summaryrefslogtreecommitdiffstats
path: root/gcc/asan.c
diff options
context:
space:
mode:
Diffstat (limited to 'gcc/asan.c')
-rw-r--r--gcc/asan.c306
1 files changed, 297 insertions, 9 deletions
diff --git a/gcc/asan.c b/gcc/asan.c
index 398b83775e6..b9f27443f52 100644
--- a/gcc/asan.c
+++ b/gcc/asan.c
@@ -29,6 +29,8 @@ along with GCC; see the file COPYING3. If not see
#include "asan.h"
#include "gimple-pretty-print.h"
#include "target.h"
+#include "expr.h"
+#include "optabs.h"
/*
AddressSanitizer finds out-of-bounds and use-after-free bugs
@@ -58,17 +60,303 @@ along with GCC; see the file COPYING3. If not see
Read more:
http://code.google.com/p/address-sanitizer/wiki/AddressSanitizerAlgorithm
- Future work:
- The current implementation supports only detection of out-of-bounds and
- use-after-free bugs in heap.
- In order to support out-of-bounds for stack and globals we will need
- to create redzones for stack and global object and poison them.
-*/
+ The current implementation supports detection of out-of-bounds and
+ use-after-free in the heap, on the stack and for global variables.
+
+ [Protection of stack variables]
+
+ To understand how detection of out-of-bounds and use-after-free works
+ for stack variables, lets look at this example on x86_64 where the
+ stack grows downward:
+
+ int
+ foo ()
+ {
+ char a[23] = {0};
+ int b[2] = {0};
+
+ a[5] = 1;
+ b[1] = 2;
+
+ return a[5] + b[1];
+ }
+
+ For this function, the stack protected by asan will be organized as
+ follows, from the top of the stack to the bottom:
+
+ Slot 1/ [red zone of 32 bytes called 'RIGHT RedZone']
+
+ Slot 2/ [8 bytes of red zone, that adds up to the space of 'a' to make
+ the next slot be 32 bytes aligned; this one is called Partial
+ Redzone; this 32 bytes alignment is an asan constraint]
+
+ Slot 3/ [24 bytes for variable 'a']
+
+ Slot 4/ [red zone of 32 bytes called 'Middle RedZone']
+
+ Slot 5/ [24 bytes of Partial Red Zone (similar to slot 2]
+
+ Slot 6/ [8 bytes for variable 'b']
+
+ Slot 7/ [32 bytes of Red Zone at the bottom of the stack, called 'LEFT
+ RedZone']
+
+ The 32 bytes of LEFT red zone at the bottom of the stack can be
+ decomposed as such:
+
+ 1/ The first 8 bytes contain a magical asan number that is always
+ 0x41B58AB3.
+
+ 2/ The following 8 bytes contains a pointer to a string (to be
+ parsed at runtime by the runtime asan library), which format is
+ the following:
+
+ "<function-name> <space> <num-of-variables-on-the-stack>
+ (<32-bytes-aligned-offset-in-bytes-of-variable> <space>
+ <length-of-var-in-bytes> ){n} "
+
+ where '(...){n}' means the content inside the parenthesis occurs 'n'
+ times, with 'n' being the number of variables on the stack.
+
+ 3/ The following 16 bytes of the red zone have no particular
+ format.
+
+ The shadow memory for that stack layout is going to look like this:
+
+ - content of shadow memory 8 bytes for slot 7: 0xF1F1F1F1.
+ The F1 byte pattern is a magic number called
+ ASAN_STACK_MAGIC_LEFT and is a way for the runtime to know that
+ the memory for that shadow byte is part of a the LEFT red zone
+ intended to seat at the bottom of the variables on the stack.
+
+ - content of shadow memory 8 bytes for slots 6 and 5:
+ 0xF4F4F400. The F4 byte pattern is a magic number
+ called ASAN_STACK_MAGIC_PARTIAL. It flags the fact that the
+ memory region for this shadow byte is a PARTIAL red zone
+ intended to pad a variable A, so that the slot following
+ {A,padding} is 32 bytes aligned.
