summaryrefslogtreecommitdiffstats
path: root/gcc/ada/exp_ch4.adb
diff options
context:
space:
mode:
Diffstat (limited to 'gcc/ada/exp_ch4.adb')
-rw-r--r--gcc/ada/exp_ch4.adb2583
1 files changed, 1853 insertions, 730 deletions
diff --git a/gcc/ada/exp_ch4.adb b/gcc/ada/exp_ch4.adb
index ba8c00219b2..30be4d754f2 100644
--- a/gcc/ada/exp_ch4.adb
+++ b/gcc/ada/exp_ch4.adb
@@ -6,7 +6,7 @@
-- --
-- B o d y --
-- --
--- Copyright (C) 1992-2002, Free Software Foundation, Inc. --
+-- Copyright (C) 1992-2003, Free Software Foundation, Inc. --
-- --
-- GNAT is free software; you can redistribute it and/or modify it under --
-- terms of the GNU General Public License as published by the Free Soft- --
@@ -44,7 +44,6 @@ with Inline; use Inline;
with Nlists; use Nlists;
with Nmake; use Nmake;
with Opt; use Opt;
-with Restrict; use Restrict;
with Rtsfind; use Rtsfind;
with Sem; use Sem;
with Sem_Cat; use Sem_Cat;
@@ -75,11 +74,23 @@ package body Exp_Ch4 is
pragma Inline (Binary_Op_Validity_Checks);
-- Performs validity checks for a binary operator
+ procedure Build_Boolean_Array_Proc_Call
+ (N : Node_Id;
+ Op1 : Node_Id;
+ Op2 : Node_Id);
+ -- If an boolean array assignment can be done in place, build call to
+ -- corresponding library procedure.
+
+ procedure Expand_Allocator_Expression (N : Node_Id);
+ -- Subsidiary to Expand_N_Allocator, for the case when the expression
+ -- is a qualified expression or an aggregate.
+
procedure Expand_Array_Comparison (N : Node_Id);
-- This routine handles expansion of the comparison operators (N_Op_Lt,
-- N_Op_Le, N_Op_Gt, N_Op_Ge) when operating on an array type. The basic
-- code for these operators is similar, differing only in the details of
- -- the actual comparison call that is made.
+ -- the actual comparison call that is made. Special processing (call a
+ -- run-time routine)
function Expand_Array_Equality
(Nod : Node_Id;
@@ -95,7 +106,7 @@ package body Exp_Ch4 is
-- expressions to be compared. A_Typ is the type of the arguments,
-- which may be a private type, in which case Typ is its full view.
-- Bodies is a list on which to attach bodies of local functions that
- -- are created in the process. This is the responsability of the
+ -- are created in the process. This is the responsibility of the
-- caller to insert those bodies at the right place. Nod provides
-- the Sloc value for the generated code.
@@ -136,6 +147,15 @@ package body Exp_Ch4 is
-- purpose of this routine is to find the real type by looking up
-- the tree. We also determine if the operation must be rounded.
+ function Get_Allocator_Final_List
+ (N : Node_Id;
+ T : Entity_Id;
+ PtrT : Entity_Id)
+ return Entity_Id;
+ -- If the designated type is controlled, build final_list expression
+ -- for created object. If context is an access parameter, create a
+ -- local access type to have a usable finalization list.
+
procedure Insert_Dereference_Action (N : Node_Id);
-- N is an expression whose type is an access. When the type is derived
-- from Checked_Pool, expands a call to the primitive 'dereference'.
@@ -172,6 +192,15 @@ package body Exp_Ch4 is
-- Construct the expression corresponding to the tagged membership test.
-- Deals with a second operand being (or not) a class-wide type.
+ function Safe_In_Place_Array_Op
+ (Lhs : Node_Id;
+ Op1 : Node_Id;
+ Op2 : Node_Id)
+ return Boolean;
+ -- In the context of an assignment, where the right-hand side is a
+ -- boolean operation on arrays, check whether operation can be performed
+ -- in place.
+
procedure Unary_Op_Validity_Checks (N : Node_Id);
pragma Inline (Unary_Op_Validity_Checks);
-- Performs validity checks for a unary operator
@@ -188,12 +217,424 @@ package body Exp_Ch4 is
end if;
end Binary_Op_Validity_Checks;
+ ------------------------------------
+ -- Build_Boolean_Array_Proc_Call --
+ ------------------------------------
+
+ procedure Build_Boolean_Array_Proc_Call
+ (N : Node_Id;
+ Op1 : Node_Id;
+ Op2 : Node_Id)
+ is
+ Loc : constant Source_Ptr := Sloc (N);
+ Kind : constant Node_Kind := Nkind (Expression (N));
+ Target : constant Node_Id :=
+ Make_Attribute_Reference (Loc,
+ Prefix => Name (N),
+ Attribute_Name => Name_Address);
+
+ Arg1 : constant Node_Id := Op1;
+ Arg2 : Node_Id := Op2;
+ Call_Node : Node_Id;
+ Proc_Name : Entity_Id;
+
+ begin
+ if Kind = N_Op_Not then
+ if Nkind (Op1) in N_Binary_Op then
+
+ -- Use negated version of the binary operators.
+
+ if Nkind (Op1) = N_Op_And then
+ Proc_Name := RTE (RE_Vector_Nand);
+
+ elsif Nkind (Op1) = N_Op_Or then
+ Proc_Name := RTE (RE_Vector_Nor);
+
+ else pragma Assert (Nkind (Op1) = N_Op_Xor);
+ Proc_Name := RTE (RE_Vector_Xor);
+ end if;
+
+ Call_Node :=
+ Make_Procedure_Call_Statement (Loc,
+ Name => New_Occurrence_Of (Proc_Name, Loc),
+
+ Parameter_Associations => New_List (
+ Target,
+ Make_Attribute_Reference (Loc,
+ Prefix => Left_Opnd (Op1),
+ Attribute_Name => Name_Address),
+
+ Make_Attribute_Reference (Loc,
+ Prefix => Right_Opnd (Op1),
+ Attribute_Name => Name_Address),
+
+ Make_Attribute_Reference (Loc,
+ Prefix => Left_Opnd (Op1),
+ Attribute_Name => Name_Length)));
+
+ else
+ Proc_Name := RTE (RE_Vector_Not);
+
+ Call_Node :=
+ Make_Procedure_Call_Statement (Loc,
+ Name => New_Occurrence_Of (Proc_Name, Loc),
+ Parameter_Associations => New_List (
+ Target,
+
+ Make_Attribute_Reference (Loc,
+ Prefix => Op1,
+ Attribute_Name => Name_Address),
+
+ Make_Attribute_Reference (Loc,
+ Prefix => Op1,
+ Attribute_Name => Name_Length)));
+ end if;
+
+ else
+ -- We use the following equivalences:
+
+ -- (not X) or (not Y) = not (X and Y) = Nand (X, Y)
+ -- (not X) and (not Y) = not (X or Y) = Nor (X, Y)
+ -- (not X) xor (not Y) = X xor Y
+ -- X xor (not Y) = not (X xor Y) = Nxor (X, Y)
+
+ if Nkind (Op1) = N_Op_Not then
+ if Kind = N_Op_And then
+ Proc_Name := RTE (RE_Vector_Nor);
+
+ elsif Kind = N_Op_Or then
+ Proc_Name := RTE (RE_Vector_Nand);
+
+ else
+ Proc_Name := RTE (RE_Vector_Xor);
+ end if;
+
+ else
+ if Kind = N_Op_And then
+ Proc_Name := RTE (RE_Vector_And);
+
+ elsif Kind = N_Op_Or then
+ Proc_Name := RTE (RE_Vector_Or);
+
+ elsif Nkind (Op2) = N_Op_Not then
+ Proc_Name := RTE (RE_Vector_Nxor);
+ Arg2 := Right_Opnd (Op2);
+
+ else
+ Proc_Name := RTE (RE_Vector_Xor);
+ end if;
+ end if;
+
+ Call_Node :=
+ Make_Procedure_Call_Statement (Loc,
+ Name => New_Occurrence_Of (Proc_Name, Loc),
+ Parameter_Associations => New_List (
+ Target,
+ Make_Attribute_Reference (Loc,
+ Prefix => Arg1,
+ Attribute_Name => Name_Address),
+ Make_Attribute_Reference (Loc,
+ Prefix => Arg2,
+ Attribute_Name => Name_Address),
+ Make_Attribute_Reference (Loc,
+ Prefix => Op1,
+ Attribute_Name => Name_Length)));
+ end if;
+
+ Rewrite (N, Call_Node);
+ Analyze (N);
+
+ exception
+ when RE_Not_Available =>
+ return;
+ end Build_Boolean_Array_Proc_Call;
+
+ ---------------------------------
+ -- Expand_Allocator_Expression --
+ ---------------------------------
+
+ procedure Expand_Allocator_Expression (N : Node_Id) is
+ Loc : constant Source_Ptr := Sloc (N);
+ Exp : constant Node_Id := Expression (Expression (N));
+ Indic : constant Node_Id := Subtype_Mark (Expression (N));
+ PtrT : constant Entity_Id := Etype (N);
+ T : constant Entity_Id := Entity (Indic);
+ Flist : Node_Id;
+ Node : Node_Id;
+ Temp : Entity_Id;
+
+ Aggr_In_Place : constant Boolean := Is_Delayed_Aggregate (Exp);
+
+ Tag_Assign : Node_Id;
+ Tmp_Node : Node_Id;
+
+ begin
+ if Is_Tagged_Type (T) or else Controlled_Type (T) then
+
+ -- Actions inserted before:
+ -- Temp : constant ptr_T := new T'(Expression);
+ -- <no CW> Temp._tag := T'tag;
+ -- <CTRL> Adjust (Finalizable (Temp.all));
+ -- <CTRL> Attach_To_Final_List (Finalizable (Temp.all));
+
+ -- We analyze by hand the new internal allocator to avoid
+ -- any recursion and inappropriate call to Initialize
+ if not Aggr_In_Place then
+ Remove_Side_Effects (Exp);
+ end if;
+
+ Temp :=
+ Make_Defining_Identifier (Loc, New_Internal_Name ('P'));
+
+ -- For a class wide allocation generate the following code:
+
+ -- type Equiv_Record is record ... end record;
+ -- implicit subtype CW is <Class_Wide_Subytpe>;
+ -- temp : PtrT := new CW'(CW!(expr));
+
+ if Is_Class_Wide_Type (T) then
+ Expand_Subtype_From_Expr (Empty, T, Indic, Exp);
+
+ Set_Expression (Expression (N),
+ Unchecked_Convert_To (Entity (Indic), Exp));
+
+ Analyze_And_Resolve (Expression (N), Entity (Indic));
+ end if;
+
+ if Aggr_In_Place then
+ Tmp_Node :=
+ Make_Object_Declaration (Loc,
+ Defining_Identifier => Temp,
+ Object_Definition => New_Reference_To (PtrT, Loc),
+ Expression =>
+ Make_Allocator (Loc,
+ New_Reference_To (Etype (Exp), Loc)));
+
+ Set_Comes_From_Source
+ (Expression (Tmp_Node), Comes_From_Source (N));
+
+ Set_No_Initialization (Expression (Tmp_Node));
+ Insert_Action (N, Tmp_Node);
+
+ if Controlled_Type (T)
+ and then Ekind (PtrT) = E_Anonymous_Access_Type
+ then
+ -- Create local finalization list for access parameter.
+
+ Flist := Get_Allocator_Final_List (N, Base_Type (T), PtrT);
+ end if;
+
+ Convert_Aggr_In_Allocator (Tmp_Node, Exp);
+ else
+ Node := Relocate_Node (N);
+ Set_Analyzed (Node);
+ Insert_Action (N,
+ Make_Object_Declaration (Loc,
+ Defining_Identifier => Temp,
+ Constant_Present => True,
+ Object_Definition => New_Reference_To (PtrT, Loc),
+ Expression => Node));
+ end if;
+
+ -- Suppress the tag assignment when Java_VM because JVM tags
+ -- are represented implicitly in objects.
+
+ if Is_Tagged_Type (T)
+ and then not Is_Class_Wide_Type (T)
+ and then not Java_VM
+ then
+ Tag_Assign :=
+ Make_Assignment_Statement (Loc,
+ Name =>
+ Make_Selected_Component (Loc,
+ Prefix => New_Reference_To (Temp, Loc),
+ Selector_Name =>
+ New_Reference_To (Tag_Component (T), Loc)),
+
+ Expression =>
+ Unchecked_Convert_To (RTE (RE_Tag),
+ New_Reference_To (Access_Disp_Table (T), Loc)));
+
+ -- The previous assignment has to be done in any case
+
+ Set_Assignment_OK (Name (Tag_Assign));
+ Insert_Action (N, Tag_Assign);
+
+ elsif Is_Private_Type (T)
+ and then Is_Tagged_Type (Underlying_Type (T))
+ and then not Java_VM
+ then
+ declare
+ Utyp : constant Entity_Id := Underlying_Type (T);
+ Ref : constant Node_Id :=
+ Unchecked_Convert_To (Utyp,
+ Make_Explicit_Dereference (Loc,
+ New_Reference_To (Temp, Loc)));
+
+ begin
+ Tag_Assign :=
+ Make_Assignment_Statement (Loc,
+ Name =>
+ Make_Selected_Component (Loc,
+ Prefix => Ref,
+ Selector_Name =>
+ New_Reference_To (Tag_Component (Utyp), Loc)),
+
+ Expression =>
+ Unchecked_Convert_To (RTE (RE_Tag),
+ New_Reference_To (
+ Access_Disp_Table (Utyp), Loc)));
+
+ Set_Assignment_OK (Name (Tag_Assign));
+ Insert_Action (N, Tag_Assign);
+ end;
+ end if;
+
+ if Controlled_Type (Designated_Type (PtrT))
+ and then Controlled_Type (T)
+ then
+ declare
+ Attach : Node_Id;
+ Apool : constant Entity_Id :=
+ Associated_Storage_Pool (PtrT);
+
+ begin
+ -- If it is an allocation on the secondary stack
+ -- (i.e. a value returned from a function), the object
+ -- is attached on the caller side as soon as the call
+ -- is completed (see Expand_Ctrl_Function_Call)
+
+ if Is_RTE (Apool, RE_SS_Pool) then
+ declare
+ F : constant Entity_Id :=
+ Make_Defining_Identifier (Loc,
+ New_Internal_Name ('F'));
+ begin
+ Insert_Action (N,
+ Make_Object_Declaration (Loc,
+ Defining_Identifier => F,
+ Object_Definition => New_Reference_To (RTE
+ (RE_Finalizable_Ptr), Loc)));
+
+ Flist := New_Reference_To (F, Loc);
+ Attach := Make_Integer_Literal (Loc, 1);
+ end;
+
+ -- Normal case, not a secondary stack allocation
+
+ else
+ Flist := Find_Final_List (PtrT);
+ Attach := Make_Integer_Literal (Loc, 2);
+ end if;
+
+ if not Aggr_In_Place then
+ Insert_Actions (N,
+ Make_Adjust_Call (
+ Ref =>
+
+ -- An unchecked conversion is needed in the
+ -- classwide case because the designated type
+ -- can be an ancestor of the subtype mark of
+ -- the allocator.
+
+ Unchecked_Convert_To (T,
+ Make_Explicit_Dereference (Loc,
+ New_Reference_To (Temp, Loc))),
+
+ Typ => T,
+ Flist_Ref => Flist,
+ With_Attach => Attach));
+ end if;
+ end;
+ end if;
+
+ Rewrite (N, New_Reference_To (Temp, Loc));
+ Analyze_And_Resolve (N, PtrT);
+
+ elsif Aggr_In_Place then
+ Temp :=
+ Make_Defining_Identifier (Loc, New_Internal_Name ('P'));
+ Tmp_Node :=
+ Make_Object_Declaration (Loc,
+ Defining_Identifier => Temp,
+ Object_Definition => New_Reference_To (PtrT, Loc),
+ Expression => Make_Allocator (Loc,
+ New_Reference_To (Etype (Exp), Loc)));
+
+ Set_Comes_From_Source
+ (Expression (Tmp_Node), Comes_From_Source (N));
+
+ Set_No_Initialization (Expression (Tmp_Node));
+ Insert_Action (N, Tmp_Node);
+ Convert_Aggr_In_Allocator (Tmp_Node, Exp);
+ Rewrite (N, New_Reference_To (Temp, Loc));
+ Analyze_And_Resolve (N, PtrT);
+
+ elsif Is_Access_Type (Designated_Type (PtrT))
+ and then Nkind (Exp) = N_Allocator
+ and then Nkind (Expression (Exp)) /= N_Qualified_Expression
+ then
+ -- Apply constraint to designated subtype indication.
