diff options
Diffstat (limited to 'libjava/java/awt/geom/AffineTransform.java')
-rw-r--r-- | libjava/java/awt/geom/AffineTransform.java | 1487 |
1 files changed, 0 insertions, 1487 deletions
diff --git a/libjava/java/awt/geom/AffineTransform.java b/libjava/java/awt/geom/AffineTransform.java deleted file mode 100644 index 4d1a4d6d5d4..00000000000 --- a/libjava/java/awt/geom/AffineTransform.java +++ /dev/null @@ -1,1487 +0,0 @@ -/* AffineTransform.java -- transform coordinates between two 2-D spaces - Copyright (C) 2000, 2001, 2002, 2004 Free Software Foundation - -This file is part of GNU Classpath. - -GNU Classpath is free software; you can redistribute it and/or modify -it under the terms of the GNU General Public License as published by -the Free Software Foundation; either version 2, or (at your option) -any later version. - -GNU Classpath is distributed in the hope that it will be useful, but -WITHOUT ANY WARRANTY; without even the implied warranty of -MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU -General Public License for more details. - -You should have received a copy of the GNU General Public License -along with GNU Classpath; see the file COPYING. If not, write to the -Free Software Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA -02110-1301 USA. - -Linking this library statically or dynamically with other modules is -making a combined work based on this library. Thus, the terms and -conditions of the GNU General Public License cover the whole -combination. - -As a special exception, the copyright holders of this library give you -permission to link this library with independent modules to produce an -executable, regardless of the license terms of these independent -modules, and to copy and distribute the resulting executable under -terms of your choice, provided that you also meet, for each linked -independent module, the terms and conditions of the license of that -module. An independent module is a module which is not derived from -or based on this library. If you modify this library, you may extend -this exception to your version of the library, but you are not -obligated to do so. If you do not wish to do so, delete this -exception statement from your version. */ - - -package java.awt.geom; - -import java.awt.Shape; -import java.io.IOException; -import java.io.ObjectInputStream; -import java.io.Serializable; - -/** - * This class represents an affine transformation between two coordinate - * spaces in 2 dimensions. Such a transform preserves the "straightness" - * and "parallelness" of lines. The transform is built from a sequence of - * translations, scales, flips, rotations, and shears. - * - * <p>The transformation can be represented using matrix math on a 3x3 array. - * Given (x,y), the transformation (x',y') can be found by: - * <pre> - * [ x'] [ m00 m01 m02 ] [ x ] [ m00*x + m01*y + m02 ] - * [ y'] = [ m10 m11 m12 ] [ y ] = [ m10*x + m11*y + m12 ] - * [ 1 ] [ 0 0 1 ] [ 1 ] [ 1 ] - * </pre> - * The bottom row of the matrix is constant, so a transform can be uniquely - * represented (as in {@link #toString()}) by - * "[[m00, m01, m02], [m10, m11, m12]]". - * - * @author Tom Tromey (tromey@cygnus.com) - * @author Eric Blake (ebb9@email.byu.edu) - * @since 1.2 - * @status partially updated to 1.4, still has some problems - */ -public class AffineTransform implements Cloneable, Serializable -{ - /** - * Compatible with JDK 1.2+. - */ - private static final long serialVersionUID = 1330973210523860834L; - - /** - * The transformation is the identity (x' = x, y' = y). All other transforms - * have either a combination of the appropriate transform flag bits for - * their type, or the type GENERAL_TRANSFORM. - * - * @see #TYPE_TRANSLATION - * @see #TYPE_UNIFORM_SCALE - * @see #TYPE_GENERAL_SCALE - * @see #TYPE_FLIP - * @see #TYPE_QUADRANT_ROTATION - * @see #TYPE_GENERAL_ROTATION - * @see #TYPE_GENERAL_TRANSFORM - * @see #getType() - */ - public static final int TYPE_IDENTITY = 0; - - /** - * The transformation includes a translation - shifting in the x or y - * direction without changing length or angles. - * - * @see #TYPE_IDENTITY - * @see #TYPE_UNIFORM_SCALE - * @see #TYPE_GENERAL_SCALE - * @see #TYPE_FLIP - * @see #TYPE_QUADRANT_ROTATION - * @see #TYPE_GENERAL_ROTATION - * @see #TYPE_GENERAL_TRANSFORM - * @see #getType() - */ - public static final int TYPE_TRANSLATION = 1; - - /** - * The transformation includes a uniform scale - length is scaled in both - * the x and y directions by the same amount, without affecting angles. - * This is mutually exclusive with TYPE_GENERAL_SCALE. - * - * @see #TYPE_IDENTITY - * @see #TYPE_TRANSLATION - * @see #TYPE_GENERAL_SCALE - * @see #TYPE_FLIP - * @see #TYPE_QUADRANT_ROTATION - * @see #TYPE_GENERAL_ROTATION - * @see #TYPE_GENERAL_TRANSFORM - * @see #TYPE_MASK_SCALE - * @see #getType() - */ - public static final int TYPE_UNIFORM_SCALE = 2; - - /** - * The transformation includes a general scale - length is scaled in either - * or both the x and y directions, but by different amounts; without - * affecting angles. This is mutually exclusive with TYPE_UNIFORM_SCALE. - * - * @see #TYPE_IDENTITY - * @see #TYPE_TRANSLATION - * @see #TYPE_UNIFORM_SCALE - * @see #TYPE_FLIP - * @see #TYPE_QUADRANT_ROTATION - * @see #TYPE_GENERAL_ROTATION - * @see #TYPE_GENERAL_TRANSFORM - * @see #TYPE_MASK_SCALE - * @see #getType() - */ - public static final int TYPE_GENERAL_SCALE = 4; - - /** - * This constant checks if either variety of scale transform is performed. - * - * @see #TYPE_UNIFORM_SCALE - * @see #TYPE_GENERAL_SCALE - */ - public static final int TYPE_MASK_SCALE = 6; - - /** - * The transformation includes a flip about an axis, swapping between - * right-handed and left-handed coordinate systems. In a right-handed - * system, the positive x-axis rotates counter-clockwise to the positive - * y-axis; in a left-handed system it rotates clockwise. - * - * @see #TYPE_IDENTITY - * @see #TYPE_TRANSLATION - * @see #TYPE_UNIFORM_SCALE - * @see #TYPE_GENERAL_SCALE - * @see #TYPE_QUADRANT_ROTATION - * @see #TYPE_GENERAL_ROTATION - * @see #TYPE_GENERAL_TRANSFORM - * @see #getType() - */ - public static final int TYPE_FLIP = 64; - - /** - * The transformation includes a rotation of a multiple of 90 degrees (PI/2 - * radians). Angles are rotated, but length is preserved. This is mutually - * exclusive with TYPE_GENERAL_ROTATION. - * - * @see #TYPE_IDENTITY - * @see #TYPE_TRANSLATION - * @see #TYPE_UNIFORM_SCALE - * @see #TYPE_GENERAL_SCALE - * @see #TYPE_FLIP - * @see #TYPE_GENERAL_ROTATION - * @see #TYPE_GENERAL_TRANSFORM - * @see #TYPE_MASK_ROTATION - * @see #getType() - */ - public static final int TYPE_QUADRANT_ROTATION = 8; - - /** - * The transformation includes a rotation by an arbitrary angle. Angles are - * rotated, but length is preserved. This is mutually exclusive with - * TYPE_QUADRANT_ROTATION. - * - * @see #TYPE_IDENTITY - * @see #TYPE_TRANSLATION - * @see #TYPE_UNIFORM_SCALE - * @see #TYPE_GENERAL_SCALE - * @see #TYPE_FLIP - * @see #TYPE_QUADRANT_ROTATION - * @see #TYPE_GENERAL_TRANSFORM - * @see #TYPE_MASK_ROTATION - * @see #getType() - */ - public static final int TYPE_GENERAL_ROTATION = 16; - - /** - * This constant checks if either variety of rotation is performed. - * - * @see #TYPE_QUADRANT_ROTATION - * @see #TYPE_GENERAL_ROTATION - */ - public static final int TYPE_MASK_ROTATION = 24; - - /** - * The transformation is an arbitrary conversion of coordinates which - * could not be decomposed into the other TYPEs. - * - * @see #TYPE_IDENTITY - * @see #TYPE_TRANSLATION - * @see #TYPE_UNIFORM_SCALE - * @see #TYPE_GENERAL_SCALE - * @see #TYPE_FLIP - * @see #TYPE_QUADRANT_ROTATION - * @see #TYPE_GENERAL_ROTATION - * @see #getType() - */ - public static final int TYPE_GENERAL_TRANSFORM = 32; - - /** - * The X coordinate scaling element of the transform matrix. - * - * @serial matrix[0,0] - */ - private double m00; - - /** - * The Y coordinate shearing element of the transform matrix. - * - * @serial matrix[1,0] - */ - private double m10; - - /** - * The X coordinate shearing element of the transform matrix. - * - * @serial matrix[0,1] - */ - private double m01; - - /** - * The Y coordinate scaling element of the transform matrix. - * - * @serial matrix[1,1] - */ - private double m11; - - /** - * The X coordinate translation element of the transform matrix. - * - * @serial matrix[0,2] - */ - private double m02; - - /** - * The Y coordinate translation element of the transform matrix. - * - * @serial matrix[1,2] - */ - private double m12; - - /** The type of this transform. */ - private transient int type; - - /** - * Construct a new identity transform: - * <pre> - * [ 1 0 0 ] - * [ 0 1 0 ] - * [ 0 0 1 ] - * </pre> - */ - public AffineTransform() - { - m00 = m11 = 1; - } - - /** - * Create a new transform which copies the given one. - * - * @param tx the transform to copy - * @throws NullPointerException if tx is null - */ - public AffineTransform(AffineTransform tx) - { - setTransform(tx); - } - - /** - * Construct a transform with the given matrix entries: - * <pre> - * [ m00 m01 m02 ] - * [ m10 m11 m12 ] - * [ 0 0 1 ] - * </pre> - * - * @param m00 the x scaling component - * @param m10 the y shearing component - * @param m01 the x shearing component - * @param m11 the y scaling component - * @param m02 the x translation component - * @param m12 the y translation component - */ - public AffineTransform(float m00, float m10, - float m01, float m11, - float m02, float m12) - { - this.m00 = m00; - this.m10 = m10; - this.m01 = m01; - this.m11 = m11; - this.m02 = m02; - this.m12 = m12; - updateType(); - } - - /** - * Construct a transform from a sequence of float entries. The array must - * have at least 4 entries, which has a translation factor of 0; or 6 - * entries, for specifying all parameters: - * <pre> - * [ f[0] f[2] (f[4]) ] - * [ f[1] f[3] (f[5]) ] - * [ 0 0 1 ] - * </pre> - * - * @param f the matrix to copy from, with at least 4 (6) entries - * @throws NullPointerException if f is null - * @throws ArrayIndexOutOfBoundsException if f is too small - */ - public AffineTransform(float[] f) - { - m00 = f[0]; - m10 = f[1]; - m01 = f[2]; - m11 = f[3]; - if (f.length >= 6) - { - m02 = f[4]; - m12 = f[5]; - } - updateType(); - } - - /** - * Construct