# # Unusual variables checked by this code: # NOP - two byte opcode for no-op (defaults to 0) # DATA_ADDR - if end-of-text-plus-one-page isn't right for data start # OTHER_READWRITE_SECTIONS - other than .data .bss .ctors .sdata ... # (e.g., .PARISC.global) # OTHER_SECTIONS - at the end # EXECUTABLE_SYMBOLS - symbols that must be defined for an # executable (e.g., _DYNAMIC_LINK) # TEXT_START_SYMBOLS - symbols that appear at the start of the # .text section. # DATA_START_SYMBOLS - symbols that appear at the start of the # .data section. # OTHER_BSS_SYMBOLS - symbols that appear at the start of the # .bss section besides __bss_start. # EMBEDDED - whether this is for an embedded system. # # When adding sections, do note that the names of some sections are used # when specifying the start address of the next. # test -z "$ENTRY" && ENTRY=_start test -z "${BIG_OUTPUT_FORMAT}" && BIG_OUTPUT_FORMAT=${OUTPUT_FORMAT} test -z "${LITTLE_OUTPUT_FORMAT}" && LITTLE_OUTPUT_FORMAT=${OUTPUT_FORMAT} if [ -z "$MACHINE" ]; then OUTPUT_ARCH=${ARCH}; else OUTPUT_ARCH=${ARCH}:${MACHINE}; fi test "$LD_FLAG" = "N" && DATA_ADDR=. CTOR=".ctors ${CONSTRUCTING-0} : { ${CONSTRUCTING+ __CTOR_LIST__ = .; } ${CONSTRUCTING+${CTOR_START}} *(.ctors) /* We don't want to include the .ctor section from from the crtend.o file until after the sorted ctors. The .ctor section from the crtend file contains the end of ctors marker and it must be last KEEP (*(EXCLUDE_FILE (*crtend.o) .ctors)) KEEP (*(SORT(.ctors.*))) KEEP (*(.ctors)) */ ${CONSTRUCTING+${CTOR_END}} ${CONSTRUCTING+ __CTOR_END__ = .; } } ${RELOCATING+ > ${DATA_MEMORY}}" DTOR=" .dtors ${CONSTRUCTING-0} : { ${CONSTRUCTING+ __DTOR_LIST__ = .; } *(.dtors) /* KEEP (*crtbegin.o(.dtors)) KEEP (*(EXCLUDE_FILE (*crtend.o) .dtors)) KEEP (*(SORT(.dtors.*))) KEEP (*(.dtors)) */ ${CONSTRUCTING+ __DTOR_END__ = .; } } ${RELOCATING+ > ${DATA_MEMORY}}" VECTORS=" /* If the 'vectors_addr' symbol is defined, it indicates the start address of interrupt vectors. This depends on the 68HC11 operating mode: Addr Single chip 0xffc0 Extended mode 0xffc0 Bootstrap 0x00c0 Test 0xbfc0 In general, the vectors address is 0xffc0. This can be overriden with the '-defsym vectors_addr=0xbfc0' ld option. Note: for the bootstrap mode, the interrupt vectors are at 0xbfc0 but they are redirected to 0x00c0 by the internal PROM. Application's vectors must also consist of jump instructions (see Motorola's manual). */ PROVIDE (_vectors_addr = DEFINED (vectors_addr) ? vectors_addr : 0xffc0); .vectors DEFINED (vectors_addr) ? vectors_addr : 0xffc0 : { *(.vectors) }" # # We provide two emulations: a fixed on that defines some memory banks # and a configurable one that includes a user provided memory definition. # case $GENERIC_BOARD in yes|1|YES) MEMORY_DEF=" /* Get memory banks definition from some user configuration file. This file must be located in some linker directory (search path with -L). See fixed memory banks emulation script. */ INCLUDE memory.x; " ;; *) MEMORY_DEF=" /* Fixed definition of the available memory banks. See generic emulation script for a user defined configuration. */ MEMORY { page0 (rwx) : ORIGIN = 0x0, LENGTH = 256 text (rx) : ORIGIN = ${ROM_START_ADDR}, LENGTH = ${ROM_SIZE} data : ORIGIN = ${RAM_START_ADDR}, LENGTH = ${RAM_SIZE} } /* Setup the stack on the top of the data memory bank. */ PROVIDE (_stack = ${RAM_START_ADDR} + ${RAM_SIZE} - 1); " ;; esac STARTUP_CODE=" /* Startup code. */ *(.install0) /* Section should setup the stack pointer. */ *(.install1) /* Place holder for applications. */ *(.install2) /* Optional installation of data sections in RAM. */ *(.install3) /* Place holder for applications. */ *(.install4) /* Section that calls the main. */ " PRE_COMPUTE_DATA_SIZE=" /* SCz: this does not work yet... This is supposed to force the loading of _map_data.o (from libgcc.a) when the .data section is not empty. By doing so, this should bring the code that copies the .data section from ROM to RAM at init time. ___pre_comp_data_size = SIZEOF(.data); __install_data_sections = ___pre_comp_data_size > 0 ? __map_data_sections : 0; */ " INSTALL_RELOC=" .install0 0 : { *(.install0) } .install1 0 : { *(.install1) } .install2 0 : { *(.install2) } .install3 0 : { *(.install3) } .install4 0 : { *(.install4) } " BSS_DATA_RELOC=" .data1 0 : { *(.data1) } /* We want the small data sections together, so single-instruction offsets can access them all, and initialized data all before uninitialized, so we can shorten the on-disk segment size. */ .sdata 0 : { *(.sdata) } .sbss 0 : { *(.sbss) } .scommon 0 : { *(.scommon) } " cat < page0} /* Start of text section. */ .stext ${RELOCATING-0} : { *(.stext) } ${RELOCATING+ > ${TEXT_MEMORY}} .init ${RELOCATING-0} : { *(.init) } ${RELOCATING+=${NOP-0}} ${RELOCATING-${INSTALL_RELOC}} .text ${RELOCATING-0}: { /* Put startup code at beginning so that _start keeps same address. */ ${RELOCATING+${STARTUP_CODE}} ${RELOCATING+*(.init)} *(.text) *(.fini) /* .gnu.warning sections are handled specially by elf32.em. */ *(.gnu.warning) *(.gnu.linkonce.t*) ${RELOCATING+_etext = .;} ${RELOCATING+PROVIDE (etext = .);} } ${RELOCATING+ > ${TEXT_MEMORY}} .eh_frame ${RELOCATING-0} : { *(.eh_frame) } ${RELOCATING+ > ${TEXT_MEMORY}} .rodata ${RELOCATING-0} : { *(.rodata) *(.gnu.linkonce.r*) } ${RELOCATING+ > ${TEXT_MEMORY}} .rodata1 ${RELOCATING-0} : { *(.rodata1) } ${RELOCATING+ > ${TEXT_MEMORY}} /* Start of the data section image in ROM. */ ${RELOCATING+__data_image = .;} ${RELOCATING+PROVIDE (__data_image = .);} /* All read-only sections that normally go in PROM must be above. We construct the DATA image section in PROM at end of all these read-only sections. The data image must be copied at init time. Refer to GNU ld, Section 3.6.8.2 Output Section LMA. */ .data ${RELOCATING-0} : ${RELOCATING+AT (__data_image)} { ${RELOCATING+__data_section_start = .;} ${RELOCATING+PROVIDE (__data_section_start = .);} ${RELOCATING+${DATA_START_SYMBOLS}} ${RELOCATING+*(.sdata)} *(.data) ${RELOCATING+*(.data1)} *(.gnu.linkonce.d*) ${CONSTRUCTING+CONSTRUCTORS} ${RELOCATING+_edata = .;} ${RELOCATING+PROVIDE (edata = .);} } ${RELOCATING+ > ${DATA_MEMORY}} ${RELOCATING+__data_section_size = SIZEOF(.data);} ${RELOCATING+PROVIDE (__data_section_size = SIZEOF(.data));} ${RELOCATING+__data_image_end = __data_image + __data_section_size;} ${RELOCATING+${PRE_COMPUTE_DATA_SIZE}} /* .install ${RELOCATING-0}: { . = _data_image_end; } ${RELOCATING+ > ${TEXT_MEMORY}} */ /* Relocation for some bss and data sections. */ ${RELOCATING-${BSS_DATA_RELOC}} .bss ${RELOCATING-0} : { ${RELOCATING+__bss_start = .;} ${RELOCATING+*(.sbss)} ${RELOCATING+*(.scommon)} *(.dynbss) *(.bss) *(COMMON) ${RELOCATING+PROVIDE (_end = .);} } ${RELOCATING+ > ${DATA_MEMORY}} ${RELOCATING+__bss_size = SIZEOF(.bss);} ${RELOCATING+PROVIDE (__bss_size = SIZEOF(.bss));} ${RELOCATING+${CTOR}} ${RELOCATING+${DTOR}} ${RELOCATING+${VECTORS}} /* Stabs debugging sections. */ .stab 0 : { *(.stab) } .stabstr 0 : { *(.stabstr) } .stab.excl 0 : { *(.stab.excl) } .stab.exclstr 0 : { *(.stab.exclstr) } .stab.index 0 : { *(.stab.index) } .stab.indexstr 0 : { *(.stab.indexstr) } .comment 0 : { *(.comment) } /* DWARF debug sections. Symbols in the DWARF debugging sections are relative to the beginning of the section so we begin them at 0. Treatment of DWARF debug section must be at end of the linker script to avoid problems when there are undefined symbols. It's necessary to avoid that the DWARF section is relocated before such undefined symbols are found. */ /* DWARF 1 */ .debug 0 : { *(.debug) } .line 0 : { *(.line) } /* GNU DWARF 1 extensions */ .debug_srcinfo 0 : { *(.debug_srcinfo) } .debug_sfnames 0 : { *(.debug_sfnames) } /* DWARF 1.1 and DWARF 2 */ .debug_aranges 0 : { *(.debug_aranges) } .debug_pubnames 0 : { *(.debug_pubnames) } /* DWARF 2 */ .debug_info 0 : { *(.debug_info) *(.gnu.linkonce.wi.*) } .debug_abbrev 0 : { *(.debug_abbrev) } .debug_line 0 : { *(.debug_line) } .debug_frame 0 : { *(.debug_frame) } .debug_str 0 : { *(.debug_str) } .debug_loc 0 : { *(.debug_loc) } .debug_macinfo 0 : { *(.debug_macinfo) } } EOF