+
+ Apply_Constraint_Check (Expression (Exp),
+ Designated_Type (Designated_Type (PtrT)),
+ No_Sliding => True);
+
+ if Nkind (Expression (Exp)) = N_Raise_Constraint_Error then
+
+ -- Propagate constraint_error to enclosing allocator
+
+ Rewrite (Exp, New_Copy (Expression (Exp)));
+ end if;
+ else
+ -- First check against the type of the qualified expression
+ --
+ -- NOTE: The commented call should be correct, but for
+ -- some reason causes the compiler to bomb (sigsegv) on
+ -- ACVC test c34007g, so for now we just perform the old
+ -- (incorrect) test against the designated subtype with
+ -- no sliding in the else part of the if statement below.
+ -- ???
+ --
+ -- Apply_Constraint_Check (Exp, T, No_Sliding => True);
+
+ -- A check is also needed in cases where the designated
+ -- subtype is constrained and differs from the subtype
+ -- given in the qualified expression. Note that the check
+ -- on the qualified expression does not allow sliding,
+ -- but this check does (a relaxation from Ada 83).
+
+ if Is_Constrained (Designated_Type (PtrT))
+ and then not Subtypes_Statically_Match
+ (T, Designated_Type (PtrT))
+ then
+ Apply_Constraint_Check
+ (Exp, Designated_Type (PtrT), No_Sliding => False);
+
+ -- The nonsliding check should really be performed
+ -- (unconditionally) against the subtype of the
+ -- qualified expression, but that causes a problem
+ -- with c34007g (see above), so for now we retain this.
+
+ else
+ Apply_Constraint_Check
+ (Exp, Designated_Type (PtrT), No_Sliding => True);
+ end if;
+ end if;
+
+ exception
+ when RE_Not_Available =>
+ return;
+ end Expand_Allocator_Expression;
+
-----------------------------
-- Expand_Array_Comparison --
-----------------------------
- -- Expansion is only required in the case of array types. The form of
- -- the expansion is:
+ -- Expansion is only required in the case of array types. For the
+ -- unpacked case, an appropriate runtime routine is called. For
+ -- packed cases, and also in some other cases where a runtime
+ -- routine cannot be called, the form of the expansion is:
-- [body for greater_nn; boolean_expression]
@@ -205,12 +646,154 @@ package body Exp_Ch4 is
Op1 : Node_Id := Left_Opnd (N);
Op2 : Node_Id := Right_Opnd (N);
Typ1 : constant Entity_Id := Base_Type (Etype (Op1));
+ Ctyp : constant Entity_Id := Component_Type (Typ1);
Expr : Node_Id;
Func_Body : Node_Id;
Func_Name : Entity_Id;
+ Comp : RE_Id;
+
+ function Length_Less_Than_4 (Opnd : Node_Id) return Boolean;
+ -- Returns True if the length of the given operand is known to be
+ -- less than 4. Returns False if this length is known to be four
+ -- or greater or is not known at compile time.
+
+ ------------------------
+ -- Length_Less_Than_4 --
+ ------------------------
+
+ function Length_Less_Than_4 (Opnd : Node_Id) return Boolean is
+ Otyp : constant Entity_Id := Etype (Opnd);
+
+ begin
+ if Ekind (Otyp) = E_String_Literal_Subtype then
+ return String_Literal_Length (Otyp) < 4;
+
+ else
+ declare
+ Ityp : constant Entity_Id := Etype (First_Index (Otyp));
+ Lo : constant Node_Id := Type_Low_Bound (Ityp);
+ Hi : constant Node_Id := Type_High_Bound (Ityp);
+ Lov : Uint;
+ Hiv : Uint;
+
+ begin
+ if Compile_Time_Known_Value (Lo) then
+ Lov := Expr_Value (Lo);
+ else
+ return False;
+ end if;
+
+ if Compile_Time_Known_Value (Hi) then
+ Hiv := Expr_Value (Hi);
+ else
+ return False;
+ end if;
+
+ return Hiv < Lov + 3;
+ end;
+ end if;
+ end Length_Less_Than_4;
+
+ -- Start of processing for Expand_Array_Comparison
+
begin
+ -- Deal first with unpacked case, where we can call a runtime routine
+ -- except that we avoid this for targets for which are not addressable
+ -- by bytes, and for the JVM, since the JVM does not support direct
+ -- addressing of array components.
+
+ if not Is_Bit_Packed_Array (Typ1)
+ and then System_Storage_Unit = Byte'Size
+ and then not Java_VM
+ then
+ -- The call we generate is:
+
+ -- Compare_Array_xn[_Unaligned]
+ -- (left'address, right'address, left'length, right'length) <op> 0
+
+ -- x = U for unsigned, S for signed
+ -- n = 8,16,32,64 for component size
+ -- Add _Unaligned if length < 4 and component size is 8.
+ -- <op> is the standard comparison operator
+
+ if Component_Size (Typ1) = 8 then
+ if Length_Less_Than_4 (Op1)
+ or else
+ Length_Less_Than_4 (Op2)
+ then
+ if Is_Unsigned_Type (Ctyp) then
+ Comp := RE_Compare_Array_U8_Unaligned;
+ else
+ Comp := RE_Compare_Array_S8_Unaligned;
+ end if;
+
+ else
+ if Is_Unsigned_Type (Ctyp) then
+ Comp := RE_Compare_Array_U8;
+ else
+ Comp := RE_Compare_Array_S8;
+ end if;
+ end if;
+
+ elsif Component_Size (Typ1) = 16 then
+ if Is_Unsigned_Type (Ctyp) then
+ Comp := RE_Compare_Array_U16;
+ else
+ Comp := RE_Compare_Array_S16;
+ end if;
+
+ elsif Component_Size (Typ1) = 32 then
+ if Is_Unsigned_Type (Ctyp) then
+ Comp := RE_Compare_Array_U32;
+ else
+ Comp := RE_Compare_Array_S32;
+ end if;
+
+ else pragma Assert (Component_Size (Typ1) = 64);
+ if Is_Unsigned_Type (Ctyp) then
+ Comp := RE_Compare_Array_U64;
+ else
+ Comp := RE_Compare_Array_S64;
+ end if;
+ end if;
+
+ Remove_Side_Effects (Op1, Name_Req => True);
+ Remove_Side_Effects (Op2, Name_Req => True);
+
+ Rewrite (Op1,
+ Make_Function_Call (Sloc (Op1),
+ Name => New_Occurrence_Of (RTE (Comp), Loc),
+
+ Parameter_Associations => New_List (
+ Make_Attribute_Reference (Loc,
+ Prefix => Relocate_Node (Op1),
+ Attribute_Name => Name_Address),
+
+ Make_Attribute_Reference (Loc,
+ Prefix => Relocate_Node (Op2),
+ Attribute_Name => Name_Address),
+
+ Make_Attribute_Reference (Loc,
+ Prefix => Relocate_Node (Op1),
+ Attribute_Name => Name_Length),
+
+ Make_Attribute_Reference (Loc,
+ Prefix => Relocate_Node (Op2),
+ Attribute_Name => Name_Length))));
+
+ Rewrite (Op2,
+ Make_Integer_Literal (Sloc (Op2),
+ Intval => Uint_0));
+
+ Analyze_And_Resolve (Op1, Standard_Integer);
+ Analyze_And_Resolve (Op2, Standard_Integer);
+ return;
+ end if;
+
+ -- Cases where we cannot make runtime call
+
-- For (a <= b) we convert to not (a > b)
if Chars (N) = Name_Op_Le then
@@ -264,6 +847,9 @@ package body Exp_Ch4 is
Rewrite (N, Expr);
Analyze_And_Resolve (N, Standard_Boolean);
+ exception
+ when RE_Not_Available =>
+ return;
end Expand_Array_Comparison;
---------------------------
@@ -274,29 +860,47 @@ package body Exp_Ch4 is
-- an example of such a function for Nb_Dimension = 2
-- function Enn (A : arr; B : arr) return boolean is
- -- J1 : integer;
- -- J2 : integer;
- --
-- begin
- -- if A'length (1) /= B'length (1) then
- -- return false;
- -- else
- -- J1 := B'first (1);
- -- for I1 in A'first (1) .. A'last (1) loop
- -- if A'length (2) /= B'length (2) then
- -- return false;
- -- else
- -- J2 := B'first (2);
- -- for I2 in A'first (2) .. A'last (2) loop
- -- if A (I1, I2) /= B (J1, J2) then
- -- return false;
+ -- if (A'length (1) = 0 or else A'length (2) = 0)
+ -- and then
+ -- (B'length (1) = 0 or else B'length (2) = 0)
+ -- then
+ -- return True; -- RM 4.5.2(22)
+ -- end if;
+ --
+ -- if A'length (1) /= B'length (1)
+ -- or else
+ -- A'length (2) /= B'length (2)
+ -- then
+ -- return False; -- RM 4.5.2(23)
+ -- end if;
+ --
+ -- declare
+ -- A1 : Index_type_1 := A'first (1)
+ -- B1 : Index_Type_1 := B'first (1)
+ -- begin
+ -- loop
+ -- declare
+ -- A2 : Index_type_2 := A'first (2);
+ -- B2 : Index_type_2 := B'first (2)
+ -- begin
+ -- loop
+ -- if A (A1, A2) /= B (B1, B2) then
+ -- return False;
-- end if;
- -- J2 := Integer'succ (J2);
+ --
+ -- exit when A2 = A'last (2);
+ -- A2 := Index_type2'succ (A2);
+ -- B2 := Index_type2'succ (B2);
-- end loop;
- -- end if;
- -- J1 := Integer'succ (J1);
+ -- end;
+ --
+ -- exit when A1 = A'last (1);
+ -- A1 := Index_type1'succ (A1);
+ -- B1 := Index_type1'succ (B1);
-- end loop;
- -- end if;
+ -- end;
+ --
-- return true;
-- end Enn;
@@ -310,29 +914,89 @@ package body Exp_Ch4 is
return Node_Id
is
Loc : constant Source_Ptr := Sloc (Nod);
- Actuals : List_Id;
- Decls : List_Id := New_List;
- Index_List1 : List_Id := New_List;
- Index_List2 : List_Id := New_List;
- Formals : List_Id;
- Stats : Node_Id;
- Func_Name : Entity_Id;
- Func_Body : Node_Id;
+ Decls : constant List_Id := New_List;
+ Index_List1 : constant List_Id := New_List;
+ Index_List2 : constant List_Id := New_List;
+
+ Actuals : List_Id;
+ Formals : List_Id;
+ Func_Name : Entity_Id;
+ Func_Body : Node_Id;
A : constant Entity_Id := Make_Defining_Identifier (Loc, Name_uA);
B : constant Entity_Id := Make_Defining_Identifier (Loc, Name_uB);
+ function Arr_Attr
+ (Arr : Entity_Id;
+ Nam : Name_Id;
+ Num : Int)
+ return Node_Id;
+ -- This builds the attribute reference Arr'Nam (Expr).
+
function Component_Equality (Typ : Entity_Id) return Node_Id;
- -- Create one statement to compare corresponding components, designated
- -- by a full set of indices.
+ -- Create one statement to compare corresponding components,
+ -- designated by a full set of indices.
- function Loop_One_Dimension
+ function Handle_One_Dimension
(N : Int;
Index : Node_Id)
- return Node_Id;
- -- Loop over the n'th dimension of the arrays. The single statement
- -- in the body of the loop is a loop over the next dimension, or
- -- the comparison of corresponding components.
+ return Node_Id;
+ -- This procedure returns a declare block:
+ --
+ -- declare
+ -- An : Index_Type_n := A'First (n);
+ -- Bn : Index_Type_n := B'First (n);
+ -- begin
+ -- loop
+ -- xxx
+ -- exit when An = A'Last (n);
+ -- An := Index_Type_n'Succ (An)
+ -- Bn := Index_Type_n'Succ (Bn)
+ -- end loop;
+ -- end;
+ --
+ -- where N is the value of "n" in the above code. Index is the
+ -- N'th index node, whose Etype is Index_Type_n in the above code.
+ -- The xxx statement is either the declare block for the next
+ -- dimension or if this is the last dimension the comparison
+ -- of corresponding components of the arrays.
+ --
+ -- The actual way the code works is to return the comparison
+ -- of corresponding components for the N+1 call. That's neater!
+
+ function Test_Empty_Arrays return Node_Id;
+ -- This function constructs the test for both arrays being empty
+ -- (A'length (1) = 0 or else A'length (2) = 0 or else ...)
+ -- and then
+ -- (B'length (1) = 0 or else B'length (2) = 0 or else ...)
+
+ function Test_Lengths_Correspond return Node_Id;
+ -- This function constructs the test for arrays having different
+ -- lengths in at least one index position, in which case resull
+
+ -- A'length (1) /= B'length (1)
+ -- or else
+ -- A'length (2) /= B'length (2)
+ -- or else
+ -- ...
+
+ --------------
+ -- Arr_Attr --
+ --------------
+
+ function Arr_Attr
+ (Arr : Entity_Id;
+ Nam : Name_Id;
+ Num : Int)
+ return Node_Id
+ is
+ begin
+ return
+ Make_Attribute_Reference (Loc,
+ Attribute_Name => Nam,
+ Prefix => New_Reference_To (Arr, Loc),
+ Expressions => New_List (Make_Integer_Literal (Loc, Num)));
+ end Arr_Attr;
------------------------
-- Component_Equality --
@@ -364,119 +1028,159 @@ package body Exp_Ch4 is
Then_Statements => New_List (
Make_Return_Statement (Loc,
Expression => New_Occurrence_Of (Standard_False, Loc))));
-
end Component_Equality;
- ------------------------
- -- Loop_One_Dimension --
- ------------------------
+ --------------------------
+ -- Handle_One_Dimension --
+ ---------------------------
- function Loop_One_Dimension
+ function Handle_One_Dimension
(N : Int;
Index : Node_Id)
- return Node_Id
+ return Node_Id
is
- I : constant Entity_Id := Make_Defining_Identifier (Loc,
- New_Internal_Name ('I'));
- J : constant Entity_Id := Make_Defining_Identifier (Loc,
- New_Internal_Name ('J'));
- Index_Type : Entity_Id;
- Stats : Node_Id;
+ An : constant Entity_Id := Make_Defining_Identifier (Loc,
+ Chars => New_Internal_Name ('A'));
+ Bn : constant Entity_Id := Make_Defining_Identifier (Loc,
+ Chars => New_Internal_Name ('B'));
+ Index_Type_n : Entity_Id;
begin
if N > Number_Dimensions (Typ) then
return Component_Equality (Typ);
+ end if;
- else
- -- Generate the following:
+ -- Case where we generate a declare block
- -- j: index_type;
- -- ...
+ Index_Type_n := Base_Type (Etype (Index));
+ Append (New_Reference_To (An, Loc), Index_List1);
+ Append (New_Reference_To (Bn, Loc), Index_List2);
- -- if a'length (n) /= b'length (n) then
- -- return false;
- -- else
- -- j := b'first (n);
- -- for i in a'range (n) loop
- -- -- loop over remaining dimensions.
- -- j := index_type'succ (j);
- -- end loop;
- -- end if;
+ return
+ Make_Block_Statement (Loc,
+ Declarations => New_List (
+ Make_Object_Declaration (Loc,
+ Defining_Identifier => An,
+ Object_Definition =>
+ New_Reference_To (Index_Type_n, Loc),
+ Expression => Arr_Attr (A, Name_First, N)),
- -- retrieve index type for current dimension.
