diff options
Diffstat (limited to 'libjava/classpath/gnu/java/security/util/Prime2.java')
-rw-r--r-- | libjava/classpath/gnu/java/security/util/Prime2.java | 417 |
1 files changed, 0 insertions, 417 deletions
diff --git a/libjava/classpath/gnu/java/security/util/Prime2.java b/libjava/classpath/gnu/java/security/util/Prime2.java deleted file mode 100644 index 6e46f5fcadc..00000000000 --- a/libjava/classpath/gnu/java/security/util/Prime2.java +++ /dev/null @@ -1,417 +0,0 @@ -/* Prime2.java -- - Copyright (C) 2001, 2002, 2003, 2006 Free Software Foundation, Inc. - -This file is a part of GNU Classpath. - -GNU Classpath is free software; you can redistribute it and/or modify -it under the terms of the GNU General Public License as published by -the Free Software Foundation; either version 2 of the License, or (at -your option) any later version. - -GNU Classpath is distributed in the hope that it will be useful, but -WITHOUT ANY WARRANTY; without even the implied warranty of -MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU -General Public License for more details. - -You should have received a copy of the GNU General Public License -along with GNU Classpath; if not, write to the Free Software -Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 -USA - -Linking this library statically or dynamically with other modules is -making a combined work based on this library. Thus, the terms and -conditions of the GNU General Public License cover the whole -combination. - -As a special exception, the copyright holders of this library give you -permission to link this library with independent modules to produce an -executable, regardless of the license terms of these independent -modules, and to copy and distribute the resulting executable under -terms of your choice, provided that you also meet, for each linked -independent module, the terms and conditions of the license of that -module. An independent module is a module which is not derived from -or based on this library. If you modify this library, you may extend -this exception to your version of the library, but you are not -obligated to do so. If you do not wish to do so, delete this -exception statement from your version. */ - - -package gnu.java.security.util; - -import java.io.PrintWriter; -import java.lang.ref.WeakReference; -import java.math.BigInteger; -import java.util.Map; -import java.util.WeakHashMap; - -/** - * <p>A collection of prime number related utilities used in this library.</p> - */ -public class Prime2 -{ - - // Debugging methods and variables - // ------------------------------------------------------------------------- - - private static final String NAME = "prime"; - - private static final boolean DEBUG = false; - - private static final int debuglevel = 5; - - private static final PrintWriter err = new PrintWriter(System.out, true); - - private static void debug(String s) - { - err.println(">>> " + NAME + ": " + s); - } - - // Constants and variables - // ------------------------------------------------------------------------- - - private static final int DEFAULT_CERTAINTY = 20; // XXX is this a good value? - - private static final BigInteger ZERO = BigInteger.ZERO; - - private static final BigInteger ONE = BigInteger.ONE; - - private static final BigInteger TWO = BigInteger.valueOf(2L); - - /** - * The first SMALL_PRIME primes: Algorithm P, section 1.3.2, The Art of - * Computer Programming, Donald E. Knuth. - */ - private static final int SMALL_PRIME_COUNT = 1000; - - private static final BigInteger[] SMALL_PRIME = new BigInteger[SMALL_PRIME_COUNT]; - static - { - long time = -System.currentTimeMillis(); - SMALL_PRIME[0] = TWO; - int N = 3; - int J = 0; - int prime; - P2: while (true) - { - SMALL_PRIME[++J] = BigInteger.valueOf(N); - if (J >= 999) - { - break P2; - } - P4: while (true) - { - N += 2; - P6: for (int K = 1; true; K++) - { - prime = SMALL_PRIME[K].intValue(); - if ((N % prime) == 0) - { - continue P4; - } - else if ((N / prime) <= prime) - { - continue P2; - } - } - } - } - time += System.currentTimeMillis(); - if (DEBUG && debuglevel > 8) - { - StringBuffer sb; - for (int i = 0; i < (SMALL_PRIME_COUNT / 10); i++) - { - sb = new StringBuffer(); - for (int j = 0; j < 10; j++) - { - sb.append(String.valueOf(SMALL_PRIME[i * 10 + j])).append(" "); - } - debug(sb.toString()); - } - } - if (DEBUG && debuglevel > 4) - { - debug("Generating first " + String.valueOf(SMALL_PRIME_COUNT) - + " primes took: " + String.valueOf(time) + " ms."); - } - } - - private static final Map knownPrimes = new WeakHashMap(); - - // Constructor(s) - // ------------------------------------------------------------------------- - - /** Trivial constructor to enforce Singleton pattern. */ - private Prime2() - { - super(); - } - - // Class methods - // ------------------------------------------------------------------------- - - /** - * <p>Trial division for the first 1000 small primes.