/* Support routines for manipulating internal types for GDB. Copyright (C) 1992, 1993, 1994, 1995, 1996 Free Software Foundation, Inc. Contributed by Cygnus Support, using pieces from other GDB modules. This file is part of GDB. This program is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 2 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program; if not, write to the Free Software Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */ #include "defs.h" #include "gdb_string.h" #include "bfd.h" #include "symtab.h" #include "symfile.h" #include "objfiles.h" #include "gdbtypes.h" #include "expression.h" #include "language.h" #include "target.h" #include "value.h" #include "demangle.h" #include "complaints.h" /* These variables point to the objects representing the predefined C data types. */ struct type *builtin_type_void; struct type *builtin_type_char; struct type *builtin_type_short; struct type *builtin_type_int; struct type *builtin_type_long; struct type *builtin_type_long_long; struct type *builtin_type_signed_char; struct type *builtin_type_unsigned_char; struct type *builtin_type_unsigned_short; struct type *builtin_type_unsigned_int; struct type *builtin_type_unsigned_long; struct type *builtin_type_unsigned_long_long; struct type *builtin_type_float; struct type *builtin_type_double; struct type *builtin_type_long_double; struct type *builtin_type_complex; struct type *builtin_type_double_complex; struct type *builtin_type_string; struct extra { char str[128]; int len; }; /* maximum extention is 128! FIXME */ static void add_name PARAMS ((struct extra *, char *)); static void add_mangled_type PARAMS ((struct extra *, struct type *)); #if 0 static void cfront_mangle_name PARAMS ((struct type *, int, int)); #endif static void print_bit_vector PARAMS ((B_TYPE *, int)); static void print_arg_types PARAMS ((struct type **, int)); static void dump_fn_fieldlists PARAMS ((struct type *, int)); static void print_cplus_stuff PARAMS ((struct type *, int)); /* Alloc a new type structure and fill it with some defaults. If OBJFILE is non-NULL, then allocate the space for the type structure in that objfile's type_obstack. */ struct type * alloc_type (objfile) struct objfile *objfile; { register struct type *type; /* Alloc the structure and start off with all fields zeroed. */ if (objfile == NULL) { type = (struct type *) xmalloc (sizeof (struct type)); } else { type = (struct type *) obstack_alloc (&objfile -> type_obstack, sizeof (struct type)); OBJSTAT (objfile, n_types++); } memset ((char *) type, 0, sizeof (struct type)); /* Initialize the fields that might not be zero. */ TYPE_CODE (type) = TYPE_CODE_UNDEF; TYPE_OBJFILE (type) = objfile; TYPE_VPTR_FIELDNO (type) = -1; return (type); } /* Lookup a pointer to a type TYPE. TYPEPTR, if nonzero, points to a pointer to memory where the pointer type should be stored. If *TYPEPTR is zero, update it to point to the pointer type we return. We allocate new memory if needed. */ struct type * make_pointer_type (type, typeptr) struct type *type; struct type **typeptr; { register struct type *ntype; /* New type */ struct objfile *objfile; ntype = TYPE_POINTER_TYPE (type); if (ntype) if (typeptr == 0) return ntype; /* Don't care about alloc, and have new type. */ else if (*typeptr == 0) { *typeptr = ntype; /* Tracking alloc, and we have new type. */ return ntype; } if (typeptr == 0 || *typeptr == 0) /* We'll need to allocate one. */ { ntype = alloc_type (TYPE_OBJFILE (type)); if (typeptr) *typeptr = ntype; } else /* We have storage, but need to reset it. */ { ntype = *typeptr; objfile = TYPE_OBJFILE (ntype); memset ((char *) ntype, 0, sizeof (struct type)); TYPE_OBJFILE (ntype) = objfile; } TYPE_TARGET_TYPE (ntype) = type; TYPE_POINTER_TYPE (type) = ntype; /* FIXME! Assume the machine has only one representation for pointers! */ TYPE_LENGTH (ntype) = TARGET_PTR_BIT / TARGET_CHAR_BIT; TYPE_CODE (ntype) = TYPE_CODE_PTR; /* pointers are unsigned */ TYPE_FLAGS (ntype) |= TYPE_FLAG_UNSIGNED; if (!TYPE_POINTER_TYPE (type)) /* Remember it, if don't have one. */ TYPE_POINTER_TYPE (type) = ntype; return ntype; } /* Given a type TYPE, return a type of pointers to that type. May need to construct such a type if this is the first use. */ struct type * lookup_pointer_type (type) struct type *type; { return make_pointer_type (type, (struct type **)0); } /* Lookup a C++ `reference' to a type TYPE. TYPEPTR, if nonzero, points to a pointer to memory where the reference type should be stored. If *TYPEPTR is zero, update it to point to the reference type we return. We allocate new memory if needed. */ struct type * make_reference_type (type, typeptr) struct type *type; struct type **typeptr; { register struct type *ntype; /* New type */ struct objfile *objfile; ntype = TYPE_REFERENCE_TYPE (type); if (ntype) if (typeptr == 0) return ntype; /* Don't care about alloc, and have new type. */ else if (*typeptr == 0) { *typeptr = ntype; /* Tracking alloc, and we have new type. */ return ntype; } if (typeptr == 0 || *typeptr == 0) /* We'll need to allocate one. */ { ntype = alloc_type (TYPE_OBJFILE (type)); if (typeptr) *typeptr = ntype; } else /* We have storage, but need to reset it. */ { ntype = *typeptr; objfile = TYPE_OBJFILE (ntype); memset ((char *) ntype, 0, sizeof (struct type)); TYPE_OBJFILE (ntype) = objfile; } TYPE_TARGET_TYPE (ntype) = type; TYPE_REFERENCE_TYPE (type) = ntype; /* FIXME! Assume the machine has only one representation for references, and that it matches the (only) representation for pointers! */ TYPE_LENGTH (ntype) = TARGET_PTR_BIT / TARGET_CHAR_BIT; TYPE_CODE (ntype) = TYPE_CODE_REF; if (!TYPE_REFERENCE_TYPE (type)) /* Remember it, if don't have one. */ TYPE_REFERENCE_TYPE (type) = ntype; return ntype; } /* Same as above, but caller doesn't care about memory allocation details. */ struct type * lookup_reference_type (type) struct type *type; { return make_reference_type (type, (struct type **)0); } /* Lookup a function type that returns type TYPE. TYPEPTR, if nonzero, points to a pointer to memory where the function type should be stored. If *TYPEPTR is zero, update it to point to the function type we return. We allocate new memory if needed. */ struct type * make_function_type (type, typeptr) struct type *type; struct type **typeptr; { register struct type *ntype; /* New type */ struct objfile *objfile; if (typeptr == 0 || *typeptr == 0) /* We'll need to allocate one. */ { ntype = alloc_type (TYPE_OBJFILE (type)); if (typeptr) *typeptr = ntype; } else /* We have storage, but need to reset it. */ { ntype = *typeptr; objfile = TYPE_OBJFILE (ntype); memset ((char *) ntype, 0, sizeof (struct type)); TYPE_OBJFILE (ntype) = objfile; } TYPE_TARGET_TYPE (ntype) = type; TYPE_LENGTH (ntype) = 1; TYPE_CODE (ntype) = TYPE_CODE_FUNC; return ntype; } /* Given a type TYPE, return a type of functions that return that type. May need to construct such a type if this is the first use. */ struct type * lookup_function_type (type) struct type *type; { return make_function_type (type, (struct type **)0); } /* Implement direct support for MEMBER_TYPE in GNU C++. May need to construct such a type if this is the first use. The TYPE is the type of the member. The DOMAIN is the type of the aggregate that the member belongs to. */ struct type * lookup_member_type (type, domain) struct type *type; struct type *domain; { register struct type *mtype; mtype = alloc_type (TYPE_OBJFILE (type)); smash_to_member_type (mtype, domain, type); return (mtype); } /* Allocate a stub method whose return type is TYPE. This apparently happens for speed of symbol reading, since parsing out the arguments to the method is cpu-intensive, the way we are doing it. So, we will fill in arguments later. This always returns a fresh type. */ struct type * allocate_stub_method (type) struct type *type; { struct type *mtype; mtype = alloc_type (TYPE_OBJFILE (type)); TYPE_TARGET_TYPE (mtype) = type; /* _DOMAIN_TYPE (mtype) = unknown yet */ /* _ARG_TYPES (mtype) = unknown yet */ TYPE_FLAGS (mtype) = TYPE_FLAG_STUB; TYPE_CODE (mtype) = TYPE_CODE_METHOD; TYPE_LENGTH (mtype) = 1; return (mtype); } /* Create a range type using either a blank type supplied in RESULT_TYPE, or creating a new type, inheriting the objfile from INDEX_TYPE. Indices will be of type INDEX_TYPE, and will range from LOW_BOUND to HIGH_BOUND, inclusive. FIXME: Maybe we should check the TYPE_CODE of RESULT_TYPE to make sure it is TYPE_CODE_UNDEF before we bash it into a range type? */ struct type * create_range_type (result_type, index_type, low_bound, high_bound) struct type *result_type; struct type *index_type; int low_bound; int high_bound; { if (result_type == NULL) { result_type = alloc_type (TYPE_OBJFILE (index_type)); } TYPE_CODE (result_type) = TYPE_CODE_RANGE; TYPE_TARGET_TYPE (result_type) = index_type; if (TYPE_FLAGS (index_type) & TYPE_FLAG_STUB) TYPE_FLAGS (result_type) |= TYPE_FLAG_TARGET_STUB; else TYPE_LENGTH (result_type) = TYPE_LENGTH (check_typedef (index_type)); TYPE_NFIELDS (result_type) = 2; TYPE_FIELDS (result_type) = (struct field *) TYPE_ALLOC (result_type, 2 * sizeof (struct field)); memset (TYPE_FIELDS (result_type), 0, 2 * sizeof (struct field)); TYPE_FIELD_BITPOS (result_type, 0) = low_bound; TYPE_FIELD_BITPOS (result_type, 1) = high_bound; TYPE_FIELD_TYPE (result_type, 0) = builtin_type_int; /* FIXME */ TYPE_FIELD_TYPE (result_type, 1) = builtin_type_int; /* FIXME */ return (result_type); } /* Set *LOWP and *HIGHP to the lower and upper bounds of discrete type TYPE. Return 1 of type is a range type, 0 if it is discrete (and bounds will fit in LONGEST), or -1 otherwise. */ int get_discrete_bounds (type, lowp, highp) struct type *type; LONGEST *lowp, *highp; { CHECK_TYPEDEF (type); switch (TYPE_CODE (type)) { case TYPE_CODE_RANGE: *lowp = TYPE_LOW_BOUND (type); *highp = TYPE_HIGH_BOUND (type); return 1; case TYPE_CODE_ENUM: if (TYPE_NFIELDS (type) > 0) { /* The enums may not be sorted by value, so search all entries */ int i; *lowp = *highp = TYPE_FIELD_BITPOS (type, 0); for (i = 0; i < TYPE_NFIELDS (type); i++) { if (TYPE_FIELD_BITPOS (type, i) < *lowp) *lowp = TYPE_FIELD_BITPOS (type, i); if (TYPE_FIELD_BITPOS (type, i) > *highp) *highp = TYPE_FIELD_BITPOS (type, i); } } else { *lowp = 0; *highp = -1; } return 0; case TYPE_CODE_BOOL: *lowp = 0; *highp = 1; return 0; case TYPE_CODE_INT: if (TYPE_LENGTH (type) > sizeof (LONGEST)) /* Too big */ return -1; if (!TYPE_UNSIGNED (type)) { *lowp = - (1 << (TYPE_LENGTH (type) * TARGET_CHAR_BIT - 1)); *highp = -*lowp - 