+
+ Note that the fact that the least significant byte of this
+ shadow memory content is 00 means that 8 bytes of its
+ corresponding memory (which corresponds to the memory of
+ variable 'b') is addressable.
+
+ - content of shadow memory 8 bytes for slot 4: 0xF2F2F2F2.
+ The F2 byte pattern is a magic number called
+ ASAN_STACK_MAGIC_MIDDLE. It flags the fact that the memory
+ region for this shadow byte is a MIDDLE red zone intended to
+ seat between two 32 aligned slots of {variable,padding}.
+
+ - content of shadow memory 8 bytes for slot 3 and 2:
+ 0xFFFFFFFFF4000000. This represents is the concatenation of
+ variable 'a' and the partial red zone following it, like what we
+ had for variable 'b'. The least significant 3 bytes being 00
+ means that the 3 bytes of variable 'a' are addressable.
+
+ - content of shadow memory 8 bytes for slot 1: 0xFFFFFFFFF3F3F3F3.
+ The F3 byte pattern is a magic number called
+ ASAN_STACK_MAGIC_RIGHT. It flags the fact that the memory
+ region for this shadow byte is a RIGHT red zone intended to seat
+ at the top of the variables of the stack.
+
+ Note that the real variable layout is done in expand_used_vars in
+ cfgexpand.c. As far as Address Sanitizer is concerned, it lays out
+ stack variables as well as the different red zones, emits some
+ prologue code to populate the shadow memory as to poison (mark as
+ non-accessible) the regions of the red zones and mark the regions of
+ stack variables as accessible, and emit some epilogue code to
+ un-poison (mark as accessible) the regions of red zones right before
+ the function exits. */
+
+alias_set_type asan_shadow_set = -1;
/* Pointer types to 1 resp. 2 byte integers in shadow memory. A separate
alias set is used for all shadow memory accesses. */
static GTY(()) tree shadow_ptr_types[2];
+/* Return a CONST_INT representing 4 subsequent shadow memory bytes. */
+
+static rtx
+asan_shadow_cst (unsigned char shadow_bytes[4])
+{
+ int i;
+ unsigned HOST_WIDE_INT val = 0;
+ gcc_assert (WORDS_BIG_ENDIAN == BYTES_BIG_ENDIAN);
+ for (i = 0; i < 4; i++)
+ val |= (unsigned HOST_WIDE_INT) shadow_bytes[BYTES_BIG_ENDIAN ? 3 - i : i]
+ << (BITS_PER_UNIT * i);
+ return GEN_INT (trunc_int_for_mode (val, SImode));
+}
+
+/* Insert code to protect stack vars. The prologue sequence should be emitted
+ directly, epilogue sequence returned. BASE is the register holding the
+ stack base, against which OFFSETS array offsets are relative to, OFFSETS
+ array contains pairs of offsets in reverse order, always the end offset
+ of some gap that needs protection followed by starting offset,
+ and DECLS is an array of representative decls for each var partition.