a transform with the given matrix entries: - * <pre> - * [ m00 m01 m02 ] - * [ m10 m11 m12 ] - * [ 0 0 1 ] - * </pre> - * - * @param m00 the x scaling component - * @param m10 the y shearing component - * @param m01 the x shearing component - * @param m11 the y scaling component - * @param m02 the x translation component - * @param m12 the y translation component - */ - public AffineTransform(double m00, double m10, double m01, - double m11, double m02, double m12) - { - this.m00 = m00; - this.m10 = m10; - this.m01 = m01; - this.m11 = m11; - this.m02 = m02; - this.m12 = m12; - updateType(); - } - - /** - * Construct a transform from a sequence of double entries. The array must - * have at least 4 entries, which has a translation factor of 0; or 6 - * entries, for specifying all parameters: - * <pre> - * [ d[0] d[2] (d[4]) ] - * [ d[1] d[3] (d[5]) ] - * [ 0 0 1 ] - * </pre> - * - * @param d the matrix to copy from, with at least 4 (6) entries - * @throws NullPointerException if d is null - * @throws ArrayIndexOutOfBoundsException if d is too small - */ - public AffineTransform(double[] d) - { - m00 = d[0]; - m10 = d[1]; - m01 = d[2]; - m11 = d[3]; - if (d.length >= 6) - { - m02 = d[4]; - m12 = d[5]; - } - updateType(); - } - - /** - * Returns a translation transform: - * <pre> - * [ 1 0 tx ] - * [ 0 1 ty ] - * [ 0 0 1 ] - * </pre> - * - * @param tx the x translation distance - * @param ty the y translation distance - * @return the translating transform - */ - public static AffineTransform getTranslateInstance(double tx, double ty) - { - AffineTransform t = new AffineTransform(); - t.setToTranslation(tx, ty); - return t; - } - - /** - * Returns a rotation transform. A positive angle (in radians) rotates - * the positive x-axis to the positive y-axis: - * <pre> - * [ cos(theta) -sin(theta) 0 ] - * [ sin(theta) cos(theta) 0 ] - * [ 0 0 1 ] - * </pre> - * - * @param theta the rotation angle - * @return the rotating transform - */ - public static AffineTransform getRotateInstance(double theta) - { - AffineTransform t = new AffineTransform(); - t.setToRotation(theta); - return t; - } - - /** - * Returns a rotation transform about a point. A positive angle (in radians) - * rotates the positive x-axis to the positive y-axis. This is the same - * as calling: - * <pre> - * AffineTransform tx = new AffineTransform(); - * tx.setToTranslation(x, y); - * tx.rotate(theta); - * tx.translate(-x, -y); - * </pre> - * - * <p>The resulting matrix is: - * <pre> - * [ cos(theta) -sin(theta) x-x*cos+y*sin ] - * [ sin(theta) cos(theta) y-x*sin-y*cos ] - * [ 0 0 1 ] - * </pre> - * - * @param theta the rotation angle - * @param x the x coordinate of the pivot point - * @param y the y coordinate of the pivot point - * @return the rotating transform - */ - public static AffineTransform getRotateInstance(double theta, - double x, double y) - { - AffineTransform t = new AffineTransform(); - t.setToTranslation(x, y); - t.rotate(theta); - t.translate(-x, -y); - return t; - } - - /** - * Returns a scaling transform: - * <pre> - * [ sx 0 0 ] - * [ 0 sy 0 ] - * [ 0 0 1 ] - * </pre> - * - * @param sx the x scaling factor - * @param sy the y scaling factor - * @return the scaling transform - */ - public static AffineTransform getScaleInstance(double sx, double sy) - { - AffineTransform t = new AffineTransform(); - t.setToScale(sx, sy); - return t; - } - - /** - * Returns a shearing transform (points are shifted in the x direction based - * on a factor of their y coordinate, and in the y direction as a factor of - * their x coordinate): - * <pre> - * [ 1 shx 0 ] - * [ shy 1 0 ] - * [ 0 0 1 ] - * </pre> - * - * @param shx the x shearing factor - * @param shy the y shearing factor - * @return the shearing transform - */ - public static AffineTransform getShearInstance(double shx, double shy) - { - AffineTransform t = new AffineTransform(); - t.setToShear(shx, shy); - return t; - } - - /** - * Returns the type of this transform. The result is always valid, although - * it may not be the simplest interpretation (in other words, there are - * sequences of transforms which reduce to something simpler, which this - * does not always detect). The result is either TYPE_GENERAL_TRANSFORM, - * or a bit-wise combination of TYPE_TRANSLATION, the mutually exclusive - * TYPE_*_ROTATIONs, and the mutually exclusive TYPE_*_SCALEs. - * - * @return The type. - * - * @see #TYPE_IDENTITY - * @see #TYPE_TRANSLATION - * @see #TYPE_UNIFORM_SCALE - * @see #TYPE_GENERAL_SCALE - * @see #TYPE_QUADRANT_ROTATION - * @see #TYPE_GENERAL_ROTATION - * @see #TYPE_GENERAL_TRANSFORM - */ - public int getType() - { - return type; - } - - /** - * Return the determinant of this transform matrix. If the determinant is - * non-zero, the transform is invertible; otherwise operations which require - * an inverse throw a NoninvertibleTransformException. A result very near - * zero, due to rounding errors, may indicate that inversion results do not - * carry enough precision to be meaningful. - * - * <p>If this is a uniform scale transformation, the determinant also - * represents the squared value of the scale. Otherwise, it