1; return 0; } /* ... fall through for unsigned ints ... */ case TYPE_CODE_CHAR: *lowp = 0; /* This round-about calculation is to avoid shifting by TYPE_LENGTH (type) * TARGET_CHAR_BIT, which will not work if TYPE_LENGTH (type) == sizeof (LONGEST). */ *highp = 1 << (TYPE_LENGTH (type) * TARGET_CHAR_BIT - 1); *highp = (*highp - 1) | *highp; return 0; default: return -1; } } /* Create an array type using either a blank type supplied in RESULT_TYPE, or creating a new type, inheriting the objfile from RANGE_TYPE. Elements will be of type ELEMENT_TYPE, the indices will be of type RANGE_TYPE. FIXME: Maybe we should check the TYPE_CODE of RESULT_TYPE to make sure it is TYPE_CODE_UNDEF before we bash it into an array type? */ struct type * create_array_type (result_type, element_type, range_type) struct type *result_type; struct type *element_type; struct type *range_type; { LONGEST low_bound, high_bound; if (result_type == NULL) { result_type = alloc_type (TYPE_OBJFILE (range_type)); } TYPE_CODE (result_type) = TYPE_CODE_ARRAY; TYPE_TARGET_TYPE (result_type) = element_type; if (get_discrete_bounds (range_type, &low_bound, &high_bound) < 0) low_bound = high_bound = 0; CHECK_TYPEDEF (element_type); TYPE_LENGTH (result_type) = TYPE_LENGTH (element_type) * (high_bound - low_bound + 1); TYPE_NFIELDS (result_type) = 1; TYPE_FIELDS (result_type) = (struct field *) TYPE_ALLOC (result_type, sizeof (struct field)); memset (TYPE_FIELDS (result_type), 0, sizeof (struct field)); TYPE_FIELD_TYPE (result_type, 0) = range_type; TYPE_VPTR_FIELDNO (result_type) = -1; /* TYPE_FLAG_TARGET_STUB will take care of zero length arrays */ if (TYPE_LENGTH (result_type) == 0) TYPE_FLAGS (result_type) |= TYPE_FLAG_TARGET_STUB; return (result_type); } /* Create a string type using either a blank type supplied in RESULT_TYPE, or creating a new type. String types are similar enough to array of char types that we can use create_array_type to build the basic type and then bash it into a string type. For fixed length strings, the range type contains 0 as the lower bound and the length of the string minus one as the upper bound. FIXME: Maybe we should check the TYPE_CODE of RESULT_TYPE to make sure it is TYPE_CODE_UNDEF before we bash it into a string type? */ struct type * create_string_type (result_type, range_type) struct type *result_type; struct type *range_type; { result_type = create_array_type (result_type, *current_language->string_char_type, range_type); TYPE_CODE (result_type) = TYPE_CODE_STRING; return (result_type); } struct type * create_set_type (result_type, domain_type) struct type *result_type; struct type *domain_type; { LONGEST low_bound, high_bound, bit_length; if (result_type == NULL) { result_type = alloc_type (TYPE_OBJFILE (domain_type)); } TYPE_CODE (result_type) = TYPE_CODE_SET; TYPE_NFIELDS (result_type) = 1; TYPE_FIELDS (result_type) = (struct field *) TYPE_ALLOC (result_type, 1 * sizeof (struct field)); memset (TYPE_FIELDS (result_type), 0, sizeof (struct field)); if (! (TYPE_FLAGS (domain_type) & TYPE_FLAG_STUB)) { if (get_discrete_bounds (domain_type, &low_bound, &high_bound) < 0) low_bound = high_bound = 0; bit_length = high_bound - low_bound + 1; TYPE_LENGTH (result_type) = (bit_length + TARGET_CHAR_BIT - 1) / TARGET_CHAR_BIT; } TYPE_FIELD_TYPE (result_type, 0) = domain_type; return (result_type); } /* Smash TYPE to be a type of members of DOMAIN with type TO_TYPE. A MEMBER is a wierd thing -- it amounts to a typed offset into a struct, e.g. "an int at offset 8". A MEMBER TYPE doesn't include the offset (that's the value of the MEMBER itself), but does include the structure type into which it points (for some reason). When "smashing" the type, we preserve the objfile that the old type pointed to, since we aren't changing where the type is actually allocated. */ void smash_to_member_type (type, domain, to_type) struct type *type; struct type *domain; struct type *to_type; { struct objfile *objfile; objfile = TYPE_OBJFILE (type); memset ((char *) type, 0, sizeof (struct type)); TYPE_OBJFILE (type) = objfile; TYPE_TARGET_TYPE (type) = to_type; TYPE_DOMAIN_TYPE (type) = domain; TYPE_LENGTH (type) = 1; /* In practice, this is never needed. */ TYPE_CODE (type) = TYPE_CODE_MEMBER; } /* Smash TYPE to be a type of method of DOMAIN with type TO_TYPE. METHOD just means `function that gets an extra "this" argument'. When "smashing" the type, we preserve the objfile that the old type pointed to, since we aren't changing where the type is actually allocated. */ void smash_to_method_type (type, domain, to_type, args) struct type *type; struct type *domain; struct type *to_type; struct type **args; { struct objfile *objfile; objfile = TYPE_OBJFILE (type); memset ((char *) type, 0, sizeof (struct type)); TYPE_OBJFILE (type) = objfile; TYPE_TARGET_TYPE (type) = to_type; TYPE_DOMAIN_TYPE (type) = domain; TYPE_ARG_TYPES (type) = args; TYPE_LENGTH (type) = 1; /* In practice, this is never needed. */ TYPE_CODE (type) = TYPE_CODE_METHOD; } /* Return a typename for a struct/union/enum type without "struct ", "union ", or "enum ". If the type has a NULL name, return NULL. */ char * type_name_no_tag (type) register const struct type *type; { if (TYPE_TAG_NAME (type) != NULL) return TYPE_TAG_NAME (type); /* Is there code which expects this to return the name if there is no tag name? My guess is that this is mainly used for C++ in cases where the two will always be the same. */ return TYPE_NAME (type); } /* Lookup a primitive type named NAME. Return zero if NAME is not a primitive type.