+ LENGTH is the length of the OFFSETS array, DECLS array is LENGTH / 2 - 1
+ elements long (OFFSETS include gap before the first variable as well
+ as gaps after each stack variable). */
+
+rtx
+asan_emit_stack_protection (rtx base, HOST_WIDE_INT *offsets, tree *decls,
+ int length)
+{
+ rtx shadow_base, shadow_mem, ret, mem;
+ unsigned char shadow_bytes[4];
+ HOST_WIDE_INT base_offset = offsets[length - 1], offset, prev_offset;
+ HOST_WIDE_INT last_offset, last_size;
+ int l;
+ unsigned char cur_shadow_byte = ASAN_STACK_MAGIC_LEFT;
+ static pretty_printer pp;
+ static bool pp_initialized;
+ const char *buf;
+ size_t len;
+ tree str_cst;
+
+ /* First of all, prepare the description string. */
+ if (!pp_initialized)
+ {
+ pp_construct (&pp, /* prefix */NULL, /* line-width */0);
+ pp_initialized = true;
+ }
+ pp_clear_output_area (&pp);
+ if (DECL_NAME (current_function_decl))
+ pp_base_tree_identifier (&pp, DECL_NAME (current_function_decl));
+ else
+ pp_string (&pp, "<unknown>");
+ pp_space (&pp);
+ pp_decimal_int (&pp, length / 2 - 1);
+ pp_space (&pp);
+ for (l = length - 2; l; l -= 2)
+ {
+ tree decl = decls[l / 2 - 1];
+ pp_wide_integer (&pp, offsets[l] - base_offset);
+ pp_space (&pp);
+ pp_wide_integer (&pp, offsets[l - 1] - offsets[l]);
+ pp_space (&pp);
+ if (DECL_P (decl) && DECL_NAME (decl))
+ {
+ pp_decimal_int (&pp, IDENTIFIER_LENGTH (DECL_NAME (decl)));
+ pp_space (&pp);
+ pp_base_tree_identifier (&pp, DECL_NAME (decl));
+ }
+ else
+ pp_string (&pp, "9 <unknown>");
+ pp_space (&pp);
+ }
+ buf = pp_base_formatted_text (&pp);
+ len = strlen (buf);
+ str_cst = build_string (len + 1, buf);
+ TREE_TYPE (str_cst)
+ = build_array_type (char_type_node, build_index_type (size_int (len)));
+ TREE_READONLY (str_cst) = 1;
+ TREE_STATIC (str_cst) = 1;
+ str_cst = build1 (ADDR_EXPR, build_pointer_type (char_type_node), str_cst);
+
+ /* Emit the prologue sequence. */
+ base = expand_binop (Pmode, add_optab, base, GEN_INT (base_offset),
+ NULL_RTX, 1, OPTAB_DIRECT);
+ mem = gen_rtx_MEM (ptr_mode, base);
+ emit_move_insn (mem, GEN_INT (ASAN_STACK_FRAME_MAGIC));
+ mem = adjust_address (mem, VOIDmode, GET_MODE_SIZE (ptr_mode));
+ emit_move_insn (mem, expand_normal (str_cst));
+ shadow_base = expand_binop (Pmode, lshr_optab, base,
+ GEN_INT (ASAN_SHADOW_SHIFT),
+ NULL_RTX, 1, OPTAB_DIRECT);
+ shadow_base = expand_binop (Pmode, add_optab, shadow_base,
+ GEN_INT (targetm.asan_shadow_offset ()),
+ NULL_RTX, 1, OPTAB_DIRECT);
+ gcc_assert (asan_shadow_set != -1
+ && (ASAN_RED_ZONE_SIZE >> ASAN_SHADOW_SHIFT) == 4);
+ shadow_mem = gen_rtx_MEM (SImode, shadow_base);
+ set_mem_alias_set (shadow_mem, asan_shadow_set);
+ prev_offset = base_offset;
+ for (l = length; l; l -= 2)
+ {
+ if (l == 2)
+ cur_shadow_byte = ASAN_STACK_MAGIC_RIGHT;
+ offset = offsets[l - 1];
+ if ((offset - base_offset) & (ASAN_RED_ZONE_SIZE - 1))
+ {
+ int i;
+ HOST_WIDE_INT aoff
+ = base_offset + ((offset - base_offset)