</p> - * - * <p>Returns <code>true</code> if at least one small prime, among the first - * 1000 ones, was found to divide the designated number. Retuens <code>false</code> - * otherwise.</p> - * - * @param w the number to test. - * @return <code>true</code> if at least one small prime was found to divide - * the designated number. - */ - public static boolean hasSmallPrimeDivisor(BigInteger w) - { - BigInteger prime; - for (int i = 0; i < SMALL_PRIME_COUNT; i++) - { - prime = SMALL_PRIME[i]; - if (w.mod(prime).equals(ZERO)) - { - if (DEBUG && debuglevel > 4) - { - debug(prime.toString(16) + " | " + w.toString(16) + "..."); - } - return true; - } - } - if (DEBUG && debuglevel > 4) - { - debug(w.toString(16) + " has no small prime divisors..."); - } - return false; - } - - /** - * <p>Java port of Colin Plumb primality test (Euler Criterion) - * implementation for a base of 2 --from bnlib-1.1 release, function - * primeTest() in prime.c. this is his comments.</p> - * - * <p>"Now, check that bn is prime. If it passes to the base 2, it's prime - * beyond all reasonable doubt, and everything else is just gravy, but it - * gives people warm fuzzies to do it.</p> - * - * <p>This starts with verifying Euler's criterion for a base of 2. This is - * the fastest pseudoprimality test that I know of, saving a modular squaring - * over a Fermat test, as well as being stronger. 7/8 of the time, it's as - * strong as a strong pseudoprimality test, too. (The exception being when - * <code>bn == 1 mod 8</code> and <code>2</code> is a quartic residue, i.e. - * <code>bn</code> is of the form <code>a^2 + (8*b)^2</code>.) The precise - * series of tricks used here is not documented anywhere, so here's an - * explanation. Euler's criterion states that if <code>p</code> is prime - * then <code>a^((p-1)/2)</code> is congruent to <code>Jacobi(a,p)</code>, - * modulo <code>p</code>. <code>Jacobi(a, p)</code> is a function which is - * <code>+1</code> if a is a square modulo <code>p</code>, and <code>-1</code> - * if it is not. For <code>a = 2</code>, this is particularly simple. It's - * <code>+1</code> if <code>p == +/-1 (mod 8)</code>, and <code>-1</code> if - * <code>m == +/-3 (mod 8)</code>. If <code>p == 3 (mod 4)</code>, then all - * a strong test does is compute <code>2^((p-1)/2)</code>. and see if it's - * <code>+1</code> or <code>-1</code>. (Euler's criterion says <i>which</i> - * it should be.) If <code>p == 5 (mod 8)</code>, then <code>2^((p-1)/2)</code> - * is <code>-1</code>, so the initial step in a strong test, looking at - * <code>2^((p-1)/4)</code>, is wasted --you're not going to find a - * <code>+/-1</code> before then if it <b>is</b> prime, and it shouldn't - * have either of those values if it isn't. So don't bother.</p> - * - * <p>The remaining case is <code>p == 1 (mod 8)</code>. In this case, we - * expect <code>2^((p-1)/2) == 1 (mod p)</code>, so we expect that the - * square root of this, <code>2^((p-1)/4)</code>, will be <code>+/-1 (mod p) - * </code>. Evaluating this saves us a modular squaring 1/4 of the time. If - * it's <code>-1</code>, a strong pseudoprimality test would call <code>p</code> - * prime as well. Only if the result is <code>+1</code>, indicating that - * <code>2</code> is not only a quadratic residue, but a quartic one as well, - * does a strong pseudoprimality test verify more things than this test does. - * Good enough.</p> - * - * <p>We could back that down another step, looking at <code>2^((p-1)/8)</code> - * if there was a cheap way to determine if <code>2</code> were expected to - * be a quartic residue or not. Dirichlet proved that <code>2</code> is a - * quadratic residue iff <code>p</code> is of the form <code>a^2 + (8*b^2)</code>. - * All primes <code>== 1 (mod 4)</code> can be expressed as <code>a^2 + - * (2*b)^2</code>, but I see no cheap way to evaluate this condition."