+ Make_Object_Declaration (Loc,
+ Defining_Identifier => Bn,
+ Object_Definition =>
+ New_Reference_To (Index_Type_n, Loc),
+ Expression => Arr_Attr (B, Name_First, N))),
+
+ Handled_Statement_Sequence =>
+ Make_Handled_Sequence_Of_Statements (Loc,
+ Statements => New_List (
+ Make_Implicit_Loop_Statement (Nod,
+ Statements => New_List (
+ Handle_One_Dimension (N + 1, Next_Index (Index)),
+
+ Make_Exit_Statement (Loc,
+ Condition =>
+ Make_Op_Eq (Loc,
+ Left_Opnd => New_Reference_To (An, Loc),
+ Right_Opnd => Arr_Attr (A, Name_Last, N))),
+
+ Make_Assignment_Statement (Loc,
+ Name => New_Reference_To (An, Loc),
+ Expression =>
+ Make_Attribute_Reference (Loc,
+ Prefix =>
+ New_Reference_To (Index_Type_n, Loc),
+ Attribute_Name => Name_Succ,
+ Expressions => New_List (
+ New_Reference_To (An, Loc)))),
- Index_Type := Base_Type (Etype (Index));
- Append (New_Reference_To (I, Loc), Index_List1);
- Append (New_Reference_To (J, Loc), Index_List2);
+ Make_Assignment_Statement (Loc,
+ Name => New_Reference_To (Bn, Loc),
+ Expression =>
+ Make_Attribute_Reference (Loc,
+ Prefix =>
+ New_Reference_To (Index_Type_n, Loc),
+ Attribute_Name => Name_Succ,
+ Expressions => New_List (
+ New_Reference_To (Bn, Loc)))))))));
+ end Handle_One_Dimension;
+
+ -----------------------
+ -- Test_Empty_Arrays --
+ -----------------------
+
+ function Test_Empty_Arrays return Node_Id is
+ Alist : Node_Id;
+ Blist : Node_Id;
+
+ Atest : Node_Id;
+ Btest : Node_Id;
- -- Declare index for j as a local variable to the function.
- -- Index i is a loop variable.
+ begin
+ Alist := Empty;
+ Blist := Empty;
+ for J in 1 .. Number_Dimensions (Typ) loop
+ Atest :=
+ Make_Op_Eq (Loc,
+ Left_Opnd => Arr_Attr (A, Name_Length, J),
+ Right_Opnd => Make_Integer_Literal (Loc, 0));
+
+ Btest :=
+ Make_Op_Eq (Loc,
+ Left_Opnd => Arr_Attr (B, Name_Length, J),
+ Right_Opnd => Make_Integer_Literal (Loc, 0));
+
+ if No (Alist) then
+ Alist := Atest;
+ Blist := Btest;
- Append_To (Decls,
- Make_Object_Declaration (Loc,
- Defining_Identifier => J,
- Object_Definition => New_Reference_To (Index_Type, Loc)));
-
- Stats :=
- Make_Implicit_If_Statement (Nod,
- Condition =>
- Make_Op_Ne (Loc,
- Left_Opnd =>
- Make_Attribute_Reference (Loc,
- Prefix => New_Reference_To (A, Loc),
- Attribute_Name => Name_Length,
- Expressions => New_List (
- Make_Integer_Literal (Loc, N))),
- Right_Opnd =>
- Make_Attribute_Reference (Loc,
- Prefix => New_Reference_To (B, Loc),
- Attribute_Name => Name_Length,
- Expressions => New_List (
- Make_Integer_Literal (Loc, N)))),
+ else
+ Alist :=
+ Make_Or_Else (Loc,
+ Left_Opnd => Relocate_Node (Alist),
+ Right_Opnd => Atest);
+
+ Blist :=
+ Make_Or_Else (Loc,
+ Left_Opnd => Relocate_Node (Blist),
+ Right_Opnd => Btest);
+ end if;
+ end loop;
- Then_Statements => New_List (
- Make_Return_Statement (Loc,
- Expression => New_Occurrence_Of (Standard_False, Loc))),
+ return
+ Make_And_Then (Loc,
+ Left_Opnd => Alist,
+ Right_Opnd => Blist);
+ end Test_Empty_Arrays;
- Else_Statements => New_List (
+ -----------------------------
+ -- Test_Lengths_Correspond --
+ -----------------------------
- Make_Assignment_Statement (Loc,
- Name => New_Reference_To (J, Loc),
- Expression =>
- Make_Attribute_Reference (Loc,
- Prefix => New_Reference_To (B, Loc),
- Attribute_Name => Name_First,
- Expressions => New_List (
- Make_Integer_Literal (Loc, N)))),
-
- Make_Implicit_Loop_Statement (Nod,
- Identifier => Empty,
- Iteration_Scheme =>
- Make_Iteration_Scheme (Loc,
- Loop_Parameter_Specification =>
- Make_Loop_Parameter_Specification (Loc,
- Defining_Identifier => I,
- Discrete_Subtype_Definition =>
- Make_Attribute_Reference (Loc,
- Prefix => New_Reference_To (A, Loc),
- Attribute_Name => Name_Range,
- Expressions => New_List (
- Make_Integer_Literal (Loc, N))))),
-
- Statements => New_List (
- Loop_One_Dimension (N + 1, Next_Index (Index)),
- Make_Assignment_Statement (Loc,
- Name => New_Reference_To (J, Loc),
- Expression =>
- Make_Attribute_Reference (Loc,
- Prefix => New_Reference_To (Index_Type, Loc),
- Attribute_Name => Name_Succ,
- Expressions => New_List (
- New_Reference_To (J, Loc))))))));
-
- return Stats;
- end if;
- end Loop_One_Dimension;
+ function Test_Lengths_Correspond return Node_Id is
+ Result : Node_Id;
+ Rtest : Node_Id;
+
+ begin
+ Result := Empty;
+ for J in 1 .. Number_Dimensions (Typ) loop
+ Rtest :=
+ Make_Op_Ne (Loc,
+ Left_Opnd => Arr_Attr (A, Name_Length, J),
+ Right_Opnd => Arr_Attr (B, Name_Length, J));
+
+ if No (Result) then
+ Result := Rtest;
+ else
+ Result :=
+ Make_Or_Else (Loc,
+ Left_Opnd => Relocate_Node (Result),
+ Right_Opnd => Rtest);
+ end if;
+ end loop;
+
+ return Result;
+ end Test_Lengths_Correspond;
-- Start of processing for Expand_Array_Equality
@@ -492,7 +1196,7 @@ package body Exp_Ch4 is
Func_Name := Make_Defining_Identifier (Loc, New_Internal_Name ('E'));
- Stats := Loop_One_Dimension (1, First_Index (Typ));
+ -- Build statement sequence for function
Func_Body :=
Make_Subprogram_Body (Loc,
@@ -501,11 +1205,29 @@ package body Exp_Ch4 is
Defining_Unit_Name => Func_Name,
Parameter_Specifications => Formals,
Subtype_Mark => New_Reference_To (Standard_Boolean, Loc)),
- Declarations => Decls,
+
+ Declarations => Decls,
+
Handled_Statement_Sequence =>
Make_Handled_Sequence_Of_Statements (Loc,
Statements => New_List (
- Stats,
+
+ Make_Implicit_If_Statement (Nod,
+ Condition => Test_Empty_Arrays,
+ Then_Statements => New_List (
+ Make_Return_Statement (Loc,
+ Expression =>
+ New_Occurrence_Of (Standard_True, Loc)))),
+
+ Make_Implicit_If_Statement (Nod,
+ Condition => Test_Lengths_Correspond,
+ Then_Statements => New_List (
+ Make_Return_Statement (Loc,
+ Expression =>
+ New_Occurrence_Of (Standard_False, Loc)))),
+
+ Handle_One_Dimension (1, First_Index (Typ)),
+
Make_Return_Statement (Loc,
Expression => New_Occurrence_Of (Standard_True, Loc)))));
@@ -539,19 +1261,18 @@ package body Exp_Ch4 is
-- since we always want to deal with types that have bounds.
procedure Expand_Boolean_Operator (N : Node_Id) is
- Typ : constant Entity_Id := Etype (N);
+ Typ : constant Entity_Id := Etype (N);
begin
if Is_Bit_Packed_Array (Typ) then
Expand_Packed_Boolean_Operator (N);
else
-
- -- For the normal non-packed case, the expansion is
- -- to build a function for carrying out the comparison
- -- (using Make_Boolean_Array_Op) and then inserting it
- -- into the tree. The original operator node is then
- -- rewritten as a call to this function.
+ -- For the normal non-packed case, the general expansion is
+ -- to build a function for carrying out the comparison (using
+ -- Make_Boolean_Array_Op) and then inserting it into the tree.
+ -- The original operator node is then rewritten as a call to
+ -- this function.
declare
Loc : constant Source_Ptr := Sloc (N);
@@ -559,6 +1280,7 @@ package body Exp_Ch4 is
R : constant Node_Id := Relocate_Node (Right_Opnd (N));
Func_Body : Node_Id;
Func_Name : Entity_Id;
+
begin
Convert_To_Actual_Subtype (L);
Convert_To_Actual_Subtype (R);
@@ -566,21 +1288,35 @@ package body Exp_Ch4 is
Ensure_Defined (Etype (R), N);
Apply_Length_Check (R, Etype (L));
- Func_Body := Make_Boolean_Array_Op (Etype (L), N);
- Func_Name := Defining_Unit_Name (Specification (Func_Body));
- Insert_Action (N, Func_Body);
+ if Nkind (Parent (N)) = N_Assignment_Statement
+ and then Safe_In_Place_Array_Op (Name (Parent (N)), L, R)
+ then
+ Build_Boolean_Array_Proc_Call (Parent (N), L, R);
+
+ elsif Nkind (Parent (N)) = N_Op_Not
+ and then Nkind (N) = N_Op_And
+ and then
+ Safe_In_Place_Array_Op (Name (Parent (Parent (N))), L, R)
+ then
+ return;
+ else
- -- Now rewrite the expression with a call
+ Func_Body := Make_Boolean_Array_Op (Etype (L), N);
+ Func_Name := Defining_Unit_Name (Specification (Func_Body));
+ Insert_Action (N, Func_Body);
- Rewrite (N,
- Make_Function_Call (Loc,
- Name => New_Reference_To (Func_Name, Loc),
- Parameter_Associations =>
- New_List
- (L, Make_Type_Conversion
+ -- Now rewrite the expression with a call
+
+ Rewrite (N,
+ Make_Function_Call (Loc,
+ Name => New_Reference_To (Func_Name, Loc),
+ Parameter_Associations =>
+ New_List
+ (L, Make_Type_Conversion
(Loc, New_Reference_To (Etype (L), Loc), R))));
- Analyze_And_Resolve (N, Typ);
+ Analyze_And_Resolve (N, Typ);
+ end if;
end;
end if;
end Expand_Boolean_Operator;
@@ -690,7 +1426,7 @@ package body Exp_Ch4 is
Unchecked_Convert_To (Etype (First_Formal (Eq_Op)), Rhs)));
elsif Is_Record_Type (Full_Type) then
- Eq_Op := TSS (Full_Type, Name_uEquality);
+ Eq_Op := TSS (Full_Type, TSS_Composite_Equality);
if Present (Eq_Op) then
if Etype (First_Formal (Eq_Op)) /= Full_Type then
@@ -699,7 +1435,7 @@ package body Exp_Ch4 is
-- to match signature of operation.
declare
- T : Entity_Id := Etype (First_Formal (Eq_Op));
+ T : constant Entity_Id := Etype (First_Formal (Eq_Op));
begin
return
@@ -832,7 +1568,7 @@ package body Exp_Ch4 is
Params : List_Id;
Operand : Node_Id;
- function Copy_Into_R_S (I : Nat) return List_Id;
+ function Copy_Into_R_S (I : Nat; Last : Boolean) return List_Id;
-- Builds the sequence of statement:
-- P := Si'First;
-- loop
@@ -843,6 +1579,9 @@ package body Exp_Ch4 is
-- end loop;
--
-- where i is the input parameter I given.
+ -- If the flag Last is true, the exit statement is emitted before
+ -- incrementing the lower bound, to prevent the creation out of
+ -- bound values.
function Init_L (I : Nat) return Node_Id;
-- Builds the statement:
@@ -895,8 +1634,8 @@ package body Exp_Ch4 is
-- Copy_Into_R_S --
-------------------
- function Copy_Into_R_S (I : Nat) return List_Id is
- Stmts : List_Id := New_List;
+ function Copy_Into_R_S (I : Nat; Last : Boolean) return List_Id is
+ Stmts : constant List_Id := New_List;
P_Start : Node_Id;
Loop_Stmt : Node_Id;
R_Copy : Node_Id;
@@ -933,9 +1672,15 @@ package body Exp_Ch4 is
Name => P,
Expression => P_Succ);
- Loop_Stmt :=
- Make_Implicit_Loop_Statement (Cnode,
- Statements => New_List (R_Copy, L_Inc, Exit_Stmt, P_Inc));
+ if Last then
+ Loop_Stmt :=
+ Make_Implicit_Loop_Statement (Cnode,
+ Statements => New_List (R_Copy, Exit_Stmt, L_Inc, P_Inc));
+ else
+ Loop_Stmt :=
+ Make_Implicit_Loop_Statement (Cnode,
+ Statements => New_List (R_Copy, L_Inc, Exit_Stmt, P_Inc));
+ end if;
Append_To (Stmts, Loop_Stmt);
@@ -1206,7 +1951,7 @@ package body Exp_Ch4 is
Append_To (Declare_Stmts,
Make_Implicit_If_Statement (Cnode,
Condition => S_Length_Test (I),
- Then_Statements => Copy_Into_R_S (I)));
+ Then_Statements => Copy_Into_R_S (I, I = Nb_Opnds)));
end loop;
Append_To (Declare_Stmts, Make_Return_Statement (Loc, Expression => R));
@@ -1329,6 +2074,10 @@ package body Exp_Ch4 is
Parameter_Associations => Opnds));
Analyze_And_Resolve (Cnode, Standard_String);
+
+ exception
+ when RE_Not_Available =>
+ return;
end Expand_Concatenate_String;
------------------------
@@ -1359,6 +2108,10 @@ package body Exp_Ch4 is
if not Java_VM then
Set_Procedure_To_Call (N, RTE (RE_SS_Allocate));
end if;
+
+ elsif Is_Class_Wide_Type (Etype (Storage_Pool (N))) then
+ Set_Procedure_To_Call (N, RTE (RE_Allocate_Any));
+
else
Set_Procedure_To_Call (N,
Find_Prim_Op (Etype (Storage_Pool (N)), Name_Allocate));
@@ -1372,11 +2125,17 @@ package body Exp_Ch4 is
-- Size and initial value is known at compile time
-- Access type is access-to-constant
+ -- The allocator is not part of a constraint on a record component,
+ -- because in that case the inserted actions are delayed until the
+ -- record declaration is fully analyzed, which is too late for the
+ -- analysis of the rewritten allocator.
+
if Is_Access_Constant (PtrT)
and then Nkind (Expression (N)) = N_Qualified_Expression
and then Compile_Time_Known_Value (Expression (Expression (N)))
and then Size_Known_At_Compile_Time (Etype (Expression
(Expression (N))))
+ and then not Is_Record_Type (Current_Scope)
then
-- Here we can do the optimization. For the allocator
@@ -1424,275 +2183,24 @@ package body Exp_Ch4 is
return;
end if;
- -- If the allocator is for a type which requires initialization, and
- -- there is no initial value (i.e. the operand is a subtype indication
- -- rather than a qualifed expression), then we must generate a call to
- -- the initialization routine. This is done using an expression actions
- -- node:
- --
- -- [Pnnn : constant ptr_T := new (T); Init (Pnnn.all,...); Pnnn]
- --
- -- Here ptr_T is the pointer type for the allocator, and T is the
- -- subtype of the allocator. A special case arises if the designated
- -- type of the access type is a task or contains tasks. In this case
- -- the call to Init (Temp.all ...) is replaced by code that ensures
- -- that the tasks get activated (see Exp_Ch9.Build_Task_Allocate_Block
- -- for details). In addition, if the type T is a task T, then the first
- -- argument to Init must be converted to the task record type.
