diff options
Diffstat (limited to 'libgfortran/generated/sum_r4.c')
-rw-r--r-- | libgfortran/generated/sum_r4.c | 252 |
1 files changed, 252 insertions, 0 deletions
diff --git a/libgfortran/generated/sum_r4.c b/libgfortran/generated/sum_r4.c new file mode 100644 index 00000000000..3b637183256 --- /dev/null +++ b/libgfortran/generated/sum_r4.c @@ -0,0 +1,252 @@ +/* Implementation of the SUM intrinsic + Copyright 2002 Free Software Foundation, Inc. + Contributed by Paul Brook <paul@nowt.org> + +This file is part of the GNU Fortran 95 runtime library (libgfor). + +Libgfortran is free software; you can redistribute it and/or +modify it under the terms of the GNU Lesser General Public +License as published by the Free Software Foundation; either +version 2.1 of the License, or (at your option) any later version. + +Libgfortran is distributed in the hope that it will be useful, +but WITHOUT ANY WARRANTY; without even the implied warranty of +MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the +GNU Lesser General Public License for more details. + +You should have received a copy of the GNU Lesser General Public +License along with libgfor; see the file COPYING.LIB. If not, +write to the Free Software Foundation, Inc., 59 Temple Place - Suite 330, +Boston, MA 02111-1307, USA. */ + +#include "config.h" +#include <stdlib.h> +#include <assert.h> +#include "libgfortran.h" + + +void +__sum_r4 (gfc_array_r4 * retarray, gfc_array_r4 *array, index_type *pdim) +{ + index_type count[GFC_MAX_DIMENSIONS - 1]; + index_type extent[GFC_MAX_DIMENSIONS - 1]; + index_type sstride[GFC_MAX_DIMENSIONS - 1]; + index_type dstride[GFC_MAX_DIMENSIONS - 1]; + GFC_REAL_4 *base; + GFC_REAL_4 *dest; + index_type rank; + index_type n; + index_type len; + index_type delta; + index_type dim; + + /* Make dim zero based to avoid confusion. */ + dim = (*pdim) - 1; + rank = GFC_DESCRIPTOR_RANK (array) - 1; + assert (rank == GFC_DESCRIPTOR_RANK (retarray)); + if (array->dim[0].stride == 0) + array->dim[0].stride = 1; + if (retarray->dim[0].stride == 0) + retarray->dim[0].stride = 1; + + len = array->dim[dim].ubound + 1 - array->dim[dim].lbound; + delta = array->dim[dim].stride; + + for (n = 0; n < dim; n++) + { + sstride[n] = array->dim[n].stride; + extent[n] = array->dim[n].ubound + 1 - array->dim[n].lbound; + } + for (n = dim; n < rank; n++) + { + sstride[n] = array->dim[n + 1].stride; + extent[n] = + array->dim[n + 1].ubound + 1 - array->dim[n + 1].lbound; + } + + for (n = 0; n < rank; n++) + { + count[n] = 0; + dstride[n] = retarray->dim[n].stride; + if (extent[n] <= 0) + len = 0; + } + + base = array->data; + dest = retarray->data; + + while (base) + { + GFC_REAL_4 *src; + GFC_REAL_4 result; + src = base; + { + + result = 0; + if (len <= 0) + *dest = 0; + else + { + for (n = 0; n < len; n++, src += delta) + { + + result += *src; + } + *dest = result; + } + } + /* Advance to the next element. */ + count[0]++; + base += sstride[0]; + dest += dstride[0]; + n = 0; + while (count[n] == extent[n]) + { + /* When we get to the end of a dimension, reset it and increment + the next dimension. */ + count[n] = 0; + /* We could precalculate these products, but this is a less + frequently used path so proabably not worth it. */ + base -= sstride[n] * extent[n]; + dest -= dstride[n] * extent[n]; + n++; + if (n == rank) + { + /* Break out of the look. */ + base = NULL; + break; + } + else + { + count[n]++; + base += sstride[n]; + dest += dstride[n]; + } + } + } +} + +void +__msum_r4 (gfc_array_r4 * retarray, gfc_array_r4 * array, index_type *pdim, gfc_array_l4 * mask) +{ + index_type count[GFC_MAX_DIMENSIONS - 1]; + index_type extent[GFC_MAX_DIMENSIONS - 1]; + index_type sstride[GFC_MAX_DIMENSIONS - 1]; + index_type dstride[GFC_MAX_DIMENSIONS - 1]; + index_type mstride[GFC_MAX_DIMENSIONS - 1]; + GFC_REAL_4 *dest; + GFC_REAL_4 *base; + GFC_LOGICAL_4 *mbase; + int rank; + int dim; + index_type n; + index_type len; + index_type delta; + index_type mdelta; + + dim = (*pdim) - 1; + rank = GFC_DESCRIPTOR_RANK (array) - 1; + assert (rank == GFC_DESCRIPTOR_RANK (retarray)); + if (array->dim[0].stride == 0) + array->dim[0].stride = 1; + if (retarray->dim[0].stride == 0) + retarray->dim[0].stride = 1; + + len = array->dim[dim].ubound + 1 - array->dim[dim].lbound; + if (len <= 0) + return; + delta = array->dim[dim].stride; + mdelta = mask->dim[dim].stride; + + for (n = 0; n < dim; n++) + { + sstride[n] = array->dim[n].stride; + mstride[n] = mask->dim[n].stride; + extent[n] = array->dim[n].ubound + 1 - array->dim[n].lbound; + } + for (n = dim; n < rank; n++) + { + sstride[n] = array->dim[n + 1].stride; + mstride[n] = mask->dim[n + 1].stride; + extent[n] = + array->dim[n + 1].ubound + 1 - array->dim[n + 1].lbound; + } + + for (n = 0; n < rank; n++) + { + count[n] = 0; + dstride[n] = retarray->dim[n].stride; + if (extent[n] <= 0) + return; + } + + dest = retarray->data; + base = array->data; + mbase = mask->data; + + if (GFC_DESCRIPTOR_SIZE (mask) != 4) + { + /* This allows the same loop to be used for all logical types. */ + assert (GFC_DESCRIPTOR_SIZE (mask) == 8); + for (n = 0; n < rank; n++) + mstride[n] <<= 1; + mdelta <<= 1; + mbase = (GFOR_POINTER_L8_TO_L4 (mbase)); + } + + while (base) + { + GFC_REAL_4 *src; + GFC_LOGICAL_4 *msrc; + GFC_REAL_4 result; + src = base; + msrc = mbase; + { + + result = 0; + if (len <= 0) + *dest = 0; + else + { + for (n = 0; n < len; n++, src += delta, msrc += mdelta) + { + + if (*msrc) + result += *src; + } + *dest = result; + } + } + /* Advance to the next element. */ + count[0]++; + base += sstride[0]; + mbase += mstride[0]; + dest += dstride[0]; + n = 0; + while (count[n] == extent[n]) + { + /* When we get to the end of a dimension, reset it and increment + the next dimension. */ + count[n] = 0; + /* We could precalculate these products, but this is a less + frequently used path so proabably not worth it. */ + base -= sstride[n] * extent[n]; + mbase -= mstride[n] * extent[n]; + dest -= dstride[n] * extent[n]; + n++; + if (n == rank) + { + /* Break out of the look. */ + base = NULL; + break; + } + else + { + count[n]++; + base += sstride[n]; + mbase += mstride[n]; + dest += dstride[n]; + } + } + } +} |