+ & ~(ASAN_RED_ZONE_SIZE - HOST_WIDE_INT_1));
+ shadow_mem = adjust_address (shadow_mem, VOIDmode,
+ (aoff - prev_offset)
+ >> ASAN_SHADOW_SHIFT);
+ prev_offset = aoff;
+ for (i = 0; i < 4; i++, aoff += (1 << ASAN_SHADOW_SHIFT))
+ if (aoff < offset)
+ {
+ if (aoff < offset - (1 << ASAN_SHADOW_SHIFT) + 1)
+ shadow_bytes[i] = 0;
+ else
+ shadow_bytes[i] = offset - aoff;
+ }
+ else
+ shadow_bytes[i] = ASAN_STACK_MAGIC_PARTIAL;
+ emit_move_insn (shadow_mem, asan_shadow_cst (shadow_bytes));
+ offset = aoff;
+ }
+ while (offset <= offsets[l - 2] - ASAN_RED_ZONE_SIZE)
+ {
+ shadow_mem = adjust_address (shadow_mem, VOIDmode,
+ (offset - prev_offset)
+ >> ASAN_SHADOW_SHIFT);
+ prev_offset = offset;
+ memset (shadow_bytes, cur_shadow_byte, 4);
+ emit_move_insn (shadow_mem, asan_shadow_cst (shadow_bytes));
+ offset += ASAN_RED_ZONE_SIZE;
+ }
+ cur_shadow_byte = ASAN_STACK_MAGIC_MIDDLE;
+ }
+ do_pending_stack_adjust ();
+
+ /* Construct epilogue sequence. */
+ start_sequence ();
+
+ shadow_mem = gen_rtx_MEM (BLKmode, shadow_base);
+ set_mem_alias_set (shadow_mem, asan_shadow_set);
+ prev_offset = base_offset;
+ last_offset = base_offset;
+ last_size = 0;
+ for (l = length; l; l -= 2)
+ {
+ offset = base_offset + ((offsets[l - 1] - base_offset)
+ & ~(ASAN_RED_ZONE_SIZE - HOST_WIDE_INT_1));
+ if (last_offset + last_size != offset)
+ {
+ shadow_mem = adjust_address (shadow_mem, VOIDmode,
+ (last_offset - prev_offset)
+ >> ASAN_SHADOW_SHIFT);
+ prev_offset = last_offset;
+ clear_storage (shadow_mem, GEN_INT (last_size >> ASAN_SHADOW_SHIFT),
+ BLOCK_OP_NORMAL);
+ last_offset = offset;
+ last_size = 0;
+ }
+ last_size += base_offset + ((offsets[l - 2] - base_offset)
+ & ~(ASAN_RED_ZONE_SIZE - HOST_WIDE_INT_1))
+ - offset;
+ }
+ if (last_size)
+ {
+ shadow_mem = adjust_address (shadow_mem, VOIDmode,
+ (last_offset - prev_offset)
+ >> ASAN_SHADOW_SHIFT);
+ clear_storage (shadow_mem, GEN_INT (last_size >> ASAN_SHADOW_SHIFT),
+ BLOCK_OP_NORMAL);
+ }
+
+ do_pending_stack_adjust ();
+
+ ret = get_insns ();
+ end_sequence ();
+ return ret;
+}
+
/* Construct a function tree for __asan_report_{load,store}{1,2,4,8,16}.
IS_STORE is either 1 (for a store) or 0 (for a load).
SIZE_IN_BYTES is one of 1, 2, 4, 8, 16. */
@@ -389,12 +677,12 @@ asan_finish_file (void)
static void
asan_init_shadow_ptr_types (void)
{
- alias_set_type set = new_alias_set ();
+ asan_shadow_set = new_alias_set ();
shadow_ptr_types[0] = build_distinct_type_copy (signed_char_type_node);
- TYPE_ALIAS_SET (shadow_ptr_types[0]) = set;
+ TYPE_ALIAS_SET (shadow_ptr_types[0]) = asan_shadow_set;
shadow_ptr_types[0] = build_pointer_type (shadow_ptr_types[0]);
shadow_ptr_types[1] = build_distinct_type_copy (short_integer_type_node);
- TYPE_ALIAS_SET (shadow_ptr_types[1]) = set;
+ TYPE_ALIAS_SET (shadow_ptr_types[1]) = asan_shadow_set;
shadow_ptr_types[1] = build_pointer_type (shadow_ptr_types[1]);
}
OpenPOWER on IntegriCloud