-
if Nkind (Expression (N)) = N_Qualified_Expression then
- declare
- Indic : constant Node_Id := Subtype_Mark (Expression (N));
- T : constant Entity_Id := Entity (Indic);
- Exp : constant Node_Id := Expression (Expression (N));
-
- Aggr_In_Place : constant Boolean := Is_Delayed_Aggregate (Exp);
-
- Tag_Assign : Node_Id;
- Tmp_Node : Node_Id;
-
- begin
- if Is_Tagged_Type (T) or else Controlled_Type (T) then
-
- -- Actions inserted before:
- -- Temp : constant ptr_T := new T'(Expression);
- -- <no CW> Temp._tag := T'tag;
- -- <CTRL> Adjust (Finalizable (Temp.all));
- -- <CTRL> Attach_To_Final_List (Finalizable (Temp.all));
-
- -- We analyze by hand the new internal allocator to avoid
- -- any recursion and inappropriate call to Initialize
- if not Aggr_In_Place then
- Remove_Side_Effects (Exp);
- end if;
-
- Temp :=
- Make_Defining_Identifier (Loc, New_Internal_Name ('P'));
-
- -- For a class wide allocation generate the following code:
-
- -- type Equiv_Record is record ... end record;
- -- implicit subtype CW is <Class_Wide_Subytpe>;
- -- temp : PtrT := new CW'(CW!(expr));
-
- if Is_Class_Wide_Type (T) then
- Expand_Subtype_From_Expr (Empty, T, Indic, Exp);
-
- Set_Expression (Expression (N),
- Unchecked_Convert_To (Entity (Indic), Exp));
-
- Analyze_And_Resolve (Expression (N), Entity (Indic));
- end if;
-
- if Aggr_In_Place then
- Tmp_Node :=
- Make_Object_Declaration (Loc,
- Defining_Identifier => Temp,
- Object_Definition => New_Reference_To (PtrT, Loc),
- Expression => Make_Allocator (Loc,
- New_Reference_To (Etype (Exp), Loc)));
-
- Set_No_Initialization (Expression (Tmp_Node));
- Insert_Action (N, Tmp_Node);
- Convert_Aggr_In_Allocator (Tmp_Node, Exp);
- else
- Node := Relocate_Node (N);
- Set_Analyzed (Node);
- Insert_Action (N,
- Make_Object_Declaration (Loc,
- Defining_Identifier => Temp,
- Constant_Present => True,
- Object_Definition => New_Reference_To (PtrT, Loc),
- Expression => Node));
- end if;
-
- -- Suppress the tag assignment when Java_VM because JVM tags
- -- are represented implicitly in objects.
-
- if Is_Tagged_Type (T)
- and then not Is_Class_Wide_Type (T)
- and then not Java_VM
- then
- Tag_Assign :=
- Make_Assignment_Statement (Loc,
- Name =>
- Make_Selected_Component (Loc,
- Prefix => New_Reference_To (Temp, Loc),
- Selector_Name =>
- New_Reference_To (Tag_Component (T), Loc)),
-
- Expression =>
- Unchecked_Convert_To (RTE (RE_Tag),
- New_Reference_To (Access_Disp_Table (T), Loc)));
-
- -- The previous assignment has to be done in any case
-
- Set_Assignment_OK (Name (Tag_Assign));
- Insert_Action (N, Tag_Assign);
-
- elsif Is_Private_Type (T)
- and then Is_Tagged_Type (Underlying_Type (T))
- and then not Java_VM
- then
- declare
- Utyp : constant Entity_Id := Underlying_Type (T);
- Ref : constant Node_Id :=
- Unchecked_Convert_To (Utyp,
- Make_Explicit_Dereference (Loc,
- New_Reference_To (Temp, Loc)));
-
- begin
- Tag_Assign :=
- Make_Assignment_Statement (Loc,
- Name =>
- Make_Selected_Component (Loc,
- Prefix => Ref,
- Selector_Name =>
- New_Reference_To (Tag_Component (Utyp), Loc)),
-
- Expression =>
- Unchecked_Convert_To (RTE (RE_Tag),
- New_Reference_To (
- Access_Disp_Table (Utyp), Loc)));
-
- Set_Assignment_OK (Name (Tag_Assign));
- Insert_Action (N, Tag_Assign);
- end;
- end if;
-
- if Controlled_Type (Designated_Type (PtrT))
- and then Controlled_Type (T)
- then
- declare
- Flist : Node_Id;
- Attach : Node_Id;
- Apool : constant Entity_Id :=
- Associated_Storage_Pool (PtrT);
-
- begin
- -- If it is an allocation on the secondary stack
- -- (i.e. a value returned from a function), the object
- -- is attached on the caller side as soon as the call
- -- is completed (see Expand_Ctrl_Function_Call)
-
- if Is_RTE (Apool, RE_SS_Pool) then
- declare
- F : constant Entity_Id :=
- Make_Defining_Identifier (Loc,
- New_Internal_Name ('F'));
- begin
- Insert_Action (N,
- Make_Object_Declaration (Loc,
- Defining_Identifier => F,
- Object_Definition => New_Reference_To (RTE
- (RE_Finalizable_Ptr), Loc)));
-
- Flist := New_Reference_To (F, Loc);
- Attach := Make_Integer_Literal (Loc, 1);
- end;
-
- -- Normal case, not a secondary stack allocation
-
- else
- Flist := Find_Final_List (PtrT);
- Attach := Make_Integer_Literal (Loc, 2);
- end if;
-
- if not Aggr_In_Place then
- Insert_Actions (N,
- Make_Adjust_Call (
- Ref =>
-
- -- An unchecked conversion is needed in the
- -- classwide case because the designated type
- -- can be an ancestor of the subtype mark of
- -- the allocator.
-
- Unchecked_Convert_To (T,
- Make_Explicit_Dereference (Loc,
- New_Reference_To (Temp, Loc))),
-
- Typ => T,
- Flist_Ref => Flist,
- With_Attach => Attach));
- end if;
- end;
- end if;
-
- Rewrite (N, New_Reference_To (Temp, Loc));
- Analyze_And_Resolve (N, PtrT);
-
- elsif Aggr_In_Place then
- Temp :=
- Make_Defining_Identifier (Loc, New_Internal_Name ('P'));
- Tmp_Node :=
- Make_Object_Declaration (Loc,
- Defining_Identifier => Temp,
- Object_Definition => New_Reference_To (PtrT, Loc),
- Expression => Make_Allocator (Loc,
- New_Reference_To (Etype (Exp), Loc)));
-
- Set_No_Initialization (Expression (Tmp_Node));
- Insert_Action (N, Tmp_Node);
- Convert_Aggr_In_Allocator (Tmp_Node, Exp);
- Rewrite (N, New_Reference_To (Temp, Loc));
- Analyze_And_Resolve (N, PtrT);
-
- elsif Is_Access_Type (Designated_Type (PtrT))
- and then Nkind (Exp) = N_Allocator
- and then Nkind (Expression (Exp)) /= N_Qualified_Expression
- then
- -- Apply constraint to designated subtype indication.
-
- Apply_Constraint_Check (Expression (Exp),
- Designated_Type (Designated_Type (PtrT)),
- No_Sliding => True);
-
- if Nkind (Expression (Exp)) = N_Raise_Constraint_Error then
-
- -- Propagate constraint_error to enclosing allocator
-
- Rewrite (Exp, New_Copy (Expression (Exp)));
- end if;
- else
- -- First check against the type of the qualified expression
- --
- -- NOTE: The commented call should be correct, but for
- -- some reason causes the compiler to bomb (sigsegv) on
- -- ACVC test c34007g, so for now we just perform the old
- -- (incorrect) test against the designated subtype with
- -- no sliding in the else part of the if statement below.
- -- ???
- --
- -- Apply_Constraint_Check (Exp, T, No_Sliding => True);
-
- -- A check is also needed in cases where the designated
- -- subtype is constrained and differs from the subtype
- -- given in the qualified expression. Note that the check
- -- on the qualified expression does not allow sliding,
- -- but this check does (a relaxation from Ada 83).
-
- if Is_Constrained (Designated_Type (PtrT))
- and then not Subtypes_Statically_Match
- (T, Designated_Type (PtrT))
- then
- Apply_Constraint_Check
- (Exp, Designated_Type (PtrT), No_Sliding => False);
-
- -- The nonsliding check should really be performed
- -- (unconditionally) against the subtype of the
- -- qualified expression, but that causes a problem
- -- with c34007g (see above), so for now we retain this.
-
- else
- Apply_Constraint_Check
- (Exp, Designated_Type (PtrT), No_Sliding => True);
- end if;
- end if;
- end;
-
- -- Here if not qualified expression case.
- -- In this case, an initialization routine may be required
+ Expand_Allocator_Expression (N);
+
+ -- If the allocator is for a type which requires initialization, and
+ -- there is no initial value (i.e. operand is a subtype indication
+ -- rather than a qualifed expression), then we must generate a call
+ -- to the initialization routine. This is done using an expression
+ -- actions node:
+ --
+ -- [Pnnn : constant ptr_T := new (T); Init (Pnnn.all,...); Pnnn]
+ --
+ -- Here ptr_T is the pointer type for the allocator, and T is the
+ -- subtype of the allocator. A special case arises if the designated
+ -- type of the access type is a task or contains tasks. In this case
+ -- the call to Init (Temp.all ...) is replaced by code that ensures
+ -- that tasks get activated (see Exp_Ch9.Build_Task_Allocate_Block
+ -- for details). In addition, if the type T is a task T, then the
+ -- first argument to Init must be converted to the task record type.
else
declare
@@ -1877,7 +2385,7 @@ package body Exp_Ch4 is
Discr := First_Elmt (Discriminant_Constraint (T));
while Present (Discr) loop
- Append (New_Copy (Elists.Node (Discr)), Args);
+ Append (New_Copy_Tree (Elists.Node (Discr)), Args);
Next_Elmt (Discr);
end loop;
@@ -1889,7 +2397,7 @@ package body Exp_Ch4 is
First_Elmt (Discriminant_Constraint (Full_View (T)));
while Present (Discr) loop
- Append (New_Copy (Elists.Node (Discr)), Args);
+ Append (New_Copy_Tree (Elists.Node (Discr)), Args);
Next_Elmt (Discr);
end loop;
end if;
@@ -1926,13 +2434,13 @@ package body Exp_Ch4 is
Insert_Action (N, Temp_Decl, Suppress => All_Checks);
- -- Case of designated type is task or contains task
+ -- If the designated type is task type or contains tasks,
-- Create block to activate created tasks, and insert
-- declaration for Task_Image variable ahead of call.
if Has_Task (T) then
declare
- L : List_Id := New_List;
+ L : constant List_Id := New_List;
Blk : Node_Id;
begin
@@ -1951,35 +2459,7 @@ package body Exp_Ch4 is
end if;
if Controlled_Type (T) then
-
- -- If the context is an access parameter, we need to create
- -- a non-anonymous access type in order to have a usable
- -- final list, because there is otherwise no pool to which
- -- the allocated object can belong. We create both the type
- -- and the finalization chain here, because freezing an
- -- internal type does not create such a chain.
-
- if Ekind (PtrT) = E_Anonymous_Access_Type then
- declare
- Acc : Entity_Id :=
- Make_Defining_Identifier (Loc,
- New_Internal_Name ('I'));
- begin
- Insert_Action (N,
- Make_Full_Type_Declaration (Loc,
- Defining_Identifier => Acc,
- Type_Definition =>
- Make_Access_To_Object_Definition (Loc,
- Subtype_Indication =>
- New_Occurrence_Of (T, Loc))));
-
- Build_Final_List (N, Acc);
- Flist := Find_Final_List (Acc);
- end;
-
- else
- Flist := Find_Final_List (PtrT);
- end if;
+ Flist := Get_Allocator_Final_List (N, Base_Type (T), PtrT);
Insert_Actions (N,
Make_Init_Call (
@@ -2002,6 +2482,10 @@ package body Exp_Ch4 is
end if;
end;
end if;
+
+ exception
+ when RE_Not_Available =>
+ return;
end Expand_N_Allocator;
-----------------------
@@ -2158,6 +2642,9 @@ package body Exp_Ch4 is
Name => New_Occurrence_Of (Cnn, Sloc (Elsex)),
Expression => Relocate_Node (Elsex))));
+ Set_Assignment_OK (Name (First (Then_Statements (New_If))));
+ Set_Assignment_OK (Name (First (Else_Statements (New_If))));
+
if Present (Then_Actions (N)) then
Insert_List_Before
(First (Then_Statements (New_If)), Then_Actions (N));
@@ -2199,21 +2686,77 @@ package body Exp_Ch4 is
procedure Expand_N_In (N : Node_Id) is
Loc : constant Source_Ptr := Sloc (N);
Rtyp : constant Entity_Id := Etype (N);
+ Lop : constant Node_Id := Left_Opnd (N);
+ Rop : constant Node_Id := Right_Opnd (N);
begin
- -- No expansion is required if we have an explicit range
+ -- If we have an explicit range, do a bit of optimization based
+ -- on range analysis (we may be able to kill one or both checks).
+
+ if Nkind (Rop) = N_Range then
+ declare
+ Lcheck : constant Compare_Result :=
+ Compile_Time_Compare (Lop, Low_Bound (Rop));
+ Ucheck : constant Compare_Result :=
+ Compile_Time_Compare (Lop, High_Bound (Rop));
+
+ begin
+ -- If either check is known to fail, replace result
+ -- by False, since the other check does not matter.
+
+ if Lcheck = LT or else Ucheck = GT then
+ Rewrite (N,
+ New_Reference_To (Standard_False, Loc));
+ Analyze_And_Resolve (N, Rtyp);
+ return;
+
+ -- If both checks are known to succeed, replace result
+ -- by True, since we know we are in range.
+
+ elsif Lcheck in Compare_GE and then Ucheck in Compare_LE then
+ Rewrite (N,
+ New_Reference_To (Standard_True, Loc));
+ Analyze_And_Resolve (N, Rtyp);
+ return;
+
+ -- If lower bound check succeeds and upper bound check is
+ -- not known to succeed or fail, then replace the range check
+ -- with a comparison against the upper bound.
+
+ elsif Lcheck in Compare_GE then
+ Rewrite (N,
+ Make_Op_Le (Loc,
+ Left_Opnd => Lop,
+ Right_Opnd => High_Bound (Rop)));
+ Analyze_And_Resolve (N, Rtyp);
+ return;
+
+ -- If upper bound check succeeds and lower bound check is
+ -- not known to succeed or fail, then replace the range check
+ -- with a comparison against the lower bound.