carries little - * additional meaning. The determinant is calculated as: - * <pre> - * | m00 m01 m02 | - * | m10 m11 m12 | = m00 * m11 - m01 * m10 - * | 0 0 1 | - * </pre> - * - * @return the determinant - * @see #createInverse() - */ - public double getDeterminant() - { - return m00 * m11 - m01 * m10; - } - - /** - * Return the matrix of values used in this transform. If the matrix has - * fewer than 6 entries, only the scale and shear factors are returned; - * otherwise the translation factors are copied as well. The resulting - * values are: - * <pre> - * [ d[0] d[2] (d[4]) ] - * [ d[1] d[3] (d[5]) ] - * [ 0 0 1 ] - * </pre> - * - * @param d the matrix to store the results into; with 4 (6) entries - * @throws NullPointerException if d is null - * @throws ArrayIndexOutOfBoundsException if d is too small - */ - public void getMatrix(double[] d) - { - d[0] = m00; - d[1] = m10; - d[2] = m01; - d[3] = m11; - if (d.length >= 6) - { - d[4] = m02; - d[5] = m12; - } - } - - /** - * Returns the X coordinate scaling factor of the matrix. - * - * @return m00 - * @see #getMatrix(double[]) - */ - public double getScaleX() - { - return m00; - } - - /** - * Returns the Y coordinate scaling factor of the matrix. - * - * @return m11 - * @see #getMatrix(double[]) - */ - public double getScaleY() - { - return m11; - } - - /** - * Returns the X coordinate shearing factor of the matrix. - * - * @return m01 - * @see #getMatrix(double[]) - */ - public double getShearX() - { - return m01; - } - - /** - * Returns the Y coordinate shearing factor of the matrix. - * - * @return m10 - * @see #getMatrix(double[]) - */ - public double getShearY() - { - return m10; - } - - /** - * Returns the X coordinate translation factor of the matrix. - * - * @return m02 - * @see #getMatrix(double[]) - */ - public double getTranslateX() - { - return m02; - } - - /** - * Returns the Y coordinate translation factor of the matrix. - * - * @return m12 - * @see #getMatrix(double[]) - */ - public double getTranslateY() - { - return m12; - } - - /** - * Concatenate a translation onto this transform. This is equivalent, but - * more efficient than - * <code>concatenate(AffineTransform.getTranslateInstance(tx, ty))</code>. - * - * @param tx the x translation distance - * @param ty the y translation distance - * @see #getTranslateInstance(double, double) - * @see #concatenate(AffineTransform) - */ - public void translate(double tx, double ty) - { - m02 += tx * m00 + ty * m01; - m12 += tx * m10 + ty * m11; - updateType(); - } - - /** - * Concatenate a rotation onto this transform. This is equivalent, but - * more efficient than - * <code>concatenate(AffineTransform.getRotateInstance(theta))</code>. - * - * @param theta the rotation angle - * @see #getRotateInstance(double) - * @see #concatenate(AffineTransform) - */ - public void rotate(double theta) - { - double c = Math.cos(theta); - double s = Math.sin(theta); - double n00 = m00 * c + m01 * s; - double n01 = m00 * -s + m01 * c; - double n10 = m10 * c + m11 * s; - double n11 = m10 * -s + m11 * c; - m00 = n00; - m01 = n01; - m10 = n10; - m11 = n11; - updateType(); - } - - /** - * Concatenate a rotation about a point onto this transform. This is - * equivalent, but more efficient than - * <code>concatenate(AffineTransform.getRotateInstance(theta, x, y))</code>. - * - * @param theta the rotation angle - * @param x the x coordinate of the pivot point - * @param y the y coordinate of the pivot point - * @see #getRotateInstance(double, double, double) - * @see #concatenate(AffineTransform) - */ - public void rotate(double theta, double x, double y) - { - translate(x, y); - rotate(theta); - translate(-x, -y); - } - - /** - * Concatenate a scale onto this transform. This is equivalent, but more - * efficient than - * <code>concatenate(AffineTransform.getScaleInstance(sx, sy))</code>. - * - * @param sx the x scaling factor - * @param sy the y scaling factor - * @see #getScaleInstance(double, double) - * @see #concatenate(AffineTransform) - */ - public void scale(double sx, double sy) - { - m00 *= sx; - m01 *= sy; - m10 *= sx; - m11 *= sy; - updateType(); - } - - /** - * Concatenate a shearing onto this transform. This is equivalent, but more - * efficient than - * <code>concatenate(AffineTransform.getShearInstance(sx, sy))</code>. - * - * @param shx the x shearing factor - * @param shy the y shearing factor - * @see #getShearInstance(double, double) - * @see #concatenate(AffineTransform) - */ - public void shear(double shx, double shy) - { - double n00 = m00 + (shy * m01); - double n01 = m01 + (shx * m00); - double n10 = m10 + (shy * m11); - double n11 = m11 + (shx * m10); - m00 = n00; - m01 = n01; - m10 = n10; - m11 = n11; - updateType(); - } - - /** - * Reset this transform to the identity (no transformation): - * <pre> - * [ 1 0 0 ] - * [ 0 1 0 ] - * [ 0 0 1 ] - * </pre> - */ - public void setToIdentity() - { - m00 = m11 = 1; - m01 = m02 = m10 = m12 = 0; - type = TYPE_IDENTITY; - } - - /** - * Set this transform to a translation: - * <pre> - * [ 1 0 tx ] - * [ 0 1 ty ] - * [ 0 0 1 ] - * </pre> - * - * @param tx the x translation distance - * @param ty the y