1;
- this.y1 = y1;
- ctrlx = cx;
- ctrly = cy;
- this.x2 = x2;
- this.y2 = y2;
- }
-
- /**
- * Determines the smallest rectangle that encloses the
- * curve&#x2019;s start, end and control point. As the
- * illustration below shows, the invisible control point may cause
- * the bounds to be much larger than the area that is actually
- * covered by the curve.
- *
- * <p><img src="doc-files/QuadCurve2D-2.png" width="350" height="180"
- * alt="An illustration of the bounds of a QuadCurve2D" />
- */
- public Rectangle2D getBounds2D()
- {
- float nx1 = (float) Math.min(Math.min(x1, ctrlx), x2);
- float ny1 = (float) Math.min(Math.min(y1, ctrly), y2);
- float nx2 = (float) Math.max(Math.max(x1, ctrlx), x2);
- float ny2 = (float) Math.max(Math.max(y1, ctrly), y2);
- return new Rectangle2D.Float(nx1, ny1, nx2 - nx1, ny2 - ny1);
- }
- }
-}
OpenPOWER on IntegriCloud