+
+ elsif Ucheck in Compare_LE then
+ Rewrite (N,
+ Make_Op_Ge (Loc,
+ Left_Opnd => Lop,
+ Right_Opnd => Low_Bound (Rop)));
+ Analyze_And_Resolve (N, Rtyp);
+ return;
+ end if;
+ end;
+
+ -- For all other cases of an explicit range, nothing to be done
- if Nkind (Right_Opnd (N)) = N_Range then
return;
-- Here right operand is a subtype mark
else
declare
- Typ : Entity_Id := Etype (Right_Opnd (N));
- Obj : Node_Id := Left_Opnd (N);
- Cond : Node_Id := Empty;
- Is_Acc : Boolean := Is_Access_Type (Typ);
+ Typ : Entity_Id := Etype (Rop);
+ Is_Acc : constant Boolean := Is_Access_Type (Typ);
+ Obj : Node_Id := Lop;
+ Cond : Node_Id := Empty;
begin
Remove_Side_Effects (Obj);
@@ -2221,6 +2764,7 @@ package body Exp_Ch4 is
-- For tagged type, do tagged membership operation
if Is_Tagged_Type (Typ) then
+
-- No expansion will be performed when Java_VM, as the
-- JVM back end will handle the membership tests directly
-- (tags are not explicitly represented in Java objects,
@@ -2239,7 +2783,7 @@ package body Exp_Ch4 is
-- type if they come from the original type definition.
elsif Is_Scalar_Type (Typ) then
- Rewrite (Right_Opnd (N),
+ Rewrite (Rop,
Make_Range (Loc,
Low_Bound =>
Make_Attribute_Reference (Loc,
@@ -2254,6 +2798,8 @@ package body Exp_Ch4 is
return;
end if;
+ -- Here we have a non-scalar type
+
if Is_Acc then
Typ := Designated_Type (Typ);
end if;
@@ -2269,7 +2815,7 @@ package body Exp_Ch4 is
elsif Is_Array_Type (Typ) then
- declare
+ Check_Subscripts : declare
function Construct_Attribute_Reference
(E : Node_Id;
Nam : Name_Id;
@@ -2277,6 +2823,10 @@ package body Exp_Ch4 is
return Node_Id;
-- Build attribute reference E'Nam(Dim)
+ -----------------------------------
+ -- Construct_Attribute_Reference --
+ -----------------------------------
+
function Construct_Attribute_Reference
(E : Node_Id;
Nam : Name_Id;
@@ -2292,13 +2842,16 @@ package body Exp_Ch4 is
Make_Integer_Literal (Loc, Dim)));
end Construct_Attribute_Reference;
+ -- Start processing for Check_Subscripts
+
begin
for J in 1 .. Number_Dimensions (Typ) loop
Evolve_And_Then (Cond,
Make_Op_Eq (Loc,
Left_Opnd =>
Construct_Attribute_Reference
- (Duplicate_Subexpr (Obj), Name_First, J),
+ (Duplicate_Subexpr_No_Checks (Obj),
+ Name_First, J),
Right_Opnd =>
Construct_Attribute_Reference
(New_Occurrence_Of (Typ, Loc), Name_First, J)));
@@ -2307,24 +2860,26 @@ package body Exp_Ch4 is
Make_Op_Eq (Loc,
Left_Opnd =>
Construct_Attribute_Reference
- (Duplicate_Subexpr (Obj), Name_Last, J),
+ (Duplicate_Subexpr_No_Checks (Obj),
+ Name_Last, J),
Right_Opnd =>
Construct_Attribute_Reference
(New_Occurrence_Of (Typ, Loc), Name_Last, J)));
end loop;
if Is_Acc then
- Cond := Make_Or_Else (Loc,
- Left_Opnd =>
- Make_Op_Eq (Loc,
- Left_Opnd => Obj,
- Right_Opnd => Make_Null (Loc)),
- Right_Opnd => Cond);
+ Cond :=
+ Make_Or_Else (Loc,
+ Left_Opnd =>
+ Make_Op_Eq (Loc,
+ Left_Opnd => Obj,
+ Right_Opnd => Make_Null (Loc)),
+ Right_Opnd => Cond);
end if;
Rewrite (N, Cond);
Analyze_And_Resolve (N, Rtyp);
- end;
+ end Check_Subscripts;
-- These are the cases where constraint checks may be
-- required, e.g. records with possible discriminants
@@ -2403,12 +2958,22 @@ package body Exp_Ch4 is
-- was necessary, but it cleans up the code to do it all the time.
if Is_Access_Type (T) then
+
+ -- Check whether the prefix comes from a debug pool, and generate
+ -- the check before rewriting.
+
+ Insert_Dereference_Action (P);
+
Rewrite (P,
Make_Explicit_Dereference (Sloc (N),
Prefix => Relocate_Node (P)));
Analyze_And_Resolve (P, Designated_Type (T));
end if;
+ -- Generate index and validity checks
+
+ Generate_Index_Checks (N);
+
if Validity_Checks_On and then Validity_Check_Subscripts then
Apply_Subscript_Validity_Checks (N);
end if;
@@ -2432,7 +2997,8 @@ package body Exp_Ch4 is
-- convert it to a reference to the corresponding Packed_Array_Type.
-- We only want to do this for simple references, and not for:
- -- Left side of assignment (or prefix of left side of assignment)
+ -- Left side of assignment, or prefix of left side of assignment,
+ -- or prefix of the prefix, to handle packed arrays of packed arrays,
-- This case is handled in Exp_Ch5.Expand_N_Assignment_Statement
-- Renaming objects in renaming associations
@@ -2477,6 +3043,20 @@ package body Exp_Ch4 is
then
return;
+ -- If the expression is an index of an indexed component,
+ -- it must be expanded regardless of context.
+
+ elsif Nkind (Parnt) = N_Indexed_Component
+ and then Child /= Prefix (Parnt)
+ then
+ Expand_Packed_Element_Reference (N);
+ return;
+
+ elsif Nkind (Parent (Parnt)) = N_Assignment_Statement
+ and then Name (Parent (Parnt)) = Parnt
+ then
+ return;
+
elsif Nkind (Parnt) = N_Attribute_Reference
and then Attribute_Name (Parnt) = Name_Read
and then Next (First (Expressions (Parnt))) = Child
@@ -2557,6 +3137,10 @@ package body Exp_Ch4 is
Set_Etype (N, Typ);
end if;
+
+ exception
+ when RE_Not_Available =>
+ return;
end Expand_N_Null;
---------------------
@@ -2576,29 +3160,30 @@ package body Exp_Ch4 is
and then Is_Signed_Integer_Type (Etype (N))
and then Do_Overflow_Check (N)
then
- -- Software overflow checking expands abs (expr) into
+ -- The only case to worry about is when the argument is
+ -- equal to the largest negative number, so what we do is
+ -- to insert the check:
- -- (if expr >= 0 then expr else -expr)
+ -- [constraint_error when Expr = typ'Base'First]
-- with the usual Duplicate_Subexpr use coding for expr
- Rewrite (N,
- Make_Conditional_Expression (Loc,
- Expressions => New_List (
- Make_Op_Ge (Loc,
+ Insert_Action (N,
+ Make_Raise_Constraint_Error (Loc,
+ Condition =>
+ Make_Op_Eq (Loc,
Left_Opnd => Duplicate_Subexpr (Expr),
- Right_Opnd => Make_Integer_Literal (Loc, 0)),
-
- Duplicate_Subexpr (Expr),
-
- Make_Op_Minus (Loc,
- Right_Opnd => Duplicate_Subexpr (Expr)))));
-
- Analyze_And_Resolve (N);
+ Right_Opnd =>
+ Make_Attribute_Reference (Loc,
+ Prefix =>
+ New_Occurrence_Of (Base_Type (Etype (Expr)), Loc),
+ Attribute_Name => Name_First)),
+ Reason => CE_Overflow_Check_Failed));
+ end if;
-- Vax floating-point types case
- elsif Vax_Float (Etype (N)) then
+ if Vax_Float (Etype (N)) then
Expand_Vax_Arith (N);
end if;
end Expand_N_Op_Abs;
@@ -2630,7 +3215,7 @@ package body Exp_Ch4 is
end if;
end if;
- -- Arithemtic overflow checks for signed integer/fixed point types
+ -- Arithmetic overflow checks for signed integer/fixed point types
if Is_Signed_Integer_Type (Typ)
or else Is_Fixed_Point_Type (Typ)
@@ -2670,6 +3255,21 @@ package body Exp_Ch4 is
-- Expand_N_Op_Concat --
------------------------
+ Max_Available_String_Operands : Int := -1;
+ -- This is initialized the first time this routine is called. It records
+ -- a value of 0,2,3,4,5 depending on what Str_Concat_n procedures are
+ -- available in the run-time:
+ --
+ -- 0 None available
+ -- 2 RE_Str_Concat available, RE_Str_Concat_3 not available
+ -- 3 RE_Str_Concat/Concat_2 available, RE_Str_Concat_4 not available
+ -- 4 RE_Str_Concat/Concat_2/3 available, RE_Str_Concat_5 not available
+ -- 5 All routines including RE_Str_Concat_5 available
+
+ Char_Concat_Available : Boolean;
+ -- Records if the routines RE_Str_Concat_CC/CS/SC are available. True if
+ -- all three are available, False if any one of these is unavailable.
+
procedure Expand_N_Op_Concat (N : Node_Id) is
Opnds : List_Id;
@@ -2689,6 +3289,31 @@ package body Exp_Ch4 is
-- Component type of concatenation represented by Cnode
begin
+ -- Initialize global variables showing run-time status
+
+ if Max_Available_String_Operands < 1 then
+ if not RTE_Available (RE_Str_Concat) then
+ Max_Available_String_Operands := 0;
+ elsif not RTE_Available (RE_Str_Concat_3) then
+ Max_Available_String_Operands := 2;
+ elsif not RTE_Available (RE_Str_Concat_4) then
+ Max_Available_String_Operands := 3;
+ elsif not RTE_Available (RE_Str_Concat_5) then
+ Max_Available_String_Operands := 4;
+ else
+ Max_Available_String_Operands := 5;
+ end if;
+
+ Char_Concat_Available :=
+ RTE_Available (RE_Str_Concat_CC)
+ and then
+ RTE_Available (RE_Str_Concat_CS)
+ and then
+ RTE_Available (RE_Str_Concat_SC);
+ end if;
+
+ -- Ensure validity of both operands
+
Binary_Op_Validity_Checks (N);
-- If we are the left operand of a concatenation higher up the
@@ -2723,12 +3348,21 @@ package body Exp_Ch4 is
Opnds := New_List (Left_Opnd (Cnode), Right_Opnd (Cnode));
Set_Parent (Opnds, N);
- -- The inner loop gathers concatenation operands
+ -- The inner loop gathers concatenation operands. We gather any
+ -- number of these in the non-string case, or if no concatenation
+ -- routines are available for string (since in that case we will
+ -- treat string like any other non-string case). Otherwise we only
+ -- gather as many operands as can be handled by the available
+ -- procedures in the run-time library (normally 5, but may be
+ -- less for the configurable run-time case).
Inner : while Cnode /= N
and then (Base_Type (Etype (Cnode)) /= Standard_String
or else
- List_Length (Opnds) < 5)
+ Max_Available_String_Operands = 0
+ or else
+ List_Length (Opnds) <
+ Max_Available_String_Operands)
and then Base_Type (Etype (Cnode)) =
Base_Type (Etype (Parent (Cnode)))
loop
@@ -2744,7 +3378,9 @@ package body Exp_Ch4 is
Atyp := Base_Type (Etype (Cnode));
Ctyp := Base_Type (Component_Type (Etype (Cnode)));
- if List_Length (Opnds) > 2 or else Atyp /= Standard_String then
+ if (List_Length (Opnds) > 2 or else Atyp /= Standard_String)
+ or else not Char_Concat_Available
+ then
Opnd := First (Opnds);
loop
if Base_Type (Etype (Opnd)) = Ctyp then
@@ -2761,7 +3397,9 @@ package body Exp_Ch4 is
-- Now call appropriate continuation routine
- if Atyp = Standard_String then
+ if Atyp = Standard_String
+ and then Max_Available_String_Operands > 0
+ then
Expand_Concatenate_String (Cnode, Opnds);
else
Expand_Concatenate_Other (Cnode, Opnds);
@@ -2808,6 +3446,13 @@ package body Exp_Ch4 is
if Nkind (Right_Opnd (N)) = N_Op_Expon
and then Is_Power_Of_2_For_Shift (Right_Opnd (N))
+
+ -- We cannot do this transformation in configurable run time mode if we
+ -- have 64-bit -- integers and long shifts are not available.
+
+ and then
+ (Esize (Ltyp) <= 32
+ or else Support_Long_Shifts_On_Target)
then
Rewrite (N,
Make_Op_Shift_Right (Loc,
@@ -2879,6 +3524,14 @@ package body Exp_Ch4 is
elsif Is_Integer_Type (Typ) then
Apply_Divide_Check (N);
+
+ -- Check for 64-bit division available
+
+ if Esize (Ltyp) > 32
+ and then not Support_64_Bit_Divides_On_Target
+ then
+ Error_Msg_CRT ("64-bit division", N);
+ end if;
end if;
end Expand_N_Op_Divide;
@@ -2887,15 +3540,16 @@ package body Exp_Ch4 is
--------------------
procedure Expand_N_Op_Eq (N : Node_Id) is
- Loc : constant Source_Ptr := Sloc (N);
- Typ : constant Entity_Id := Etype (N);
- Lhs : constant Node_Id := Left_Opnd (N);
- Rhs : constant Node_Id := Right_Opnd (N);
- A_Typ : Entity_Id := Etype (Lhs);
+ Loc : constant Source_Ptr := Sloc (N);
+ Typ : constant Entity_Id := Etype (N);
+ Lhs : constant Node_Id := Left_Opnd (N);
+ Rhs : constant Node_Id := Right_Opnd (N);
+ Bodies : constant List_Id := New_List;
+ A_Typ : constant Entity_Id := Etype (Lhs);
+
Typl : Entity_Id := A_Typ;
Op_Name : Entity_Id;
Prim : Elmt_Id;
- Bodies : List_Id := New_List;
procedure Build_Equality_Call (Eq : Entity_Id);
-- If a constructed equality exists for the type or for its parent,
@@ -2967,21 +3621,36 @@ package body Exp_Ch4 is
elsif Is_Array_Type (Typl) then
+ -- If we are doing full validity checking, then expand out array
+ -- comparisons to make sure that we check the array elements.
+
+ if Validity_Check_Operands then
+ declare
+ Save_Force_Validity_Checks : constant Boolean :=
+ Force_Validity_Checks;
+ begin
+ Force_Validity_Checks := True;
+ Rewrite (N,
+ Expand_Array_Equality (N, Typl, A_Typ,
+ Relocate_Node (Lhs), Relocate_Node (Rhs), Bodies));
+
+ Insert_Actions (N, Bodies);
+ Analyze_And_Resolve (N, Standard_Boolean);
+ Force_Validity_Checks := Save_Force_Validity_Checks;
+ end;
+
-- Packed case
- if Is_Bit_Packed_Array (Typl) then
+ elsif Is_Bit_Packed_Array (Typl) then
Expand_Packed_Eq (N);
-- For non-floating-point elementary types, the primitive equality
-- always applies, and block-bit comparison is fine. Floating-point
-- is an exception because of negative zeroes.
- -- However, we never use block bit comparison in No_Run_Time mode,
- -- since this may result in a call to a run time routine
-
elsif Is_Elementary_Type (Component_Type (Typl))
and then not Is_Floating_Point_Type (Component_Type (Typl))
- and then not No_Run_Time
+ and then Support_Composite_Compare_On_Target
then
null;
@@ -3025,16 +3694,41 @@ package body Exp_Ch4 is
end loop;
Op_Name := Node (Prim);
+
+ -- Find the type's predefined equality or an overriding
+ -- user-defined equality. The reason for not simply calling
+ -- Find_Prim_Op here is that there may be a user-defined
+ -- overloaded equality op that precedes the equality that
+ -- we want, so we have to explicitly search (e.g., there
+ -- could be an equality with two different parameter types).
+
else
- Op_Name := Find_Prim_Op (Typl, Name_Op_Eq);
+ if Is_Class_Wide_Type (Typl) then
+ Typl := Root_Type (Typl);
+ end if;
+
+ Prim := First_Elmt (Primitive_Operations (Typl));
+
+ while Present (Prim) loop
+ exit when Chars (Node (Prim)) = Name_Op_Eq
+ and then Etype (First_Formal (Node (Prim))) =
+ Etype (Next_Formal (First_Formal (Node (Prim))))
+ and then Etype (Node (Prim)) = Standard_Boolean;
+
+ Next_Elmt (Prim);
+ pragma Assert (Present (Prim));
+ end loop;
+
+ Op_Name := Node (Prim);
end if;
Build_Equality_Call (Op_Name);
-- If a type support function is present (for complex cases), use it
- elsif Present (TSS (Root_Type (Typl), Name_uEquality)) then
- Build_Equality_Call (TSS (Root_Type (Typl), Name_uEquality));
+ elsif Present (TSS (Root_Type (Typl), TSS_Composite_Equality)) then
+ Build_Equality_Call
+ (TSS (Root_Type (Typl), TSS_Composite_Equality));
-- Otherwise expand the component by component equality. Note that
-- we never use block-bit coparisons for records, because of the
@@ -3078,6 +3772,7 @@ package body Exp_Ch4 is
Temp : Node_Id;
Rent : RE_Id;
Ent : Entity_Id;
+ Etyp : Entity_Id;
begin
Binary_Op_Validity_Checks (N);
@@ -3112,10 +3807,7 @@ package body Exp_Ch4 is
end;
end if;
- -- At this point the exponentiation must be dynamic since the static
- -- case has already been folded after Resolve by Eval_Op_Expon.