translation distance - */ - public void setToTranslation(double tx, double ty) - { - m00 = m11 = 1; - m01 = m10 = 0; - m02 = tx; - m12 = ty; - type = (tx == 0 && ty == 0) ? TYPE_UNIFORM_SCALE : TYPE_TRANSLATION; - } - - /** - * Set this transform to a rotation. A positive angle (in radians) rotates - * the positive x-axis to the positive y-axis: - * <pre> - * [ cos(theta) -sin(theta) 0 ] - * [ sin(theta) cos(theta) 0 ] - * [ 0 0 1 ] - * </pre> - * - * @param theta the rotation angle - */ - public void setToRotation(double theta) - { - double c = Math.cos(theta); - double s = Math.sin(theta); - m00 = c; - m01 = -s; - m02 = 0; - m10 = s; - m11 = c; - m12 = 0; - type = (c == 1 ? TYPE_IDENTITY - : c == 0 || c == -1 ? TYPE_QUADRANT_ROTATION - : TYPE_GENERAL_ROTATION); - } - - /** - * Set this transform to a rotation about a point. A positive angle (in - * radians) rotates the positive x-axis to the positive y-axis. This is the - * same as calling: - * <pre> - * tx.setToTranslation(x, y); - * tx.rotate(theta); - * tx.translate(-x, -y); - * </pre> - * - * <p>The resulting matrix is: - * <pre> - * [ cos(theta) -sin(theta) x-x*cos+y*sin ] - * [ sin(theta) cos(theta) y-x*sin-y*cos ] - * [ 0 0 1 ] - * </pre> - * - * @param theta the rotation angle - * @param x the x coordinate of the pivot point - * @param y the y coordinate of the pivot point - */ - public void setToRotation(double theta, double x, double y) - { - double c = Math.cos(theta); - double s = Math.sin(theta); - m00 = c; - m01 = -s; - m02 = x - x * c + y * s; - m10 = s; - m11 = c; - m12 = y - x * s - y * c; - updateType(); - } - - /** - * Set this transform to a scale: - * <pre> - * [ sx 0 0 ] - * [ 0 sy 0 ] - * [ 0 0 1 ] - * </pre> - * - * @param sx the x scaling factor - * @param sy the y scaling factor - */ - public void setToScale(double sx, double sy) - { - m00 = sx; - m01 = m02 = m10 = m12 = 0; - m11 = sy; - type = (sx != sy ? TYPE_GENERAL_SCALE - : sx == 1 ? TYPE_IDENTITY : TYPE_UNIFORM_SCALE); - } - - /** - * Set this transform to a shear (points are shifted in the x direction based - * on a factor of their y coordinate, and in the y direction as a factor of - * their x coordinate): - * <pre> - * [ 1 shx 0 ] - * [ shy 1 0 ] - * [ 0 0 1 ] - * </pre> - * - * @param shx the x shearing factor - * @param shy the y shearing factor - */ - public void setToShear(double shx, double shy) - { - m00 = m11 = 1; - m01 = shx; - m10 = shy; - m02 = m12 = 0; - updateType(); - } - - /** - * Set this transform to a copy of the given one. - * - * @param tx the transform to copy - * @throws NullPointerException if tx is null - */ - public void setTransform(AffineTransform tx) - { - m00 = tx.m00; - m01 = tx.m01; - m02 = tx.m02; - m10 = tx.m10; - m11 = tx.m11; - m12 = tx.m12; - type = tx.type; - } - - /** - * Set this transform to the given values: - * <pre> - * [ m00 m01 m02 ] - * [ m10 m11 m12 ] - * [ 0 0 1 ] - * </pre> - * - * @param m00 the x scaling component - * @param m10 the y shearing component - * @param m01 the x shearing component - * @param m11 the y scaling component - * @param m02 the x translation component - * @param m12 the y translation component - */ - public void setTransform(double m00, double m10, double m01, - double m11, double m02, double m12) - { - this.m00 = m00; - this.m10 = m10; - this.m01 = m01; - this.m11 = m11; - this.m02 = m02; - this.m12 = m12; - updateType(); - } - - /** - * Set this transform to the result of performing the original version of - * this followed by tx. This is commonly used when chaining transformations - * from one space to another. In matrix form: - * <pre> - * [ this ] = [ this ] x [ tx ] - * </pre> - * - * @param tx the transform to concatenate - * @throws NullPointerException if tx is null - * @see #preConcatenate(AffineTransform) - */ - public void concatenate(AffineTransform tx) - { - double n00 = m00 * tx.m00 + m01 * tx.m10; - double n01 = m00 * tx.m01 + m01 * tx.m11; - double n02 = m00 * tx.m02 + m01 * tx.m12 + m02; - double n10 = m10 * tx.m00 + m11 * tx.m10; - double n11 = m10 * tx.m01 + m11 * tx.m11; - double n12 = m10 * tx.m02 + m11 * tx.m12 + m12; - m00 = n00; - m01 = n01; - m02 = n02; - m10 = n10; - m11 = n11; - m12 = n12; - updateType(); - } - - /** - * Set this transform to the result of performing tx followed by the - * original version of this. This is less common than normal concatenation, - * but can still be used to chain transformations from one space to another. - * In matrix form: - * <pre> - * [ this ] = [ tx ] x [ this ] - * </pre> - * - * @param tx the transform to concatenate - * @throws NullPointerException if tx is null - * @see #concatenate(AffineTransform) - */ - public void preConcatenate(AffineTransform tx) - { - double n00 = tx.m00 * m00 + tx.m01 * m10; - double n01 = tx.m00 * m01 + tx.m01 * m11; - double n02 = tx.m00 * m02 + tx.m01 * m12 + tx.m02; - double n10 = tx.m10 * m00 + tx.m11 * m10; - double n11 = tx.m10 * m01 + tx.m11 * m11; - double n12 = tx.m10 * m02 + tx.m11 * m12 + tx.m12; - m00 = n00; - m01 = n01; - m02 = n02; - m10 = n10; - m11 = n11; - m12 = n12; - updateType(); - } - - /** - * Returns a transform, which if