/* Target-machine dependent code for Zilog Z8000, for GDB. Copyright (C) 1992,1993 Free Software Foundation, Inc. This file is part of GDB. This program is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 2 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program; if not, write to the Free Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. */ /* Contributed by Steve Chamberlain sac@cygnus.com */ #include "defs.h" #include "frame.h" #include "obstack.h" #include "symtab.h" #include "gdbcmd.h" #include "gdbtypes.h" #include "dis-asm.h" /* Return the saved PC from this frame. If the frame has a memory copy of SRP_REGNUM, use that. If not, just use the register SRP_REGNUM itself. */ CORE_ADDR frame_saved_pc (frame) FRAME frame; { return (read_memory_pointer (frame->frame + (BIG ? 4 : 2))); } #define IS_PUSHL(x) (BIG ? ((x & 0xfff0) == 0x91e0):((x & 0xfff0) == 0x91F0)) #define IS_PUSHW(x) (BIG ? ((x & 0xfff0) == 0x93e0):((x & 0xfff0)==0x93f0)) #define IS_MOVE_FP(x) (BIG ? x == 0xa1ea : x == 0xa1fa) #define IS_MOV_SP_FP(x) (BIG ? x == 0x94ea : x == 0x0d76) #define IS_SUB2_SP(x) (x==0x1b87) #define IS_MOVK_R5(x) (x==0x7905) #define IS_SUB_SP(x) ((x & 0xffff) == 0x020f) #define IS_PUSH_FP(x) (BIG ? (x == 0x93ea) : (x == 0x93fa)) /* work out how much local space is on the stack and return the pc pointing to the first push */ static CORE_ADDR skip_adjust (pc, size) CORE_ADDR pc; int *size; { *size = 0; if (IS_PUSH_FP (read_memory_short (pc)) && IS_MOV_SP_FP (read_memory_short (pc + 2))) { /* This is a function with an explict frame pointer */ pc += 4; *size += 2; /* remember the frame pointer */ } /* remember any stack adjustment */ if (IS_SUB_SP (read_memory_short (pc))) { *size += read_memory_short (pc + 2); pc += 4; } return pc; } int examine_frame (pc, regs, sp) CORE_ADDR pc; struct frame_saved_regs *regs; CORE_ADDR sp; { int w = read_memory_short (pc); int offset = 0; int regno; for (regno = 0; regno < NUM_REGS; regno++) regs->regs[regno] = 0; while (IS_PUSHW (w) || IS_PUSHL (w)) { /* work out which register is being pushed to where */ if (IS_PUSHL (w)) { regs->regs[w & 0xf] = offset; regs->regs[(w & 0xf) + 1] = offset + 2; offset += 4; } else { regs->regs[w & 0xf] = offset; offset += 2; } pc += 2; w = read_memory_short (pc); } if (IS_MOVE_FP (w)) { /* We know the fp */ } else if (IS_SUB_SP (w)) { /* Subtracting a value from the sp, so were in a function which needs stack space for locals, but has no fp. We fake up the values as if we had an fp */ regs->regs[FP_REGNUM] = sp; } else { /* This one didn't have an fp, we'll fake it up */ regs->regs[SP_REGNUM] = sp; } /* stack pointer contains address of next frame */ /* regs->regs[fp_regnum()] = fp;*/ regs->regs[SP_REGNUM] = sp; return pc; } CORE_ADDR z8k_skip_prologue (start_pc) CORE_ADDR start_pc; { struct frame_saved_regs dummy; return examine_frame (start_pc, &dummy, 0); } CORE_ADDR addr_bits_remove (x) CORE_ADDR x; { return x & PTR_MASK; } read_memory_pointer (x) CORE_ADDR x; { return read_memory_integer (ADDR_BITS_REMOVE (x), BIG ? 4 : 2); } FRAME_ADDR frame_chain (thisframe) FRAME thisframe; { if (thisframe->prev == 0) { /* This is the top of the stack, let's get the sp for real */ } if (!inside_entry_file ((thisframe)->pc)) { return read_memory_pointer ((thisframe)->frame); } return 0; } init_frame_pc () { abort (); } /* Put here the code to store, into a struct frame_saved_regs, the addresses of the saved registers of frame described by FRAME_INFO. This includes special registers such as pc and fp saved in special ways in the stack frame. sp is even more special: the address we return for it IS the sp for the next frame. */ void get_frame_saved_regs (frame_info, frame_saved_regs) struct frame_info *frame_info; struct frame_saved_regs *frame_saved_regs; { CORE_ADDR pc; int w; memset (frame_saved_regs, '\0', sizeof (*frame_saved_regs)); pc = get_pc_function_start (frame_info->pc); /* wander down the instruction stream */ examine_frame (pc, frame_saved_regs, frame_info->frame); } void z8k_push_dummy_frame () { abort (); } int print_insn (memaddr, stream) CORE_ADDR memaddr; FILE *stream; { disassemble_info info; GDB_INIT_DISASSEMBLE_INFO(info, stream); if (BIG) { return print_insn_z8001 ((bfd_vma) memaddr, &info); } else { return print_insn_z8002 ((bfd_vma) memaddr, &info); } } /* Fetch the instruction at ADDR, returning 0 if ADDR is beyond LIM or is not the address of a valid instruction, the address of the next instruction beyond ADDR otherwise. *PWORD1 receives the first word of the instruction.