-
- -- Test for case of literal right argument
+ -- Test for case of known right argument
if Compile_Time_Known_Value (Exp) then
Expv := Expr_Value (Exp);
@@ -3148,7 +3840,7 @@ package body Exp_Ch4 is
Xnode :=
Make_Op_Multiply (Loc,
Left_Opnd => Duplicate_Subexpr (Base),
- Right_Opnd => Duplicate_Subexpr (Base));
+ Right_Opnd => Duplicate_Subexpr_No_Checks (Base));
-- X ** 3 = X * X * X
@@ -3158,8 +3850,8 @@ package body Exp_Ch4 is
Left_Opnd =>
Make_Op_Multiply (Loc,
Left_Opnd => Duplicate_Subexpr (Base),
- Right_Opnd => Duplicate_Subexpr (Base)),
- Right_Opnd => Duplicate_Subexpr (Base));
+ Right_Opnd => Duplicate_Subexpr_No_Checks (Base)),
+ Right_Opnd => Duplicate_Subexpr_No_Checks (Base));
-- X ** 4 ->
-- En : constant base'type := base * base;
@@ -3178,7 +3870,7 @@ package body Exp_Ch4 is
Expression =>
Make_Op_Multiply (Loc,
Left_Opnd => Duplicate_Subexpr (Base),
- Right_Opnd => Duplicate_Subexpr (Base)))));
+ Right_Opnd => Duplicate_Subexpr_No_Checks (Base)))));
Xnode :=
Make_Op_Multiply (Loc,
@@ -3194,7 +3886,7 @@ package body Exp_Ch4 is
-- Case of (2 ** expression) appearing as an argument of an integer
-- multiplication, or as the right argument of a division of a non-
- -- negative integer. In such cases we lave the node untouched, setting
+ -- negative integer. In such cases we leave the node untouched, setting
-- the flag Is_Natural_Power_Of_2_for_Shift set, then the expansion
-- of the higher level node converts it into a shift.
@@ -3234,11 +3926,6 @@ package body Exp_Ch4 is
-- Fall through if exponentiation must be done using a runtime routine
- if No_Run_Time then
- Disallow_In_No_Run_Time_Mode (N);
- return;
- end if;
-
-- First deal with modular case
if Is_Modular_Integer_Type (Rtyp) then
@@ -3249,7 +3936,6 @@ package body Exp_Ch4 is
-- to the base type.
if Non_Binary_Modulus (Rtyp) then
-
Rewrite (N,
Convert_To (Typ,
Make_Function_Call (Loc,
@@ -3289,83 +3975,54 @@ package body Exp_Ch4 is
Analyze_And_Resolve (N, Typ);
return;
- -- Signed integer cases
-
- elsif Rtyp = Base_Type (Standard_Integer) then
- if Ovflo then
- Rent := RE_Exp_Integer;
- else
- Rent := RE_Exn_Integer;
- end if;
-
- elsif Rtyp = Base_Type (Standard_Short_Integer) then
- if Ovflo then
- Rent := RE_Exp_Short_Integer;
- else
- Rent := RE_Exn_Short_Integer;
- end if;
-
- elsif Rtyp = Base_Type (Standard_Short_Short_Integer) then
- if Ovflo then
- Rent := RE_Exp_Short_Short_Integer;
- else
- Rent := RE_Exn_Short_Short_Integer;
- end if;
+ -- Signed integer cases, done using either Integer or Long_Long_Integer.
+ -- It is not worth having routines for Short_[Short_]Integer, since for
+ -- most machines it would not help, and it would generate more code that
+ -- might need certification in the HI-E case.
- elsif Rtyp = Base_Type (Standard_Long_Integer) then
- if Ovflo then
- Rent := RE_Exp_Long_Integer;
- else
- Rent := RE_Exn_Long_Integer;
- end if;
+ -- In the integer cases, we have two routines, one for when overflow
+ -- checks are required, and one when they are not required, since
+ -- there is a real gain in ommitting checks on many machines.
- elsif (Rtyp = Base_Type (Standard_Long_Long_Integer)
- or else Rtyp = Universal_Integer)
+ elsif Rtyp = Base_Type (Standard_Long_Long_Integer)
+ or else (Rtyp = Base_Type (Standard_Long_Integer)
+ and then
+ Esize (Standard_Long_Integer) > Esize (Standard_Integer))
+ or else (Rtyp = Universal_Integer)
then
+ Etyp := Standard_Long_Long_Integer;
+
if Ovflo then
Rent := RE_Exp_Long_Long_Integer;
else
Rent := RE_Exn_Long_Long_Integer;
end if;
- -- Floating-point cases
+ elsif Is_Signed_Integer_Type (Rtyp) then
+ Etyp := Standard_Integer;
- elsif Rtyp = Standard_Float then
if Ovflo then
- Rent := RE_Exp_Float;
- else
- Rent := RE_Exn_Float;
- end if;
-
- elsif Rtyp = Standard_Short_Float then
- if Ovflo then
- Rent := RE_Exp_Short_Float;
+ Rent := RE_Exp_Integer;
else
- Rent := RE_Exn_Short_Float;
+ Rent := RE_Exn_Integer;
end if;
- elsif Rtyp = Standard_Long_Float then
- if Ovflo then
- Rent := RE_Exp_Long_Float;
- else
- Rent := RE_Exn_Long_Float;
- end if;
+ -- Floating-point cases, always done using Long_Long_Float. We do not
+ -- need separate routines for the overflow case here, since in the case
+ -- of floating-point, we generate infinities anyway as a rule (either
+ -- that or we automatically trap overflow), and if there is an infinity
+ -- generated and a range check is required, the check will fail anyway.
else
- pragma Assert
- (Rtyp = Standard_Long_Long_Float or else Rtyp = Universal_Real);
-
- if Ovflo then
- Rent := RE_Exp_Long_Long_Float;
- else
- Rent := RE_Exn_Long_Long_Float;
- end if;
+ pragma Assert (Is_Floating_Point_Type (Rtyp));
+ Etyp := Standard_Long_Long_Float;
+ Rent := RE_Exn_Long_Long_Float;
end if;
-- Common processing for integer cases and floating-point cases.
- -- If we are in the base type, we can call runtime routine directly
+ -- If we are in the right type, we can call runtime routine directly
- if Typ = Rtyp
+ if Typ = Etyp
and then Rtyp /= Universal_Integer
and then Rtyp /= Universal_Real
then
@@ -3375,8 +4032,8 @@ package body Exp_Ch4 is
Parameter_Associations => New_List (Base, Exp)));
-- Otherwise we have to introduce conversions (conversions are also
- -- required in the universal cases, since the runtime routine was
- -- typed using the largest integer or real case.
+ -- required in the universal cases, since the runtime routine is
+ -- typed using one of the standard types.
else
Rewrite (N,
@@ -3384,13 +4041,16 @@ package body Exp_Ch4 is
Make_Function_Call (Loc,
Name => New_Reference_To (RTE (Rent), Loc),
Parameter_Associations => New_List (
- Convert_To (Rtyp, Base),
+ Convert_To (Etyp, Base),
Exp))));
end if;
Analyze_And_Resolve (N, Typ);
return;
+ exception
+ when RE_Not_Available =>
+ return;
end Expand_N_Op_Expon;
--------------------
@@ -3558,7 +4218,7 @@ package body Exp_Ch4 is
procedure Expand_N_Op_Mod (N : Node_Id) is
Loc : constant Source_Ptr := Sloc (N);
- T : constant Entity_Id := Etype (N);
+ Typ : constant Entity_Id := Etype (N);
Left : constant Node_Id := Left_Opnd (N);
Right : constant Node_Id := Right_Opnd (N);
DOC : constant Boolean := Do_Overflow_Check (N);
@@ -3597,7 +4257,7 @@ package body Exp_Ch4 is
-- instance and is epsilon more efficient.
Set_Entity (N, Standard_Entity (S_Op_Rem));
- Set_Etype (N, T);
+ Set_Etype (N, Typ);
Set_Do_Overflow_Check (N, DOC);
Set_Do_Division_Check (N, DDC);
Expand_N_Op_Rem (N);
@@ -3610,6 +4270,19 @@ package body Exp_Ch4 is
Apply_Divide_Check (N);
end if;
+ -- Apply optimization x mod 1 = 0. We don't really need that with
+ -- gcc, but it is useful with other back ends (e.g. AAMP), and is
+ -- certainly harmless.
+
+ if Is_Integer_Type (Etype (N))
+ and then Compile_Time_Known_Value (Right)
+ and then Expr_Value (Right) = Uint_1
+ then
+ Rewrite (N, Make_Integer_Literal (Loc, 0));
+ Analyze_And_Resolve (N, Typ);
+ return;
+ end if;
+
-- Deal with annoying case of largest negative number remainder
-- minus one. Gigi does not handle this case correctly, because
-- it generates a divide instruction which may trap in this case.
@@ -3618,7 +4291,13 @@ package body Exp_Ch4 is
-- then the mod value is always 0, and we can just ignore the
-- left operand completely in this case.
- LLB := Expr_Value (Type_Low_Bound (Base_Type (Etype (Left))));
+ -- The operand type may be private (e.g. in the expansion of an
+ -- an intrinsic operation) so we must use the underlying type to
+ -- get the bounds, and convert the literals explicitly.
+
+ LLB :=
+ Expr_Value
+ (Type_Low_Bound (Base_Type (Underlying_Type (Etype (Left)))));
if ((not ROK) or else (Rlo <= (-1) and then (-1) <= Rhi))
and then
@@ -3630,12 +4309,14 @@ package body Exp_Ch4 is
Make_Op_Eq (Loc,
Left_Opnd => Duplicate_Subexpr (Right),
Right_Opnd =>
- Make_Integer_Literal (Loc, -1)),
- Make_Integer_Literal (Loc, Uint_0),
+ Unchecked_Convert_To (Typ,
+ Make_Integer_Literal (Loc, -1))),
+ Unchecked_Convert_To (Typ,
+ Make_Integer_Literal (Loc, Uint_0)),
Relocate_Node (N))));
Set_Analyzed (Next (Next (First (Expressions (N)))));
- Analyze_And_Resolve (N, T);
+ Analyze_And_Resolve (N, Typ);
end if;
end if;
end Expand_N_Op_Mod;
@@ -3648,6 +4329,15 @@ package body Exp_Ch4 is
Loc : constant Source_Ptr := Sloc (N);
Lop : constant Node_Id := Left_Opnd (N);
Rop : constant Node_Id := Right_Opnd (N);
+
+ Lp2 : constant Boolean :=
+ Nkind (Lop) = N_Op_Expon
+ and then Is_Power_Of_2_For_Shift (Lop);
+
+ Rp2 : constant Boolean :=
+ Nkind (Rop) = N_Op_Expon
+ and then Is_Power_Of_2_For_Shift (Rop);
+
Ltyp : constant Entity_Id := Etype (Lop);
Rtyp : constant Entity_Id := Etype (Rop);
Typ : Entity_Id := Etype (N);
@@ -3661,11 +4351,11 @@ package body Exp_Ch4 is
-- N * 0 = 0 * N = 0 for integer types
- if (Compile_Time_Known_Value (Right_Opnd (N))
- and then Expr_Value (Right_Opnd (N)) = Uint_0)
+ if (Compile_Time_Known_Value (Rop)
+ and then Expr_Value (Rop) = Uint_0)
or else
- (Compile_Time_Known_Value (Left_Opnd (N))
- and then Expr_Value (Left_Opnd (N)) = Uint_0)
+ (Compile_Time_Known_Value (Lop)
+ and then Expr_Value (Lop) = Uint_0)
then
Rewrite (N, Make_Integer_Literal (Loc, Uint_0));
Analyze_And_Resolve (N, Typ);
@@ -3674,16 +4364,21 @@ package body Exp_Ch4 is
-- N * 1 = 1 * N = N for integer types
- if Compile_Time_Known_Value (Right_Opnd (N))
- and then Expr_Value (Right_Opnd (N)) = Uint_1
+ -- This optimisation is not done if we are going to
+ -- rewrite the product 1 * 2 ** N to a shift.
+
+ if Compile_Time_Known_Value (Rop)
+ and then Expr_Value (Rop) = Uint_1
+ and then not Lp2
then
- Rewrite (N, Left_Opnd (N));
+ Rewrite (N, Lop);
return;
- elsif Compile_Time_Known_Value (Left_Opnd (N))
- and then Expr_Value (Left_Opnd (N)) = Uint_1
+ elsif Compile_Time_Known_Value (Lop)
+ and then Expr_Value (Lop) = Uint_1
+ and then not Rp2
then
- Rewrite (N, Right_Opnd (N));
+ Rewrite (N, Rop);
return;
end if;
end if;
@@ -3699,14 +4394,10 @@ package body Exp_Ch4 is
-- Is_Power_Of_2_For_Shift is set means that we know that our left
-- operand is an integer, as required for this to work.
- if Nkind (Rop) = N_Op_Expon
- and then Is_Power_Of_2_For_Shift (Rop)
- then
- if Nkind (Lop) = N_Op_Expon
- and then Is_Power_Of_2_For_Shift (Lop)
- then
+ if Rp2 then
+ if Lp2 then
- -- convert 2 ** A * 2 ** B into 2 ** (A + B)
+ -- Convert 2 ** A * 2 ** B into 2 ** (A + B)
Rewrite (N,
Make_Op_Expon (Loc,
@@ -3730,9 +4421,7 @@ package body Exp_Ch4 is
-- Same processing for the operands the other way round
- elsif Nkind (Lop) = N_Op_Expon
- and then Is_Power_Of_2_For_Shift (Lop)
- then
+ elsif Lp2 then
Rewrite (N,
Make_Op_Shift_Left (Loc,
Left_Opnd => Rop,
@@ -3843,6 +4532,12 @@ package body Exp_Ch4 is
Set_Entity (Right_Opnd (Neg), Corresponding_Equality (Ne));
end if;
+ -- For navigation purposes, the inequality is treated as an implicit
+ -- reference to the corresponding equality. Preserve the Comes_From_
+ -- source flag so that the proper Xref entry is generated.
+
+ Preserve_Comes_From_Source (Neg, N);
+ Preserve_Comes_From_Source (Right_Opnd (Neg), N);
Rewrite (N, Neg);
Analyze_And_Resolve (N, Standard_Boolean);
end Expand_N_Op_Ne;
@@ -3915,13 +4610,61 @@ package body Exp_Ch4 is
return;
end if;
- -- Case of array operand which is not bit-packed
+ -- Case of array operand which is not bit-packed. If the context is
+ -- a safe assignment, call in-place operation, If context is a larger
+ -- boolean expression in the context of a safe assignment, expansion is
+ -- done by enclosing operation.
Opnd := Relocate_Node (Right_Opnd (N));
Convert_To_Actual_Subtype (Opnd);
Arr := Etype (Opnd);
Ensure_Defined (Arr, N);
+ if Nkind (Parent (N)) = N_Assignment_Statement then
+ if Safe_In_Place_Array_Op (Name (Parent (N)), N, Empty) then
+ Build_Boolean_Array_Proc_Call (Parent (N), Opnd, Empty);
+ return;
+
+ -- Special case the negation of a binary operation.
+
+ elsif (Nkind (Opnd) = N_Op_And
+ or else Nkind (Opnd) = N_Op_Or
+ or else Nkind (Opnd) = N_Op_Xor)
+ and then Safe_In_Place_Array_Op
+ (Name (Parent (N)), Left_Opnd (Opnd), Right_Opnd (Opnd))
+ then
+ Build_Boolean_Array_Proc_Call (Parent (N), Opnd, Empty);
+ return;
+ end if;
+
+ elsif Nkind (Parent (N)) in N_Binary_Op
+ and then Nkind (Parent (Parent (N))) = N_Assignment_Statement
+ then
+ declare
+ Op1 : constant Node_Id := Left_Opnd (Parent (N));
+ Op2 : constant Node_Id := Right_Opnd (Parent (N));
+ Lhs : constant Node_Id := Name (Parent (Parent (N)));
+
+ begin
+ if Safe_In_Place_Array_Op (Lhs, Op1, Op2) then
+ if N = Op1
+ and then Nkind (Op2) = N_Op_Not
+ then
+ -- (not A) op (not B) can be reduced to a single call.