concatenated to this one, will result in - * the identity transform. This is useful for undoing transformations, but - * is only possible if the original transform has an inverse (ie. does not - * map multiple points to the same line or point). A transform exists only - * if getDeterminant() has a non-zero value. - * - * The inverse is calculated as: - * - * <pre> - * - * Let A be the matrix for which we want to find the inverse: - * - * A = [ m00 m01 m02 ] - * [ m10 m11 m12 ] - * [ 0 0 1 ] - * - * - * 1 - * inverse (A) = --- x adjoint(A) - * det - * - * - * - * = 1 [ m11 -m01 m01*m12-m02*m11 ] - * --- x [ -m10 m00 -m00*m12+m10*m02 ] - * det [ 0 0 m00*m11-m10*m01 ] - * - * - * - * = [ m11/det -m01/det m01*m12-m02*m11/det ] - * [ -m10/det m00/det -m00*m12+m10*m02/det ] - * [ 0 0 1 ] - * - * - * </pre> - * - * - * - * @return a new inverse transform - * @throws NoninvertibleTransformException if inversion is not possible - * @see #getDeterminant() - */ - public AffineTransform createInverse() - throws NoninvertibleTransformException - { - double det = getDeterminant(); - if (det == 0) - throw new NoninvertibleTransformException("can't invert transform"); - - double im00 = m11 / det; - double im10 = -m10 / det; - double im01 = -m01 / det; - double im11 = m00 / det; - double im02 = (m01 * m12 - m02 * m11) / det; - double im12 = (-m00 * m12 + m10 * m02) / det; - - return new AffineTransform (im00, im10, im01, im11, im02, im12); - } - - /** - * Perform this transformation on the given source point, and store the - * result in the destination (creating it if necessary). It is safe for - * src and dst to be the same. - * - * @param src the source point - * @param dst the destination, or null - * @return the transformation of src, in dst if it was non-null - * @throws NullPointerException if src is null - */ - public Point2D transform(Point2D src, Point2D dst) - { - if (dst == null) - dst = new Point2D.Double(); - double x = src.getX(); - double y = src.getY(); - double nx = m00 * x + m01 * y + m02; - double ny = m10 * x + m11 * y + m12; - dst.setLocation(nx, ny); - return dst; - } - - /** - * Perform this transformation on an array of points, storing the results - * in another (possibly same) array. This will not create a destination - * array, but will create points for the null entries of the destination. - * The transformation is done sequentially. While having a single source - * and destination point be the same is safe, you should be aware that - * duplicate references to the same point in the source, and having the - * source overlap the destination, may result in your source points changing - * from a previous transform before it is their turn to be evaluated. - * - * @param src the array of source points - * @param srcOff the starting offset into src - * @param dst the array of destination points (may have null entries) - * @param dstOff the starting offset into dst - * @param num the number of points to transform - * @throws NullPointerException if src or dst is null, or src has null - * entries - * @throws ArrayIndexOutOfBoundsException if array bounds are exceeded - * @throws ArrayStoreException if new points are incompatible with dst - */ - public void transform(Point2D[] src, int srcOff, - Point2D[] dst, int dstOff, int num) - { - while (--num >= 0) - dst[dstOff] = transform(src[srcOff++], dst[dstOff++]); - } - - /** - * Perform this transformation on an array of points, in (x,y) pairs, - * storing the results in another (possibly same) array. This will not - * create a destination array. All sources are copied before the - * transformation, so that no result will overwrite a point that has not yet - * been evaluated. - * - * @param srcPts the array of source points - * @param srcOff the starting offset into src - * @param dstPts the array of destination points - * @param dstOff the starting offset into dst - * @param num the number of points to transform - * @throws NullPointerException if src or dst is null - * @throws ArrayIndexOutOfBoundsException if array bounds are exceeded - */ - public void transform(float[] srcPts, int srcOff, - float[] dstPts, int dstOff, int num) - { - if (srcPts == dstPts && dstOff > srcOff - && num > 1 && srcOff + 2 * num > dstOff) - { - float[] f = new float[2 * num]; - System.arraycopy(srcPts, srcOff, f, 0, 2 * num); - srcPts = f; - } - while (--num >= 0) - { - float x = srcPts[srcOff++]; - float y = srcPts[srcOff++]; - dstPts[dstOff++] = (float) (m00 * x + m01 * y + m02); - dstPts[dstOff++] = (float) (m10 * x + m11 * y + m12); - } - } - - /** - * Perform this transformation on an array of points, in (x,y) pairs, - * storing the results in another (possibly same) array. This will not - * create a destination array. All sources are copied before the - * transformation, so that no result will overwrite a point that has not yet - * been evaluated. - * - * @param srcPts the array of source points - * @param srcOff the starting offset into src - * @param dstPts the array of destination points - * @param dstOff the starting offset into dst - * @param num the number of points to transform - * @throws NullPointerException if src