*/ CORE_ADDR NEXT_PROLOGUE_INSN (addr, lim, pword1) CORE_ADDR addr; CORE_ADDR lim; short *pword1; { char buf[2]; if (addr < lim + 8) { read_memory (addr, buf, 2); *pword1 = extract_signed_integer (buf, 2); return addr + 2; } return 0; } /* Put here the code to store, into a struct frame_saved_regs, the addresses of the saved registers of frame described by FRAME_INFO. This includes special registers such as pc and fp saved in special ways in the stack frame. sp is even more special: the address we return for it IS the sp for the next frame. We cache the result of doing this in the frame_cache_obstack, since it is fairly expensive. */ void frame_find_saved_regs (fip, fsrp) struct frame_info *fip; struct frame_saved_regs *fsrp; { int locals; CORE_ADDR pc; CORE_ADDR adr; int i; memset (fsrp, 0, sizeof *fsrp); pc = skip_adjust (get_pc_function_start (fip->pc), &locals); { adr = fip->frame - locals; for (i = 0; i < 8; i++) { int word = read_memory_short (pc); pc += 2; if (IS_PUSHL (word)) { fsrp->regs[word & 0xf] = adr; fsrp->regs[(word & 0xf) + 1] = adr - 2; adr -= 4; } else if (IS_PUSHW (word)) { fsrp->regs[word & 0xf] = adr; adr -= 2; } else break; } } fsrp->regs[PC_REGNUM] = fip->frame + 4; fsrp->regs[FP_REGNUM] = fip->frame; } void addr_bits_set () { abort (); } int saved_pc_after_call () { return addr_bits_remove (read_memory_integer (read_register (SP_REGNUM), PTR_SIZE)); } extract_return_value(type, regbuf, valbuf) struct type *type; char *regbuf; char *valbuf; { int b; int len = TYPE_LENGTH(type); for (b = 0; b < len; b += 2) { int todo = len - b; if (todo > 2) todo = 2; memcpy(valbuf + b, regbuf + b, todo); } } void write_return_value(type, valbuf) struct type *type; char *valbuf; { int reg; int len; for (len = 0; len < TYPE_LENGTH(type); len += 2) { write_register_bytes(REGISTER_BYTE(len /2 + 2), valbuf + len, 2); } } void store_struct_return(addr, sp) CORE_ADDR addr; CORE_ADDR sp; { write_register(2, addr); } void print_register_hook (regno) int regno; { if ((regno & 1) == 0 && regno < 16) { unsigned short l[2]; read_relative_register_raw_bytes (regno, (char *) (l + 0)); read_relative_register_raw_bytes (regno + 1, (char *) (l + 1)); printf ("\t"); printf ("%04x%04x", l[0], l[1]); } if ((regno & 3) == 0 && regno < 16) { unsigned short l[4]; read_relative_register_raw_bytes (regno, (char *) (l + 0)); read_relative_register_raw_bytes (regno + 1, (char *) (l + 1)); read_relative_register_raw_bytes (regno + 2, (char *) (l + 2)); read_relative_register_raw_bytes (regno + 3, (char *) (l + 3)); printf ("\t"); printf ("%04x%04x%04x%04x", l[0], l[1], l[2], l[3]); } if (regno == 15) { unsigned short rval; int i; read_relative_register_raw_bytes (regno, (char *) (&rval)); printf ("\n"); for (i = 0; i < 10; i += 2) { printf ("(sp+%d=%04x)", i, read_memory_short (rval + i)); } } } void register_convert_to_virtual (regnum, from, to) unsigned char *from; unsigned char *to; { to[0] = from[0]; to[1] = from[1]; to[2] = from[2]; to[3] = from[3]; } void register_convert_to_raw (regnum, to, from) char *to; char *from; { to[0] = from[0]; to[1] = from[1]; to[2] = from[2]; to[3] = from[3]; } void z8k_pop_frame () { } struct cmd_list_element *setmemorylist; void z8k_set_pointer_size (newsize) int newsize; { static int oldsize = 0; if (oldsize != newsize) { printf ("pointer size set to %d bits\n", newsize); oldsize = newsize; if (newsize == 32) { BIG = 1; } else { BIG = 0; } _initialize_gdbtypes (); } } static void segmented_command (args, from_tty) char *args; int from_tty; { z8k_set_pointer_size (32); } static void unsegmented_command (args, from_tty) char *args; int from_tty; { z8k_set_pointer_size (16); } static void set_memory (args, from_tty) char *args; int from_tty; { printf ("\"set memory\" must be followed by the name of a memory subcommand.\n"); help_list (setmemorylist, "set memory ", -1, stdout); } _initialize_z8ktdep () { add_prefix_cmd ("memory", no_class, set_memory, "set the memory model", &setmemorylist, "set memory ", 0, &setlist); add_cmd ("segmented", class_support, segmented_command, "Set segmented memory model.", &setmemorylist); add_cmd ("unsegmented", class_support, unsegmented_command, "Set unsegmented memory model.", &setmemorylist); }