+
+ return;
+
+ elsif N = Op2
+ and then Nkind (Parent (N)) = N_Op_Xor
+ then
+ -- A xor (not B) can also be special-cased.
+
+ return;
+ end if;
+ end if;
+ end;
+ end if;
+
A := Make_Defining_Identifier (Loc, Name_uA);
B := Make_Defining_Identifier (Loc, Name_uB);
J := Make_Defining_Identifier (Loc, Name_uJ);
@@ -4026,6 +4769,7 @@ package body Exp_Ch4 is
procedure Expand_N_Op_Rem (N : Node_Id) is
Loc : constant Source_Ptr := Sloc (N);
+ Typ : constant Entity_Id := Etype (N);
Left : constant Node_Id := Left_Opnd (N);
Right : constant Node_Id := Right_Opnd (N);
@@ -4037,7 +4781,6 @@ package body Exp_Ch4 is
Rlo : Uint;
Rhi : Uint;
ROK : Boolean;
- Typ : Entity_Id;
begin
Binary_Op_Validity_Checks (N);
@@ -4046,6 +4789,19 @@ package body Exp_Ch4 is
Apply_Divide_Check (N);
end if;
+ -- Apply optimization x rem 1 = 0. We don't really need that with
+ -- gcc, but it is useful with other back ends (e.g. AAMP), and is
+ -- certainly harmless.
+
+ if Is_Integer_Type (Etype (N))
+ and then Compile_Time_Known_Value (Right)
+ and then Expr_Value (Right) = Uint_1
+ then
+ Rewrite (N, Make_Integer_Literal (Loc, 0));
+ Analyze_And_Resolve (N, Typ);
+ return;
+ end if;
+
-- Deal with annoying case of largest negative number remainder
-- minus one. Gigi does not handle this case correctly, because
-- it generates a divide instruction which may trap in this case.
@@ -4056,8 +4812,16 @@ package body Exp_Ch4 is
Determine_Range (Right, ROK, Rlo, Rhi);
Determine_Range (Left, LOK, Llo, Lhi);
- LLB := Expr_Value (Type_Low_Bound (Base_Type (Etype (Left))));
- Typ := Etype (N);
+
+ -- The operand type may be private (e.g. in the expansion of an
+ -- an intrinsic operation) so we must use the underlying type to
+ -- get the bounds, and convert the literals explicitly.
+
+ LLB :=
+ Expr_Value
+ (Type_Low_Bound (Base_Type (Underlying_Type (Etype (Left)))));
+
+ -- Now perform the test, generating code only if needed
if ((not ROK) or else (Rlo <= (-1) and then (-1) <= Rhi))
and then
@@ -4069,9 +4833,11 @@ package body Exp_Ch4 is
Make_Op_Eq (Loc,
Left_Opnd => Duplicate_Subexpr (Right),
Right_Opnd =>
- Make_Integer_Literal (Loc, -1)),
+ Unchecked_Convert_To (Typ,
+ Make_Integer_Literal (Loc, -1))),
- Make_Integer_Literal (Loc, Uint_0),
+ Unchecked_Convert_To (Typ,
+ Make_Integer_Literal (Loc, Uint_0)),
Relocate_Node (N))));
@@ -4201,10 +4967,11 @@ package body Exp_Ch4 is
Adjust_Condition (Left);
Adjust_Condition (Right);
Set_Etype (N, Standard_Boolean);
+ end if;
-- Check for cases of left argument is True or False
- elsif Nkind (Left) = N_Identifier then
+ if Nkind (Left) = N_Identifier then
-- If left argument is False, change (False or else Right) to Right.
-- Any actions associated with Right will be executed unconditionally
@@ -4306,26 +5073,48 @@ package body Exp_Ch4 is
Loc : constant Source_Ptr := Sloc (N);
Par : constant Node_Id := Parent (N);
P : constant Node_Id := Prefix (N);
+ Ptyp : Entity_Id := Underlying_Type (Etype (P));
Disc : Entity_Id;
- Ptyp : Entity_Id := Underlying_Type (Etype (P));
New_N : Node_Id;
+ Dcon : Elmt_Id;
function In_Left_Hand_Side (Comp : Node_Id) return Boolean;
-- Gigi needs a temporary for prefixes that depend on a discriminant,
-- unless the context of an assignment can provide size information.
+ -- Don't we have a general routine that does this???
+
+ -----------------------
+ -- In_Left_Hand_Side --
+ -----------------------
function In_Left_Hand_Side (Comp : Node_Id) return Boolean is
begin
- return
- (Nkind (Parent (Comp)) = N_Assignment_Statement
- and then Comp = Name (Parent (Comp)))
- or else
- (Present (Parent (Comp))
- and then Nkind (Parent (Comp)) in N_Subexpr
- and then In_Left_Hand_Side (Parent (Comp)));
+ return (Nkind (Parent (Comp)) = N_Assignment_Statement
+ and then Comp = Name (Parent (Comp)))
+ or else (Present (Parent (Comp))
+ and then Nkind (Parent (Comp)) in N_Subexpr
+ and then In_Left_Hand_Side (Parent (Comp)));
end In_Left_Hand_Side;
+ -- Start of processing for Expand_N_Selected_Component
+
begin
+ -- Insert explicit dereference if required
+
+ if Is_Access_Type (Ptyp) then
+ Insert_Explicit_Dereference (P);
+
+ if Ekind (Etype (P)) = E_Private_Subtype
+ and then Is_For_Access_Subtype (Etype (P))
+ then
+ Set_Etype (P, Base_Type (Etype (P)));
+ end if;
+
+ Ptyp := Etype (P);
+ end if;
+
+ -- Deal with discriminant check required
+
if Do_Discriminant_Check (N) then
-- Present the discrminant checking function to the backend,
@@ -4334,21 +5123,18 @@ package body Exp_Ch4 is
Add_Inlined_Body
(Discriminant_Checking_Func
(Original_Record_Component (Entity (Selector_Name (N)))));
- end if;
- -- Insert explicit dereference call for the checked storage pool case
+ -- Now reset the flag and generate the call
- if Is_Access_Type (Ptyp) then
- Insert_Dereference_Action (P);
- return;
+ Set_Do_Discriminant_Check (N, False);
+ Generate_Discriminant_Check (N);
end if;
- -- Gigi cannot handle unchecked conversions that are the prefix of
- -- a selected component with discriminants. This must be checked
- -- during expansion, because during analysis the type of the selector
- -- is not known at the point the prefix is analyzed. If the conversion
- -- is the target of an assignment, we cannot force the evaluation, of
- -- course.
+ -- Gigi cannot handle unchecked conversions that are the prefix of a
+ -- selected component with discriminants. This must be checked during
+ -- expansion, because during analysis the type of the selector is not
+ -- known at the point the prefix is analyzed. If the conversion is the
+ -- target of an assignment, then we cannot force the evaluation.
if Nkind (Prefix (N)) = N_Unchecked_Type_Conversion
and then Has_Discriminants (Etype (N))
@@ -4362,64 +5148,127 @@ package body Exp_Ch4 is
if Ekind (Entity (Selector_Name (N))) = E_Discriminant then
-- If the selector is a discriminant of a constrained record type,
- -- rewrite the expression with the actual value of the discriminant.
- -- Don't do this on the left hand of an assignment statement (this
- -- happens in generated code, and means we really want to set it!)
- -- We also only do this optimization for discrete types, and not
- -- for access types (access discriminants get us into trouble!)
- -- We also do not expand the prefix of an attribute or the
- -- operand of an object renaming declaration.
+ -- we may be able to rewrite the expression with the actual value
+ -- of the discriminant, a useful optimization in some cases.
if Is_Record_Type (Ptyp)
and then Has_Discriminants (Ptyp)
and then Is_Constrained (Ptyp)
- and then Is_Discrete_Type (Etype (N))
- and then (Nkind (Par) /= N_Assignment_Statement
- or else Name (Par) /= N)
- and then (Nkind (Par) /= N_Attribute_Reference
- or else Prefix (Par) /= N)
- and then not Is_Renamed_Object (N)
then
- declare
- D : Entity_Id;
- E : Elmt_Id;
+ -- Do this optimization for discrete types only, and not for
+ -- access types (access discriminants get us into trouble!)
- begin
- D := First_Discriminant (Ptyp);
- E := First_Elmt (Discriminant_Constraint (Ptyp));
+ if not Is_Discrete_Type (Etype (N)) then
+ null;
+
+ -- Don't do this on the left hand of an assignment statement.
+ -- Normally one would think that references like this would
+ -- not occur, but they do in generated code, and mean that
+ -- we really do want to assign the discriminant!
+
+ elsif Nkind (Par) = N_Assignment_Statement
+ and then Name (Par) = N
+ then
+ null;
+
+ -- Don't do this optimization for the prefix of an attribute
+ -- or the operand of an object renaming declaration since these
+ -- are contexts where we do not want the value anyway.
+
+ elsif (Nkind (Par) = N_Attribute_Reference
+ and then Prefix (Par) = N)
+ or else Is_Renamed_Object (N)
+ then
+ null;
+
+ -- Don't do this optimization if we are within the code for a
+ -- discriminant check, since the whole point of such a check may
+ -- be to verify the condition on which the code below depends!
+
+ elsif Is_In_Discriminant_Check (N) then
+ null;
+
+ -- Green light to see if we can do the optimization. There is
+ -- still one condition that inhibits the optimization below
+ -- but now is the time to check the particular discriminant.
+
+ else
+ -- Loop through discriminants to find the matching
+ -- discriminant constraint to see if we can copy it.
+
+ Disc := First_Discriminant (Ptyp);
+ Dcon := First_Elmt (Discriminant_Constraint (Ptyp));
+ Discr_Loop : while Present (Dcon) loop
+
+ -- Check if this is the matching discriminant
- while Present (E) loop
- if D = Entity (Selector_Name (N)) then
+ if Disc = Entity (Selector_Name (N)) then
+
+ -- Here we have the matching discriminant. Check for
+ -- the case of a discriminant of a component that is
+ -- constrained by an outer discriminant, which cannot
+ -- be optimized away.
+
+ if
+ Denotes_Discriminant
+ (Node (Dcon), Check_Protected => True)
+ then
+ exit Discr_Loop;
-- In the context of a case statement, the expression
-- may have the base type of the discriminant, and we
-- need to preserve the constraint to avoid spurious
-- errors on missing cases.
- if Nkind (Parent (N)) = N_Case_Statement
- and then Etype (Node (E)) /= Etype (D)
+ elsif Nkind (Parent (N)) = N_Case_Statement
+ and then Etype (Node (Dcon)) /= Etype (Disc)
then
+ -- RBKD is suspicious of the following code. The
+ -- call to New_Copy instead of New_Copy_Tree is
+ -- suspicious, and the call to Analyze instead
+ -- of Analyze_And_Resolve is also suspicious ???
+
+ -- Wouldn't it be good enough to do a perfectly
+ -- normal Analyze_And_Resolve call using the
+ -- subtype of the discriminant here???
+
Rewrite (N,
Make_Qualified_Expression (Loc,
- Subtype_Mark => New_Occurrence_Of (Etype (D), Loc),
- Expression => New_Copy (Node (E))));
+ Subtype_Mark =>
+ New_Occurrence_Of (Etype (Disc), Loc),
+ Expression =>
+ New_Copy (Node (Dcon))));
Analyze (N);
+
+ -- In case that comes out as a static expression,
+ -- reset it (a selected component is never static).
+
+ Set_Is_Static_Expression (N, False);
+ return;
+
+ -- Otherwise we can just copy the constraint, but the
+ -- result is certainly not static!
+
+ -- Again the New_Copy here and the failure to even
+ -- to an analyze call is uneasy ???
+
else
- Rewrite (N, New_Copy (Node (E)));
+ Rewrite (N, New_Copy (Node (Dcon)));
+ Set_Is_Static_Expression (N, False);
+ return;
end if;
-
- Set_Is_Static_Expression (N, False);
- return;
end if;
- Next_Elmt (E);
- Next_Discriminant (D);
- end loop;
+ Next_Elmt (Dcon);
+ Next_Discriminant (Disc);
+ end loop Discr_Loop;
- -- Note: the above loop should always terminate, but if
- -- it does not, we just missed an optimization due to
- -- some glitch (perhaps a previous error), so ignore!
- end;
+ -- Note: the above loop should always find a matching
+ -- discriminant, but if it does not, we just missed an
+ -- optimization due to some glitch (perhaps a previous
+ -- error), so ignore.
+
+ end if;
end if;
-- The only remaining processing is in the case of a discriminant of
@@ -4450,7 +5299,6 @@ package body Exp_Ch4 is
Rewrite (N, New_N);
Analyze (N);
end if;
-
end Expand_N_Selected_Component;
--------------------
@@ -4462,8 +5310,39 @@ package body Exp_Ch4 is
Typ : constant Entity_Id := Etype (N);
Pfx : constant Node_Id := Prefix (N);
Ptp : Entity_Id := Etype (Pfx);
- Ent : Entity_Id;
- Decl : Node_Id;
+
+ procedure Make_Temporary;
+ -- Create a named variable for the value of the slice, in
+ -- cases where the back-end cannot handle it properly, e.g.
+ -- when packed types or unaligned slices are involved.
+
+ --------------------
+ -- Make_Temporary --
+ --------------------
+
+ procedure Make_Temporary is
+ Decl : Node_Id;
+ Ent : constant Entity_Id :=
+ Make_Defining_Identifier (Loc, New_Internal_Name ('T'));
+ begin
+ Decl :=
+ Make_Object_Declaration (Loc,
+ Defining_Identifier => Ent,
+ Object_Definition => New_Occurrence_Of (Typ, Loc));
+
+ Set_No_Initialization (Decl);
+
+ Insert_Actions (N, New_List (
+ Decl,
+ Make_Assignment_Statement (Loc,
+ Name => New_Occurrence_Of (Ent, Loc),
+ Expression => Relocate_Node (N))));
+
+ Rewrite (N, New_Occurrence_Of (Ent, Loc));
+ Analyze_And_Resolve (N, Typ);
+ end Make_Temporary;
+
+ -- Start of processing for Expand_N_Slice
begin
-- Special handling for access types
@@ -4486,11 +5365,6 @@ package body Exp_Ch4 is
Prefix => Relocate_Node (Pfx)));
Analyze_And_Resolve (Pfx, Ptp);
-
- -- The prefix will now carry the Access_Check flag for the back
- -- end, remove it from slice itself.
-
- Set_Do_Access_Check (N, False);
end if;
end if;
@@ -4528,6 +5402,9 @@ package body Exp_Ch4 is
if Is_Packed (Typ)
and then Nkind (Parent (N)) /= N_Assignment_Statement
+ and then (Nkind (Parent (Parent (N))) /= N_Assignment_Statement
+ or else
+ Parent (N) /= Name (Parent (Parent (N))))
and then Nkind (Parent (N)) /= N_Indexed_Component
and then not Is_Renamed_Object (N)
and then Nkind (Parent (N)) /= N_Procedure_Call_Statement
@@ -4535,24 +5412,15 @@ package body Exp_Ch4 is
or else
Attribute_Name (Parent (N)) /= Name_Address)
then
- Ent :=
- Make_Defining_Identifier (Loc, New_Internal_Name ('T'));
+ Make_Temporary;
- Decl :=
- Make_Object_Declaration (Loc,
- Defining_Identifier => Ent,
- Object_Definition => New_Occurrence_Of (Typ, Loc));
-
- Set_No_Initialization (Decl);
+ -- Same transformation for actuals in a function call, where
+ -- Expand_Actuals is not used.