</p> - * - * @param bn the number to test. - * @return <code>true</code> iff the designated number passes Euler criterion - * as implemented by Colin Plumb in his <i>bnlib</i> version 1.1. - */ - public static boolean passEulerCriterion(final BigInteger bn) - { - BigInteger bn_minus_one = bn.subtract(ONE); - BigInteger e = bn_minus_one; - // l is the 3 least-significant bits of e - int l = e.and(BigInteger.valueOf(7L)).intValue(); - int j = 1; // Where to start in prime array for strong prime tests - BigInteger a; - int k; - - if (l != 0) - { - e = e.shiftRight(1); - a = TWO.modPow(e, bn); - if (l == 6) // bn == 7 mod 8, expect +1 - { - if (a.bitLength() != 1) - { - debugBI("Fails Euler criterion #1", bn); - return false; // Not prime - } - k = 1; - } - else // bn == 3 or 5 mod 8, expect -1 == bn-1 - { - a = a.add(ONE); - if (a.compareTo(bn) != 0) - { - debugBI("Fails Euler criterion #2", bn); - return false; // Not prime - } - k = 1; - if ((l & 4) != 0) // bn == 5 mod 8, make odd for strong tests - { - e = e.shiftRight(1); - k = 2; - } - } - } - else // bn == 1 mod 8, expect 2^((bn-1)/4) == +/-1 mod bn - { - e = e.shiftRight(2); - a = TWO.modPow(e, bn); - if (a.bitLength() == 1) - j = 0; // Re-do strong prime test to base 2 - else - { - a = a.add(ONE); - if (a.compareTo(bn) != 0) - { - debugBI("Fails Euler criterion #3", bn); - return false; // Not prime - } - } - // bnMakeOdd(n) = d * 2^s. Replaces n with d and returns s. - k = e.getLowestSetBit(); - e = e.shiftRight(k); - k += 2; - } - // It's prime! Now go on to confirmation tests - - // Now, e = (bn-1)/2^k is odd. k >= 1, and has a given value with - // probability 2^-k, so its expected value is 2. j = 1 in the usual case - // when the previous test was as good as a strong prime test, but 1/8 of - // the time, j = 0 because the strong prime test to the base 2 needs to - // be re-done. - for (int i = j; i < 7; i++) // try only the first 7 primes - { - a = SMALL_PRIME[i]; - a = a.modPow(e, bn); - if (a.bitLength() == 1) - continue; // Passed this test - - l = k; - while (true) - { -// a = a.add(ONE); -// if (a.compareTo(w) == 0) { // Was result bn-1? - if (a.compareTo(bn_minus_one) == 0) // Was result bn-1? - break; // Prime - - if (--l == 0) // Reached end, not -1? luck? - { - debugBI("Fails Euler criterion #4", bn); - return false; // Failed, not prime - } - // This portion is executed, on average, once -// a = a.subtract(ONE); // Put a back where it was - a = a.modPow(TWO, bn); - if (a.bitLength() == 1) - { - debugBI("Fails Euler criterion #5", bn); - return false; // Failed, not prime - } - } - // It worked (to the base primes[i]) - } - debugBI("Passes Euler criterion", bn); - return true; - } - - public static boolean isProbablePrime(BigInteger w) - { - return isProbablePrime(w, DEFAULT_CERTAINTY); - } - - /** - * Wrapper around {@link BigInteger#isProbablePrime(int)} with few pre-checks. - * - * @param w the integer to test. - * @param certainty the certainty with which to compute the test. - */ - public static boolean isProbablePrime(BigInteger w, int certainty) - { - // Nonnumbers are not prime. - if (w == null) - return false; - - // eliminate trivial cases when w == 0 or 1 - if (w.equals(ZERO) || w.equals(ONE)) - return false; - - // Test if w is a known small prime. - for (int i = 0; i < SMALL_PRIME_COUNT; i++) - if (w.equals(SMALL_PRIME[i])) - { - if (DEBUG && debuglevel > 4) - debug(w.toString(16) + " is a small prime"); - return true; - } - - // Check if it's already a known prime - WeakReference obj = (WeakReference) knownPrimes.get(w); - if (obj != null && w.equals(obj.get())) - { - if (DEBUG && debuglevel > 4) - debug("found in known primes"); - return true; - } - - // trial division with first 1000 primes - if (hasSmallPrimeDivisor(w)) - { - if (DEBUG && debuglevel > 4) - debug(w.toString(16) + " has a small prime divisor. Rejected..."); - return false; - } - -// Euler's criterion. -// if (passEulerCriterion(w)) { -// if (DEBUG && debuglevel > 4) { -// debug(w.toString(16)+" passes Euler's criterion..."); -// } -// } else { -// if (DEBUG && debuglevel > 4) { -// debug(w.toString(16)+" fails Euler's criterion. Rejected..."); -// } -// return false; -// } -// -// if (DEBUG && debuglevel > 4) -// { -// debug(w.toString(16) + " is probable prime. Accepted..."); -// } - - boolean result = w.isProbablePrime(certainty); - if (result && certainty > 0) // store it in the known primes weak hash-map - knownPrimes.put(w, new WeakReference(w)); - - return result; - } - - // helper methods ----------------------------------------------------------- - - private static final void debugBI(String msg, BigInteger bn) - { - if (DEBUG && debuglevel > 4) - debug("*** " + msg + ": 0x" + bn.toString(16)); - } -} |