or dst is null - * @throws ArrayIndexOutOfBoundsException if array bounds are exceeded - */ - public void transform(double[] srcPts, int srcOff, - double[] dstPts, int dstOff, int num) - { - if (srcPts == dstPts && dstOff > srcOff - && num > 1 && srcOff + 2 * num > dstOff) - { - double[] d = new double[2 * num]; - System.arraycopy(srcPts, srcOff, d, 0, 2 * num); - srcPts = d; - } - while (--num >= 0) - { - double x = srcPts[srcOff++]; - double y = srcPts[srcOff++]; - dstPts[dstOff++] = m00 * x + m01 * y + m02; - dstPts[dstOff++] = m10 * x + m11 * y + m12; - } - } - - /** - * Perform this transformation on an array of points, in (x,y) pairs, - * storing the results in another array. This will not create a destination - * array. - * - * @param srcPts the array of source points - * @param srcOff the starting offset into src - * @param dstPts the array of destination points - * @param dstOff the starting offset into dst - * @param num the number of points to transform - * @throws NullPointerException if src or dst is null - * @throws ArrayIndexOutOfBoundsException if array bounds are exceeded - */ - public void transform(float[] srcPts, int srcOff, - double[] dstPts, int dstOff, int num) - { - while (--num >= 0) - { - float x = srcPts[srcOff++]; - float y = srcPts[srcOff++]; - dstPts[dstOff++] = m00 * x + m01 * y + m02; - dstPts[dstOff++] = m10 * x + m11 * y + m12; - } - } - - /** - * Perform this transformation on an array of points, in (x,y) pairs, - * storing the results in another array. This will not create a destination - * array. - * - * @param srcPts the array of source points - * @param srcOff the starting offset into src - * @param dstPts the array of destination points - * @param dstOff the starting offset into dst - * @param num the number of points to transform - * @throws NullPointerException if src or dst is null - * @throws ArrayIndexOutOfBoundsException if array bounds are exceeded - */ - public void transform(double[] srcPts, int srcOff, - float[] dstPts, int dstOff, int num) - { - while (--num >= 0) - { - double x = srcPts[srcOff++]; - double y = srcPts[srcOff++]; - dstPts[dstOff++] = (float) (m00 * x + m01 * y + m02); - dstPts[dstOff++] = (float) (m10 * x + m11 * y + m12); - } - } - - /** - * Perform the inverse of this transformation on the given source point, - * and store the result in the destination (creating it if necessary). It - * is safe for src and dst to be the same. - * - * @param src the source point - * @param dst the destination, or null - * @return the inverse transformation of src, in dst if it was non-null - * @throws NullPointerException if src is null - * @throws NoninvertibleTransformException if the inverse does not exist - * @see #getDeterminant() - */ - public Point2D inverseTransform(Point2D src, Point2D dst) - throws NoninvertibleTransformException - { - return createInverse().transform(src, dst); - } - - /** - * Perform the inverse of this transformation on an array of points, in - * (x,y) pairs, storing the results in another (possibly same) array. This - * will not create a destination array. All sources are copied before the - * transformation, so that no result will overwrite a point that has not yet - * been evaluated. - * - * @param srcPts the array of source points - * @param srcOff the starting offset into src - * @param dstPts the array of destination points - * @param dstOff the starting offset into dst - * @param num the number of points to transform - * @throws NullPointerException if src or dst is null - * @throws ArrayIndexOutOfBoundsException if array bounds are exceeded - * @throws NoninvertibleTransformException if the inverse does not exist - * @see #getDeterminant() - */ - public void inverseTransform(double[] srcPts, int srcOff, - double[] dstPts, int dstOff, int num) - throws NoninvertibleTransformException - { - createInverse().transform(srcPts, srcOff, dstPts, dstOff, num); - } - - /** - * Perform this transformation, less any translation, on the given source - * point, and store the result in the destination (creating it if - * necessary). It is safe for src and dst to be the same. The reduced - * transform is equivalent to: - * <pre> - * [ x' ] = [ m00 m01 ] [ x ] = [ m00 * x + m01 * y ] - * [ y' ] [ m10 m11 ] [ y ] = [ m10 * x + m11 * y ] - * </pre> - * - * @param src the source point - * @param dst the destination, or null - * @return the delta transformation of src, in dst if it was non-null - * @throws NullPointerException if src is null - */ - public Point2D deltaTransform(Point2D src, Point2D dst) - { - if (dst == null) - dst = new Point2D.Double(); - double x = src.getX(); - double y = src.getY(); - double nx = m00 * x + m01 * y; - double ny = m10 * x + m11 * y; - dst.setLocation(nx, ny); - return dst; - } - - /** - * Perform this transformation, less any translation, on an array of points, - * in (x,y) pairs, storing the results in another (possibly same) array. - * This will not create a destination array. All sources are copied before - * the transformation, so that no result will overwrite a point that has - * not yet been evaluated. The reduced transform is equivalent to: - * <pre> - * [ x' ] = [ m00 m01 ] [ x ] = [ m00 * x + m01 * y ] - * [ y' ] [ m10 m11 ] [ y ] = [ m10 * x + m11 * y ] - * </pre> - * - * @param srcPts the array of source points - * @param srcOff the starting offset into src - * @param dstPts the array of destination points - * @param dstOff the starting offset into dst - * @param num the number of points to transform - * @throws NullPointerException if src or dst is null - * @throws ArrayIndexOutOfBoundsException if array bounds are exceeded - */ - public void deltaTransform(double[] srcPts, int srcOff, - double[] dstPts, int dstOff, - int num) - { - if (srcPts == dstPts && dstOff > srcOff - && num > 1 && srcOff + 2 * num > dstOff) - { - double[] d = new double[2 * num]; - System.arraycopy(srcPts, srcOff, d, 0, 2 * num); - srcPts = d; - } - while (--num >= 0) - { - double x = srcPts[srcOff++]; - double y = srcPts[srcOff++]; - dstPts[dstOff++] = m00 * x + m01 * y; - dstPts[dstOff++] = m10 * x + m11 * y; - } - } - - /** - * Return a new Shape, based on the given one, where the path of the shape - * has been transformed by this transform. Notice that this uses GeneralPath, - * which only stores points in float precision. - * - * @param src the shape source to transform - * @return the shape, transformed by this, <code>null</code> if src is - * <code>null</code>. - * @see GeneralPath#transform(AffineTransform) - */ - public Shape createTransformedShape(Shape src) - { - if(src == null) - return null; - GeneralPath p = new GeneralPath(src); - p.transform(this); - return p; - } - - /** - * Returns a string representation of the transform, in the format: - * <code>"AffineTransform[[" + m00 + ", " + m01 + ", " + m02 + "], [" - * + m10 + ", " + m11 + ", " + m12 + "]]"</code>. - * - * @return the string representation - */ - public String toString() - { - return "AffineTransform[[" + m00 + ", " + m01 + ", " + m02 + "], [" - + m10 + ", " + m11 + ", " + m12 + "]]"; - } - - /** - * Tests if this transformation is the identity: - * <pre> - * [ 1 0 0 ] - * [ 0 1 0 ] - * [ 0 0 1 ] - * </pre> - * - * @return true if this is the identity transform - */ - public boolean isIdentity() - { - // Rather than rely on type, check explicitly. - return (m00 == 1 && m01 == 0 && m02 == 0 - && m10 == 0 && m11 == 1 && m12 == 0); - } - - /** - * Create a new transform of the same run-time type, with the same - * transforming properties as this one. - * - * @return the clone - */ - public Object clone() - { - try - { - return super.clone(); - } - catch (CloneNotSupportedException e) - { - throw (Error) new InternalError().initCause(e); // Impossible - } - } - - /** - * Return the hashcode for this transformation. The formula is not - * documented, but appears to be the same as: - * <pre> - * long l = Double.doubleToLongBits(getScaleX()); - * l = l * 31 + Double.doubleToLongBits(getShearY()); - * l = l * 31 + Double.doubleToLongBits(getShearX()); - * l = l * 31 + Double.doubleToLongBits(getScaleY()); - * l = l * 31 + Double.doubleToLongBits(getTranslateX()); - * l = l * 31 + Double.doubleToLongBits(getTranslateY()); - * return (int) ((l >> 32) ^ l); - * </pre> - * - * @return the hashcode - */ - public int hashCode() - { - long l = Double.doubleToLongBits(m00); - l = l * 31 + Double.doubleToLongBits(m10); - l = l * 31 + Double.doubleToLongBits(m01); - l = l * 31 + Double.doubleToLongBits(m11); - l = l * 31 + Double.doubleToLongBits(m02); - l = l * 31 + Double.doubleToLongBits(m12); - return (int) ((l >> 32) ^ l); - } - - /** - * Compares two transforms for equality. This returns true if they have the - * same matrix values. - * - * @param obj the transform to compare - * @return true if it is equal - */ - public boolean equals(Object obj) - { - if (! (obj instanceof AffineTransform)) - return false; - AffineTransform t = (AffineTransform) obj; - return (m00 == t.m00 && m01 == t.m01 && m02 == t.m02 - && m10 == t.m10 && m11 == t.m11 && m12 == t.m12); - } - - /** - * Helper to decode the type from the matrix. This is not guaranteed - * to find the optimal type, but at least it will be valid. - */ - private void updateType() - { - double det = getDeterminant(); - if (det == 0) - { - type = TYPE_GENERAL_TRANSFORM; - return; - } - // Scale (includes rotation by PI) or translation. - if (m01 == 0 && m10 == 0) - { - if (m00 == m11) - type = m00 == 1 ? TYPE_IDENTITY : TYPE_UNIFORM_SCALE; - else - type = TYPE_GENERAL_SCALE; - if (m02 != 0 || m12 != 0) - type |= TYPE_TRANSLATION; - } - // Rotation. - else if (m00 == m11 && m01 == -m10) - { - type = m00 == 0 ? TYPE_QUADRANT_ROTATION : TYPE_GENERAL_ROTATION; - if (det != 1) - type |= TYPE_UNIFORM_SCALE; - if (m02 != 0 || m12 != 0) - type |= TYPE_TRANSLATION; - } - else - type = TYPE_GENERAL_TRANSFORM; - } - - /** - * Reads a transform from an object stream. - * - * @param s the stream to read from - * @throws ClassNotFoundException if there is a problem deserializing - * @throws IOException if there is a problem deserializing - */ - private void readObject(ObjectInputStream s) - throws ClassNotFoundException, IOException - { - s.defaultReadObject(); - updateType(); - } -} // class AffineTransform |