- Insert_Actions (N, New_List (
- Decl,
- Make_Assignment_Statement (Loc,
- Name => New_Occurrence_Of (Ent, Loc),
- Expression => Relocate_Node (N))));
-
- Rewrite (N, New_Occurrence_Of (Ent, Loc));
- Analyze_And_Resolve (N, Typ);
+ elsif Nkind (Parent (N)) = N_Function_Call
+ and then Is_Possibly_Unaligned_Slice (N)
+ then
+ Make_Temporary;
end if;
end Expand_N_Slice;
@@ -4616,11 +5484,16 @@ package body Exp_Ch4 is
if not Is_Constrained (Target_Type) then
if Has_Discriminants (Operand_Type) then
Disc := First_Discriminant (Operand_Type);
+
+ if Disc /= First_Stored_Discriminant (Operand_Type) then
+ Disc := First_Stored_Discriminant (Operand_Type);
+ end if;
+
Cons := New_List;
while Present (Disc) loop
Append_To (Cons,
Make_Selected_Component (Loc,
- Prefix => Duplicate_Subexpr (Operand),
+ Prefix => Duplicate_Subexpr_Move_Checks (Operand),
Selector_Name =>
Make_Identifier (Loc, Chars (Disc))));
Next_Discriminant (Disc);
@@ -4641,7 +5514,7 @@ package body Exp_Ch4 is
Unchecked_Convert_To (Etype (N_Ix),
Make_Attribute_Reference (Loc,
Prefix =>
- Duplicate_Subexpr
+ Duplicate_Subexpr_No_Checks
(Operand, Name_Req => True),
Attribute_Name => Name_First,
Expressions => New_List (
@@ -4651,7 +5524,7 @@ package body Exp_Ch4 is
Unchecked_Convert_To (Etype (N_Ix),
Make_Attribute_Reference (Loc,
Prefix =>
- Duplicate_Subexpr
+ Duplicate_Subexpr_No_Checks
(Operand, Name_Req => True),
Attribute_Name => Name_Last,
Expressions => New_List (
@@ -4714,10 +5587,16 @@ package body Exp_Ch4 is
-- [constraint_error when Tnn < typ'First or else Tnn > typ'Last]
-- Tnn
+ -- This is necessary when there is a conversion of integer to float
+ -- or to fixed-point to ensure that the correct checks are made. It
+ -- is not necessary for float to float where it is enough to simply
+ -- set the Do_Range_Check flag.
+
procedure Real_Range_Check is
Btyp : constant Entity_Id := Base_Type (Target_Type);
Lo : constant Node_Id := Type_Low_Bound (Target_Type);
Hi : constant Node_Id := Type_High_Bound (Target_Type);
+ Xtyp : constant Entity_Id := Etype (Operand);
Conv : Node_Id;
Tnn : Entity_Id;
@@ -4742,25 +5621,77 @@ package body Exp_Ch4 is
-- Nothing to do if expression is an entity on which checks
-- have been suppressed.
- if Is_Entity_Name (Expression (N))
- and then Range_Checks_Suppressed (Entity (Expression (N)))
+ if Is_Entity_Name (Operand)
+ and then Range_Checks_Suppressed (Entity (Operand))
then
return;
end if;
- -- Here we rewrite the conversion as described above
+ -- Nothing to do if bounds are all static and we can tell that
+ -- the expression is within the bounds of the target. Note that
+ -- if the operand is of an unconstrained floating-point type,
+ -- then we do not trust it to be in range (might be infinite)
+
+ declare
+ S_Lo : constant Node_Id := Type_Low_Bound (Xtyp);
+ S_Hi : constant Node_Id := Type_High_Bound (Xtyp);
+
+ begin
+ if (not Is_Floating_Point_Type (Xtyp)
+ or else Is_Constrained (Xtyp))
+ and then Compile_Time_Known_Value (S_Lo)
+ and then Compile_Time_Known_Value (S_Hi)
+ and then Compile_Time_Known_Value (Hi)
+ and then Compile_Time_Known_Value (Lo)
+ then
+ declare
+ D_Lov : constant Ureal := Expr_Value_R (Lo);
+ D_Hiv : constant Ureal := Expr_Value_R (Hi);
+ S_Lov : Ureal;
+ S_Hiv : Ureal;
+
+ begin
+ if Is_Real_Type (Xtyp) then
+ S_Lov := Expr_Value_R (S_Lo);
+ S_Hiv := Expr_Value_R (S_Hi);
+ else
+ S_Lov := UR_From_Uint (Expr_Value (S_Lo));
+ S_Hiv := UR_From_Uint (Expr_Value (S_Hi));
+ end if;
+
+ if D_Hiv > D_Lov
+ and then S_Lov >= D_Lov
+ and then S_Hiv <= D_Hiv
+ then
+ Set_Do_Range_Check (Operand, False);
+ return;
+ end if;
+ end;
+ end if;
+ end;
+
+ -- For float to float conversions, we are done
+
+ if Is_Floating_Point_Type (Xtyp)
+ and then
+ Is_Floating_Point_Type (Btyp)
+ then
+ return;
+ end if;
+
+ -- Otherwise rewrite the conversion as described above
Conv := Relocate_Node (N);
Rewrite
(Subtype_Mark (Conv), New_Occurrence_Of (Btyp, Loc));
Set_Etype (Conv, Btyp);
- -- Skip overflow check for integer to float conversions,
- -- since it is not needed, and in any case gigi generates
- -- incorrect code for such overflow checks ???
+ -- Enable overflow except in the case of integer to float
+ -- conversions, where it is never required, since we can
+ -- never have overflow in this case.
- if not Is_Integer_Type (Etype (Expression (N))) then
- Set_Do_Overflow_Check (Conv, True);
+ if not Is_Integer_Type (Etype (Operand)) then
+ Enable_Overflow_Check (Conv);
end if;
Tnn :=
@@ -4806,7 +5737,7 @@ package body Exp_Ch4 is
-- so remove the conversion completely, it is useless.
if Operand_Type = Target_Type then
- Rewrite (N, Relocate_Node (Expression (N)));
+ Rewrite (N, Relocate_Node (Operand));
return;
end if;
@@ -4956,21 +5887,22 @@ package body Exp_Ch4 is
Make_And_Then (Loc,
Left_Opnd =>
Make_Op_Ne (Loc,
- Left_Opnd => Duplicate_Subexpr (Operand),
+ Left_Opnd => Duplicate_Subexpr_No_Checks (Operand),
Right_Opnd => Make_Null (Loc)),
Right_Opnd =>
Make_Not_In (Loc,
Left_Opnd =>
Make_Explicit_Dereference (Loc,
- Prefix => Duplicate_Subexpr (Operand)),
+ Prefix =>
+ Duplicate_Subexpr_No_Checks (Operand)),
Right_Opnd =>
New_Reference_To (Actual_Target_Type, Loc)));
else
Cond :=
Make_Not_In (Loc,
- Left_Opnd => Duplicate_Subexpr (Operand),
+ Left_Opnd => Duplicate_Subexpr_No_Checks (Operand),
Right_Opnd =>
New_Reference_To (Actual_Target_Type, Loc));
end if;
@@ -5098,17 +6030,17 @@ package body Exp_Ch4 is
-- helpful, but still does not catch all cases with 64-bit integers
-- on targets with only 64-bit floats ???
- if Do_Range_Check (Expression (N)) then
- Rewrite (Expression (N),
+ if Do_Range_Check (Operand) then
+ Rewrite (Operand,
Make_Type_Conversion (Loc,
Subtype_Mark =>
New_Occurrence_Of (Standard_Long_Long_Float, Loc),
Expression =>
- Relocate_Node (Expression (N))));
+ Relocate_Node (Operand)));
- Set_Etype (Expression (N), Standard_Long_Long_Float);
- Enable_Range_Check (Expression (N));
- Set_Do_Range_Check (Expression (Expression (N)), False);
+ Set_Etype (Operand, Standard_Long_Long_Float);
+ Enable_Range_Check (Operand);
+ Set_Do_Range_Check (Expression (Operand), False);
end if;
-- Case of array conversions
@@ -5194,6 +6126,55 @@ package body Exp_Ch4 is
-- No other conversions should be passed to Gigi.
+ -- The only remaining step is to generate a range check if we still
+ -- have a type conversion at this stage and Do_Range_Check is set.
+ -- For now we do this only for conversions of discrete types.
+
+ if Nkind (N) = N_Type_Conversion
+ and then Is_Discrete_Type (Etype (N))
+ then
+ declare
+ Expr : constant Node_Id := Expression (N);
+ Ftyp : Entity_Id;
+ Ityp : Entity_Id;
+
+ begin
+ if Do_Range_Check (Expr)
+ and then Is_Discrete_Type (Etype (Expr))
+ then
+ Set_Do_Range_Check (Expr, False);
+
+ -- Before we do a range check, we have to deal with treating
+ -- a fixed-point operand as an integer. The way we do this
+ -- is simply to do an unchecked conversion to an appropriate
+ -- integer type large enough to hold the result.
+
+ -- This code is not active yet, because we are only dealing
+ -- with discrete types so far ???
+
+ if Nkind (Expr) in N_Has_Treat_Fixed_As_Integer
+ and then Treat_Fixed_As_Integer (Expr)
+ then
+ Ftyp := Base_Type (Etype (Expr));
+
+ if Esize (Ftyp) >= Esize (Standard_Integer) then
+ Ityp := Standard_Long_Long_Integer;
+ else
+ Ityp := Standard_Integer;
+ end if;
+
+ Rewrite (Expr, Unchecked_Convert_To (Ityp, Expr));
+ end if;
+
+ -- Reset overflow flag, since the range check will include
+ -- dealing with possible overflow, and generate the check
+
+ Set_Do_Overflow_Check (N, False);
+ Generate_Range_Check
+ (Expr, Target_Type, CE_Range_Check_Failed);
+ end if;
+ end;
+ end if;
end Expand_N_Type_Conversion;
-----------------------------------
@@ -5448,6 +6429,47 @@ package body Exp_Ch4 is
end if;
end Fixup_Universal_Fixed_Operation;
+ ------------------------------
+ -- Get_Allocator_Final_List --
+ ------------------------------
+
+ function Get_Allocator_Final_List
+ (N : Node_Id;
+ T : Entity_Id;
+ PtrT : Entity_Id)
+ return Entity_Id
+ is
+ Loc : constant Source_Ptr := Sloc (N);
+ Acc : Entity_Id;
+
+ begin
+ -- If the context is an access parameter, we need to create
+ -- a non-anonymous access type in order to have a usable
+ -- final list, because there is otherwise no pool to which
+ -- the allocated object can belong. We create both the type
+ -- and the finalization chain here, because freezing an
+ -- internal type does not create such a chain. The Final_Chain
+ -- that is thus created is shared by the access parameter.
+
+ if Ekind (PtrT) = E_Anonymous_Access_Type then
+ Acc := Make_Defining_Identifier (Loc, New_Internal_Name ('J'));
+ Insert_Action (N,
+ Make_Full_Type_Declaration (Loc,
+ Defining_Identifier => Acc,
+ Type_Definition =>
+ Make_Access_To_Object_Definition (Loc,
+ Subtype_Indication =>
+ New_Occurrence_Of (T, Loc))));
+
+ Build_Final_List (N, Acc);
+ Set_Associated_Final_Chain (PtrT, Associated_Final_Chain (Acc));
+ return Find_Final_List (Acc);
+
+ else
+ return Find_Final_List (PtrT);
+ end if;
+ end Get_Allocator_Final_List;
+
-------------------------------
-- Insert_Dereference_Action --
-------------------------------
@@ -5501,12 +6523,15 @@ package body Exp_Ch4 is
New_Reference_To (Pool, Loc),
- -- Storage_Address
+ -- Storage_Address. We use the attribute Pool_Address,
+ -- which uses the pointer itself to find the address of
+ -- the object, and which handles unconstrained arrays
+ -- properly by computing the address of the template.
+ -- i.e. the correct address of the corresponding allocation.
Make_Attribute_Reference (Loc,
- Prefix =>
- Make_Explicit_Dereference (Loc, Duplicate_Subexpr (N)),
- Attribute_Name => Name_Address),
+ Prefix => Duplicate_Subexpr_Move_Checks (N),
+ Attribute_Name => Name_Pool_Address),
-- Size_In_Storage_Elements
@@ -5514,7 +6539,8 @@ package body Exp_Ch4 is
Left_Opnd =>
Make_Attribute_Reference (Loc,
Prefix =>
- Make_Explicit_Dereference (Loc, Duplicate_Subexpr (N)),
+ Make_Explicit_Dereference (Loc,
+ Duplicate_Subexpr_Move_Checks (N)),
Attribute_Name => Name_Size),
Right_Opnd =>
Make_Integer_Literal (Loc, System_Storage_Unit)),
@@ -5523,9 +6549,13 @@ package body Exp_Ch4 is
Make_Attribute_Reference (Loc,
Prefix =>
- Make_Explicit_Dereference (Loc, Duplicate_Subexpr (N)),
+ Make_Explicit_Dereference (Loc,
+ Duplicate_Subexpr_Move_Checks (N)),
Attribute_Name => Name_Alignment))));
+ exception
+ when RE_Not_Available =>
+ return;
end Insert_Dereference_Action;
------------------------------
@@ -5974,6 +7004,99 @@ package body Exp_Ch4 is
end if;
end Rewrite_Comparison;
+ ----------------------------
+ -- Safe_In_Place_Array_Op --
+ ----------------------------
+
+ function Safe_In_Place_Array_Op
+ (Lhs : Node_Id;
+ Op1 : Node_Id;
+ Op2 : Node_Id)
+ return Boolean
+ is
+ Target : Entity_Id;
+
+ function Is_Safe_Operand (Op : Node_Id) return Boolean;
+ -- Operand is safe if it cannot overlap part of the target of the
+ -- operation. If the operand and the target are identical, the operand
+ -- is safe. The operand can be empty in the case of negation.
+
+ function Is_Unaliased (N : Node_Id) return Boolean;
+ -- Check that N is a stand-alone entity.
+
+ ------------------
+ -- Is_Unaliased --
+ ------------------
+
+ function Is_Unaliased (N : Node_Id) return Boolean is
+ begin
+ return
+ Is_Entity_Name (N)
+ and then No (Address_Clause (Entity (N)))
+ and then No (Renamed_Object (Entity (N)));
+ end Is_Unaliased;
+
+ ---------------------
+ -- Is_Safe_Operand --
+ ---------------------
+
+ function Is_Safe_Operand (Op : Node_Id) return Boolean is
+ begin
+ if No (Op) then
+ return True;
+
+ elsif Is_Entity_Name (Op) then
+ return Is_Unaliased (Op);
+
+ elsif Nkind (Op) = N_Indexed_Component
+ or else Nkind (Op) = N_Selected_Component
+ then
+ return Is_Unaliased (Prefix (Op));
+
+ elsif Nkind (Op) = N_Slice then
+ return
+ Is_Unaliased (Prefix (Op))
+ and then Entity (Prefix (Op)) /= Target;
+
+ elsif Nkind (Op) = N_Op_Not then
+ return Is_Safe_Operand (Right_Opnd (Op));
+
+ else
+ return False;
+ end if;
+ end Is_Safe_Operand;
+
+ -- Start of processing for Is_Safe_In_Place_Array_Op
+
+ begin
+ -- We skip this processing if the component size is not the
+ -- same as a system storage unit (since at least for NOT
+ -- this would cause problems).
+
+ if Component_Size (Etype (Lhs)) /= System_Storage_Unit then
+ return False;
+
+ -- Cannot do in place stuff on Java_VM since cannot pass addresses
+
+ elsif Java_VM then
+ return False;
+
+ -- Cannot do in place stuff if non-standard Boolean representation
+
+ elsif Has_Non_Standard_Rep (Component_Type (Etype (Lhs))) then
+ return False;
+
+ elsif not Is_Unaliased (Lhs) then
+ return False;
+ else
+ Target := Entity (Lhs);
+
+ return
+ Is_Safe_Operand (Op1)
+ and then Is_Safe_Operand (Op2);
+ end if;
+ end Safe_In_Place_Array_Op;
+
-----------------------
-- Tagged_Membership --
-----------------------
OpenPOWER on IntegriCloud