*/ struct type * lookup_primitive_typename (name) char *name; { struct type ** const *p; for (p = current_language -> la_builtin_type_vector; *p != NULL; p++) { if (STREQ ((**p) -> name, name)) { return (**p); } } return (NULL); } /* Lookup a typedef or primitive type named NAME, visible in lexical block BLOCK. If NOERR is nonzero, return zero if NAME is not suitably defined. */ struct type * lookup_typename (name, block, noerr) char *name; struct block *block; int noerr; { register struct symbol *sym; register struct type *tmp; sym = lookup_symbol (name, block, VAR_NAMESPACE, 0, (struct symtab **) NULL); if (sym == NULL || SYMBOL_CLASS (sym) != LOC_TYPEDEF) { tmp = lookup_primitive_typename (name); if (tmp) { return (tmp); } else if (!tmp && noerr) { return (NULL); } else { error ("No type named %s.", name); } } return (SYMBOL_TYPE (sym)); } struct type * lookup_unsigned_typename (name) char *name; { char *uns = alloca (strlen (name) + 10); strcpy (uns, "unsigned "); strcpy (uns + 9, name); return (lookup_typename (uns, (struct block *) NULL, 0)); } struct type * lookup_signed_typename (name) char *name; { struct type *t; char *uns = alloca (strlen (name) + 8); strcpy (uns, "signed "); strcpy (uns + 7, name); t = lookup_typename (uns, (struct block *) NULL, 1); /* If we don't find "signed FOO" just try again with plain "FOO". */ if (t != NULL) return t; return lookup_typename (name, (struct block *) NULL, 0); } /* Lookup a structure type named "struct NAME", visible in lexical block BLOCK. */ struct type * lookup_struct (name, block) char *name; struct block *block; { register struct symbol *sym; sym = lookup_symbol (name, block, STRUCT_NAMESPACE, 0, (struct symtab **) NULL); if (sym == NULL) { error ("No struct type named %s.", name); } if (TYPE_CODE (SYMBOL_TYPE (sym)) != TYPE_CODE_STRUCT) { error ("This context has class, union or enum %s, not a struct.", name); } return (SYMBOL_TYPE (sym)); } /* Lookup a union type named "union NAME", visible in lexical block BLOCK. */ struct type * lookup_union (name, block) char *name; struct block *block; { register struct symbol *sym; sym = lookup_symbol (name, block, STRUCT_NAMESPACE, 0, (struct symtab **) NULL); if (sym == NULL) { error ("No union type named %s.", name); } if (TYPE_CODE (SYMBOL_TYPE (sym)) != TYPE_CODE_UNION) { error ("This context has class, struct or enum %s, not a union.", name); } return (SYMBOL_TYPE (sym)); } /* Lookup an enum type named "enum NAME", visible in lexical block BLOCK. */ struct type * lookup_enum (name, block) char *name; struct block *block; { register struct symbol *sym; sym = lookup_symbol (name, block, STRUCT_NAMESPACE, 0, (struct symtab **) NULL); if (sym == NULL) { error ("No enum type named %s.", name); } if (TYPE_CODE (SYMBOL_TYPE (sym)) != TYPE_CODE_ENUM) { error ("This context has class, struct or union %s, not an enum.", name); } return (SYMBOL_TYPE (sym)); } /* Lookup a template type named "template NAME", visible in lexical block BLOCK. */ struct type * lookup_template_type (name, type, block) char *name; struct type *type; struct block *block; { struct symbol *sym; char *nam = (char*) alloca(strlen(name) + strlen(type->name) + 4); strcpy (nam, name); strcat (nam, "<"); strcat (nam, type->name); strcat (nam, " >"); /* FIXME, extra space still introduced in gcc? */ sym = lookup_symbol (nam, block, VAR_NAMESPACE, 0, (struct symtab **)NULL); if (sym == NULL) { error ("No template type named %s.", name); } if (TYPE_CODE (SYMBOL_TYPE (sym)) != TYPE_CODE_STRUCT) { error ("This context has class, union or enum %s, not a struct.", name); } return (SYMBOL_TYPE (sym)); } /* Given a type TYPE, lookup the type of the component of type named NAME. TYPE can be either a struct or union, or a pointer or reference to a struct or union. If it is a pointer or reference, its target type is automatically used. Thus '.' and '->' are interchangable, as specified for the definitions of the expression element types STRUCTOP_STRUCT and STRUCTOP_PTR. If NOERR is nonzero, return zero if NAME is not suitably defined. If NAME is the name of a baseclass type, return that type. */ struct type * lookup_struct_elt_type (type, name, noerr) struct type *type; char *name; int noerr; { int i; for (;;) { CHECK_TYPEDEF (type); if (TYPE_CODE (type) != TYPE_CODE_PTR && TYPE_CODE (type) != TYPE_CODE_REF) break; type = TYPE_TARGET_TYPE (type); } if (TYPE_CODE (type) != TYPE_CODE_STRUCT && TYPE_CODE (type) != TYPE_CODE_UNION) { target_terminal_ours (); gdb_flush (gdb_stdout); fprintf_unfiltered (gdb_stderr, "Type "); type_print (type, "", gdb_stderr, -1); error (" is not a structure or union type."); } #if 0 /* FIXME: This change put in by Michael seems incorrect for the case where the structure tag name is the same as the member name. I.E. when doing "ptype bell->bar" for "struct foo { int bar; int foo; } bell;" Disabled by fnf. */ { char *typename; typename = type_name_no_tag (type); if (typename != NULL && STREQ (typename, name)) return type; } #endif for (i = TYPE_NFIELDS (type) - 1; i >= TYPE_N_BASECLASSES (type); i--) { char *t_field_name = TYPE_FIELD_NAME (type, i); if (t_field_name && STREQ (t_field_name, name)) { return TYPE_FIELD_TYPE (type, i); } } /* OK, it's not in this class. Recursively check the baseclasses. */ for (i = TYPE_N_BASECLASSES (type) - 1; i >= 0; i--) { struct type *t; t = lookup_struct_elt_type (TYPE_BASECLASS (type, i), name, noerr); if (t != NULL) { return t; } } if (noerr) { return NULL; } target_terminal_ours (); gdb_flush (gdb_stdout); fprintf_unfiltered (gdb_stderr, "Type "); type_print (type, "", gdb_stderr, -1); fprintf_unfiltered (gdb_stderr, " has no component named "); fputs_filtered (name, gdb_stderr); error ("."); return (struct type *)-1; /* For lint */ } /* If possible, make the vptr_fieldno and vptr_basetype fields of TYPE valid. Callers should be aware that in some cases (for example, the type or one of its baseclasses is a stub type and we are debugging a .o file), this function will not be able to find the virtual function table pointer, and vptr_fieldno will remain -1 and vptr_basetype will remain NULL. */ void fill_in_vptr_fieldno (type) struct type *type; { CHECK_TYPEDEF (type); if (TYPE_VPTR_FIELDNO (type) < 0) { int i; /* We must start at zero in case the first (and only) baseclass is virtual (and hence we cannot share the table pointer). */ for (i = 0; i < TYPE_N_BASECLASSES (type); i++) { fill_in_vptr_fieldno (TYPE_BASECLASS (type, i)); if (TYPE_VPTR_FIELDNO (TYPE_BASECLASS (type, i)) >= 0) { TYPE_VPTR_FIELDNO (type) = TYPE_VPTR_FIELDNO (TYPE_BASECLASS (type, i)); TYPE_VPTR_BASETYPE (type) = TYPE_VPTR_BASETYPE (TYPE_BASECLASS (type, i)); break; } } } } /* Find the method and field indices for the destructor in class type T. Return 1 if the destructor was found, otherwise, return 0. */ int get_destructor_fn_field (t, method_indexp, field_indexp) struct type *t; int *method_indexp; int *field_indexp; { int i; for (i = 0; i < TYPE_NFN_FIELDS (t); i++) { int j; struct fn_field *f = TYPE_FN_FIELDLIST1 (t, i); for (j = 0; j < TYPE_FN_FIELDLIST_LENGTH (t, i); j++) { if (DESTRUCTOR_PREFIX_P (TYPE_FN_FIELD_PHYSNAME (f, j))) { *method_indexp = i; *field_indexp = j; return 1; } } } return 0; } /* Added by Bryan Boreham, Kewill, Sun Sep 17 18:07:17 1989. If this is a stubbed struct (i.e. declared as struct foo *), see if we can find a full definition in some other file. If so, copy this definition, so we can use it in future. There used to be a comment (but not any code) that if we don't find a full definition, we'd set a flag so we don't spend time in the future checking the same type. That would be a mistake, though--we might load in more symbols which contain a full definition for the type. This used to be coded as a macro, but I don't think it is called often enough to merit such treatment. */ struct complaint stub_noname_complaint = {"stub type has NULL name", 0, 0}; struct type * check_typedef (type) register struct type *type; { struct type *orig_type = type; while (TYPE_CODE (type) == TYPE_CODE_TYPEDEF) { if (!TYPE_TARGET_TYPE (type)) { char* name; struct symbol *sym; /* It is dangerous to call lookup_symbol if we are currently reading a symtab. Infinite recursion is one danger. */ if (currently_reading_symtab) return type; name = type_name_no_tag (type); /* FIXME: shouldn't we separately check the TYPE_NAME and the TYPE_TAG_NAME, and look in STRUCT_NAMESPACE and/or VAR_NAMESPACE as appropriate? (this code was written before TYPE_NAME and TYPE_TAG_NAME were separate). */ if (name == NULL) { complain (&stub_noname_complaint); return type; } sym = lookup_symbol (name, 0, STRUCT_NAMESPACE, 0, (struct symtab **) NULL); if (sym) TYPE_TARGET_TYPE (type) = SYMBOL_TYPE (sym); else TYPE_TARGET_TYPE (type) = alloc_type (NULL); /* TYPE_CODE_UNDEF */ } type = TYPE_TARGET_TYPE (type); } if ((TYPE_FLAGS(type) & TYPE_FLAG_STUB) && ! currently_reading_symtab) { char* name = type_name_no_tag (type); /* FIXME: shouldn't we separately check the TYPE_NAME and the TYPE_TAG_NAME, and look in STRUCT_NAMESPACE and/or VAR_NAMESPACE as appropriate? (this code was written before TYPE_NAME and TYPE_TAG_NAME were separate). */ struct symbol *sym; if (name == NULL) { complain (&stub_noname_complaint); return type; } sym = lookup_symbol (name, 0, STRUCT_NAMESPACE, 0, (struct symtab **) NULL); if (sym) { memcpy ((char *)type, (char *)SYMBOL_TYPE(sym), sizeof (struct type)); } } if (TYPE_FLAGS (type) & TYPE_FLAG_TARGET_STUB) { struct type *range_type; struct type *target_type = check_typedef (TYPE_TARGET_TYPE (type)); if (TYPE_FLAGS (target_type) & (TYPE_FLAG_STUB | TYPE_FLAG_TARGET_STUB)) { } else if (TYPE_CODE (type) == TYPE_CODE_ARRAY && TYPE_NFIELDS (type) == 1 && (TYPE_CODE (range_type = TYPE_FIELD_TYPE (type, 0)) == TYPE_CODE_RANGE)) { /* Now recompute the length of the array type, based on its number of elements and the target type's length. */ TYPE_LENGTH (type) = ((TYPE_FIELD_BITPOS (range_type, 1) - TYPE_FIELD_BITPOS (range_type, 0) + 1) * TYPE_LENGTH (target_type)); TYPE_FLAGS (type) &= ~TYPE_FLAG_TARGET_STUB; } else if (TYPE_CODE (type) == TYPE_CODE_RANGE) { TYPE_LENGTH (type) = TYPE_LENGTH (target_type); TYPE_FLAGS (type) &= ~TYPE_FLAG_TARGET_STUB; } } /* Cache TYPE_LENGTH for future use. */ TYPE_LENGTH (orig_type) = TYPE_LENGTH (type); return type; } /* New code added to support parsing of Cfront stabs strings */ #include #define INIT_EXTRA { pextras->len=0; pextras->str[0]='\0'; } #define ADD_EXTRA(c) { pextras->str[pextras->len++]=c; } static void add_name(pextras,n) struct extra * pextras; char * n; { int nlen; if ((nlen = (n ? strlen(n) : 0))==0) return; sprintf(pextras->str+pextras->len,"%d%s",nlen,n); pextras->len=strlen(pextras->str); } static void add_mangled_type(pextras,t) struct extra * pextras; struct type * t; { enum type_code tcode; int tlen, tflags; char * tname; tcode = TYPE_CODE(t); tlen = TYPE_LENGTH(t); tflags = TYPE_FLAGS(t); tname = TYPE_NAME(t); /* args of "..." seem to get mangled as "e" */ switch (tcode) { case TYPE_CODE_INT: if (tflags==1) ADD_EXTRA('U'); switch (tlen) { case 1: ADD_EXTRA('c'); break; case 2: ADD_EXTRA('s'); break; case 4: { char* pname; if ((pname=strrchr(tname,'l'),pname) && !strcmp(pname,"long")) ADD_EXTRA('l') else ADD_EXTRA('i') } break; default: { static struct complaint msg = {"Bad int type code length x%x\n",0,0}; complain (&msg, tlen); } } break; case TYPE_CODE_FLT: switch (tlen) { case 4: ADD_EXTRA('f'); break; case 8: ADD_EXTRA('d'); break; case 16: ADD_EXTRA('r'); break; default: { static struct complaint msg = {"Bad float type code length x%x\n",0,0}; complain (&msg, tlen); } } break; case TYPE_CODE_REF: ADD_EXTRA('R'); /* followed by what it's a ref to */ break; case TYPE_CODE_PTR: ADD_EXTRA('P'); /* followed by what it's a ptr to */ break; case TYPE_CODE_TYPEDEF: { static struct complaint msg = {"Typedefs in overloaded functions not yet supported\n",0,0}; complain (&msg); } /* followed by type bytes & name */ break; case TYPE_CODE_FUNC: ADD_EXTRA('F'); /* followed by func's arg '_' & ret types */ break; case TYPE_CODE_VOID: ADD_EXTRA('v'); break; case TYPE_CODE_METHOD: ADD_EXTRA('M'); /* followed by name of class and func's arg '_' & ret types */ add_name(pextras,tname); ADD_EXTRA('F'); /* then mangle function */ break; case TYPE_CODE_STRUCT: /* C struct */ case TYPE_CODE_UNION: /* C union */ case TYPE_CODE_ENUM: /* Enumeration type */ /* followed by name of type */ add_name(pextras,tname); break; /* errors possible types/not supported */ case TYPE_CODE_CHAR: case TYPE_CODE_ARRAY: /* Array type */ case TYPE_CODE_MEMBER: /* Member type */ case TYPE_CODE_BOOL: case TYPE_CODE_COMPLEX: /* Complex float */ case TYPE_CODE_UNDEF: case TYPE_CODE_SET: /* Pascal sets */ case TYPE_CODE_RANGE: case TYPE_CODE_STRING: case TYPE_CODE_BITSTRING: case TYPE_CODE_ERROR: default: { static struct complaint msg = {"Unknown type code x%x\n",0,0}; complain (&msg, tcode); } } if (t->target_type) add_mangled_type(pextras,t->target_type); } #if 0 void cfront_mangle_name(type, i, j) struct type *type; int i; int j; { struct fn_field *f; char *mangled_name = gdb_mangle_name (type, i, j); f = TYPE_FN_FIELDLIST1 (type, i); /* moved from below */ /* kludge to support cfront methods - gdb expects to find "F" for ARM_mangled names, so when we mangle, we have to add it here */ if (ARM_DEMANGLING) { int k; char * arm_mangled_name; struct fn_field *method = &f[j]; char *field_name = TYPE_FN_FIELDLIST_NAME (type, i); char *physname = TYPE_FN_FIELD_PHYSNAME (f, j); char *newname = type_name_no_tag (type); struct type *ftype = TYPE_FN_FIELD_TYPE (f, j); int nargs = TYPE_NFIELDS(ftype); /* number of args */ struct extra extras, * pextras = &extras; INIT_EXTRA if (TYPE_FN_FIELD_STATIC_P (f, j)) /* j for sublist within this list */ ADD_EXTRA('S') ADD_EXTRA('F') /* add args here! */ if (nargs <= 1) /* no args besides this */ ADD_EXTRA('v') else { for (k=1; k type_obstack); } else { TYPE_NAME (type) = name; } /* C++ fancies. */ if (code == TYPE_CODE_STRUCT || code == TYPE_CODE_UNION) { INIT_CPLUS_SPECIFIC (type); } return (type); } /* Look up a fundamental type for the specified objfile. May need to construct such a type if this is the first use. Some object file formats (ELF, COFF, etc) do not define fundamental types such as "int" or "double". Others (stabs for example), do define fundamental types. For the formats which don't provide fundamental types, gdb can create such types, using defaults reasonable for the current language and the current target machine. NOTE: This routine is obsolescent. Each debugging format reader should manage it's own fundamental types, either creating them from suitable defaults or reading them from the debugging information, whichever is appropriate. The DWARF reader has already been fixed to do this. Once the other readers are fixed, this routine will go away. Also note that fundamental types should be managed on a compilation unit basis in a multi-language environment, not on a linkage unit basis as is done here. */ struct type * lookup_fundamental_type (objfile, typeid) struct objfile *objfile; int typeid; { register struct type **typep; register int nbytes; if (typeid < 0 || typeid >= FT_NUM_MEMBERS) { error ("internal error - invalid fundamental type id %d", typeid); } /* If this is the first time we need a fundamental type for this objfile then we need to initialize the vector of type pointers. */ if (objfile -> fundamental_types == NULL) { nbytes = FT_NUM_MEMBERS * sizeof (struct type *); objfile -> fundamental_types = (struct type **) obstack_alloc (&objfile -> type_obstack, nbytes); memset ((char *) objfile -> fundamental_types, 0, nbytes); OBJSTAT (objfile, n_types += FT_NUM_MEMBERS); } /* Look for this particular type in the fundamental type vector. If one is not found, create and install one appropriate for the current language. */ typep = objfile -> fundamental_types + typeid; if (*typep == NULL) { *typep = create_fundamental_type (objfile, typeid); } return (*typep); } int can_dereference (t) struct type *t; { /* FIXME: Should we return true for references as well as pointers? */ CHECK_TYPEDEF (t); return (t != NULL && TYPE_CODE (t) == TYPE_CODE_PTR && TYPE_CODE (TYPE_TARGET_TYPE (t)) != TYPE_CODE_VOID); } /* Chill varying string and arrays are represented as follows: struct { int __var_length; ELEMENT_TYPE[MAX_SIZE] __var_data}; Return true if TYPE is such a Chill varying type. */ int chill_varying_type (type) struct type *type; { if (TYPE_CODE (type) != TYPE_CODE_STRUCT || TYPE_NFIELDS (type) != 2 || strcmp (TYPE_FIELD_NAME (type, 0), "__var_length") != 0) return 0; return 1; } #if MAINTENANCE_CMDS static void print_bit_vector (bits, nbits) B_TYPE *bits; int nbits; { int bitno; for (bitno = 0; bitno < nbits; bitno++) { if ((bitno % 8) == 0) { puts_filtered (" "); } if (B_TST (bits, bitno)) { printf_filtered ("1"); } else { printf_filtered ("0"); } } } /* The args list is a strange beast. It is either terminated by a NULL pointer for varargs functions, or by a pointer to a TYPE_CODE_VOID type for normal fixed argcount functions. (FIXME someday) Also note the first arg should be the "this" pointer, we may not want to include it since we may get into a infinitely recursive situation. */ static void print_arg_types (args, spaces) struct type **args; int spaces; { if (args != NULL) { while (*args != NULL) { recursive_dump_type (*args, spaces + 2); if ((*args++) -> code == TYPE_CODE_VOID) { break; } } } } static void dump_fn_fieldlists (type, spaces) struct type *type; int spaces; { int method_idx; int overload_idx; struct fn_field *f; printfi_filtered (spaces, "fn_fieldlists "); gdb_print_address (TYPE_FN_FIELDLISTS (type), gdb_stdout); printf_filtered ("\n"); for (method_idx = 0; method_idx < TYPE_NFN_FIELDS (type); method_idx++) { f = TYPE_FN_FIELDLIST1 (type, method_idx); printfi_filtered (spaces + 2, "[%d] name '%s' (", method_idx, TYPE_FN_FIELDLIST_NAME (type, method_idx)); gdb_print_address (TYPE_FN_FIELDLIST_NAME (type, method_idx), gdb_stdout); printf_filtered (") length %d\n", TYPE_FN_FIELDLIST_LENGTH (type, method_idx)); for (overload_idx = 0; overload_idx < TYPE_FN_FIELDLIST_LENGTH (type, method_idx); overload_idx++) { printfi_filtered (spaces + 4, "[%d] physname '%s' (", overload_idx, TYPE_FN_FIELD_PHYSNAME (f, overload_idx)); gdb_print_address (TYPE_FN_FIELD_PHYSNAME (f, overload_idx), gdb_stdout); printf_filtered (")\n"); printfi_filtered (spaces + 8, "type "); gdb_print_address (TYPE_FN_FIELD_TYPE (f, overload_idx), gdb_stdout); printf_filtered ("\n"); recursive_dump_type (TYPE_FN_FIELD_TYPE (f, overload_idx), spaces + 8 + 2); printfi_filtered (spaces + 8, "args "); gdb_print_address (TYPE_FN_FIELD_ARGS (f, overload_idx), gdb_stdout); printf_filtered ("\n"); print_arg_types (TYPE_FN_FIELD_ARGS (f, overload_idx), spaces); printfi_filtered (spaces + 8, "fcontext "); gdb_print_address (TYPE_FN_FIELD_FCONTEXT (f, overload_idx), gdb_stdout); printf_filtered ("\n"); printfi_filtered (spaces + 8, "is_const %d\n", TYPE_FN_FIELD_CONST (f, overload_idx)); printfi_filtered (spaces + 8, "is_volatile %d\n", TYPE_FN_FIELD_VOLATILE (f, overload_idx)); printfi_filtered (spaces + 8, "is_private %d\n", TYPE_FN_FIELD_PRIVATE (f, overload_idx)); printfi_filtered (spaces + 8, "is_protected %d\n", TYPE_FN_FIELD_PROTECTED (f, overload_idx)); printfi_filtered (spaces + 8, "is_stub %d\n", TYPE_FN_FIELD_STUB (f, overload_idx)); printfi_filtered (spaces + 8, "voffset %u\n", TYPE_FN_FIELD_VOFFSET (f, overload_idx)); } } } static void print_cplus_stuff (type, spaces) struct type *type; int spaces; { printfi_filtered (spaces, "n_baseclasses %d\n", TYPE_N_BASECLASSES (type)); printfi_filtered (spaces, "nfn_fields %d\n", TYPE_NFN_FIELDS (type)); printfi_filtered (spaces, "nfn_fields_total %d\n", TYPE_NFN_FIELDS_TOTAL (type)); if (TYPE_N_BASECLASSES (type) > 0) { printfi_filtered (spaces, "virtual_field_bits (%d bits at *", TYPE_N_BASECLASSES (type)); gdb_print_address (TYPE_FIELD_VIRTUAL_BITS (type), gdb_stdout); printf_filtered (")"); print_bit_vector (TYPE_FIELD_VIRTUAL_BITS (type), TYPE_N_BASECLASSES (type)); puts_filtered ("\n"); } if (TYPE_NFIELDS (type) > 0) { if (TYPE_FIELD_PRIVATE_BITS (type) != NULL) { printfi_filtered (spaces, "private_field_bits (%d bits at *", TYPE_NFIELDS (type)); gdb_print_address (TYPE_FIELD_PRIVATE_BITS (type), gdb_stdout); printf_filtered (")"); print_bit_vector (TYPE_FIELD_PRIVATE_BITS (type), TYPE_NFIELDS (type)); puts_filtered ("\n"); } if (TYPE_FIELD_PROTECTED_BITS (type) != NULL) { printfi_filtered (spaces, "protected_field_bits (%d bits at *", TYPE_NFIELDS (type)); gdb_print_address (TYPE_FIELD_PROTECTED_BITS (type), gdb_stdout); printf_filtered (")"); print_bit_vector (TYPE_FIELD_PROTECTED_BITS (type), TYPE_NFIELDS (type)); puts_filtered ("\n"); } } if (TYPE_NFN_FIELDS (type) > 0) { dump_fn_fieldlists (type, spaces); } } static struct obstack dont_print_type_obstack; void recursive_dump_type (type, spaces) struct type *type; int spaces; { int idx; if (spaces == 0) obstack_begin (&dont_print_type_obstack, 0); if (TYPE_NFIELDS (type) > 0 || (TYPE_CPLUS_SPECIFIC (type) && TYPE_NFN_FIELDS (type) > 0)) { struct type **first_dont_print = (struct type **)obstack_base (&dont_print_type_obstack); int i = (struct type **)obstack_next_free (&dont_print_type_obstack) - first_dont_print; while (--i >= 0) { if (type == first_dont_print[i]) { printfi_filtered (spaces, "type node "); gdb_print_address (type, gdb_stdout); printf_filtered (" \n"); return; } } obstack_ptr_grow (&dont_print_type_obstack, type); } printfi_filtered (spaces, "type node "); gdb_print_address (type, gdb_stdout); printf_filtered ("\n"); printfi_filtered (spaces, "name '%s' (", TYPE_NAME (type) ? TYPE_NAME (type) : ""); gdb_print_address (TYPE_NAME (type), gdb_stdout); printf_filtered (")\n"); if (TYPE_TAG_NAME (type) != NULL) { printfi_filtered (spaces, "tagname '%s' (", TYPE_TAG_NAME (type)); gdb_print_address (TYPE_TAG_NAME (type), gdb_stdout); printf_filtered (")\n"); } printfi_filtered (spaces, "code 0x%x ", TYPE_CODE (type)); switch (TYPE_CODE (type)) { case TYPE_CODE_UNDEF: printf_filtered ("(TYPE_CODE_UNDEF)"); break; case TYPE_CODE_PTR: printf_filtered ("(TYPE_CODE_PTR)"); break; case TYPE_CODE_ARRAY: printf_filtered ("(TYPE_CODE_ARRAY)"); break; case TYPE_CODE_STRUCT: printf_filtered ("(TYPE_CODE_STRUCT)"); break; case TYPE_CODE_UNION: printf_filtered ("(TYPE_CODE_UNION)"); break; case TYPE_CODE_ENUM: printf_filtered ("(TYPE_CODE_ENUM)"); break; case TYPE_CODE_FUNC: printf_filtered ("(TYPE_CODE_FUNC)"); break; case TYPE_CODE_INT: printf_filtered ("(TYPE_CODE_INT)"); break; case TYPE_CODE_FLT: printf_filtered ("(TYPE_CODE_FLT)"); break; case TYPE_CODE_VOID: printf_filtered ("(TYPE_CODE_VOID)"); break; case TYPE_CODE_SET: printf_filtered ("(TYPE_CODE_SET)"); break; case TYPE_CODE_RANGE: printf_filtered ("(TYPE_CODE_RANGE)"); break; case TYPE_CODE_STRING: printf_filtered ("(TYPE_CODE_STRING)"); break; case TYPE_CODE_ERROR: printf_filtered ("(TYPE_CODE_ERROR)"); break; case TYPE_CODE_MEMBER: printf_filtered ("(TYPE_CODE_MEMBER)"); break; case TYPE_CODE_METHOD: printf_filtered ("(TYPE_CODE_METHOD)"); break; case TYPE_CODE_REF: printf_filtered ("(TYPE_CODE_REF)"); break; case TYPE_CODE_CHAR: printf_filtered ("(TYPE_CODE_CHAR)"); break; case TYPE_CODE_BOOL: printf_filtered ("(TYPE_CODE_BOOL)"); break; case TYPE_CODE_TYPEDEF: printf_filtered ("(TYPE_CODE_TYPEDEF)"); break; default: printf_filtered ("(UNKNOWN TYPE CODE)"); break; } puts_filtered ("\n"); printfi_filtered (spaces, "length %d\n", TYPE_LENGTH (type)); printfi_filtered (spaces, "objfile "); gdb_print_address (TYPE_OBJFILE (type), gdb_stdout); printf_filtered ("\n"); printfi_filtered (spaces, "target_type "); gdb_print_address (TYPE_TARGET_TYPE (type), gdb_stdout); printf_filtered ("\n"); if (TYPE_TARGET_TYPE (type) != NULL) { recursive_dump_type (TYPE_TARGET_TYPE (type), spaces + 2); } printfi_filtered (spaces, "pointer_type "); gdb_print_address (TYPE_POINTER_TYPE (type), gdb_stdout); printf_filtered ("\n"); printfi_filtered (spaces, "reference_type "); gdb_print_address (TYPE_REFERENCE_TYPE (type), gdb_stdout); printf_filtered ("\n"); printfi_filtered (spaces, "flags 0x%x", TYPE_FLAGS (type)); if (TYPE_FLAGS (type) & TYPE_FLAG_UNSIGNED) { puts_filtered (" TYPE_FLAG_UNSIGNED"); } if (TYPE_FLAGS (type) & TYPE_FLAG_STUB) { puts_filtered (" TYPE_FLAG_STUB"); } puts_filtered ("\n"); printfi_filtered (spaces, "nfields %d ", TYPE_NFIELDS (type)); gdb_print_address (TYPE_FIELDS (type), gdb_stdout); puts_filtered ("\n"); for (idx = 0; idx < TYPE_NFIELDS (type); idx++) { printfi_filtered (spaces + 2, "[%d] bitpos %d bitsize %d type ", idx, TYPE_FIELD_BITPOS (type, idx), TYPE_FIELD_BITSIZE (type, idx)); gdb_print_address (TYPE_FIELD_TYPE (type, idx), gdb_stdout); printf_filtered (" name '%s' (", TYPE_FIELD_NAME (type, idx) != NULL ? TYPE_FIELD_NAME (type, idx) : ""); gdb_print_address (TYPE_FIELD_NAME (type, idx), gdb_stdout); printf_filtered (")\n"); if (TYPE_FIELD_TYPE (type, idx) != NULL) { recursive_dump_type (TYPE_FIELD_TYPE (type, idx), spaces + 4); } } printfi_filtered (spaces, "vptr_basetype "); gdb_print_address (TYPE_VPTR_BASETYPE (type), gdb_stdout); puts_filtered ("\n"); if (TYPE_VPTR_BASETYPE (type) != NULL) { recursive_dump_type (TYPE_VPTR_BASETYPE (type), spaces + 2); } printfi_filtered (spaces, "vptr_fieldno %d\n", TYPE_VPTR_FIELDNO (type)); switch (TYPE_CODE (type)) { case TYPE_CODE_METHOD: case TYPE_CODE_FUNC: printfi_filtered (spaces, "arg_types "); gdb_print_address (TYPE_ARG_TYPES (type), gdb_stdout); puts_filtered ("\n"); print_arg_types (TYPE_ARG_TYPES (type), spaces); break; case TYPE_CODE_STRUCT: printfi_filtered (spaces, "cplus_stuff "); gdb_print_address (TYPE_CPLUS_SPECIFIC (type), gdb_stdout); puts_filtered ("\n"); print_cplus_stuff (type, spaces); break; default: /* We have to pick one of the union types to be able print and test the value. Pick cplus_struct_type, even though we know it isn't any particular one. */ printfi_filtered (spaces, "type_specific "); gdb_print_address (TYPE_CPLUS_SPECIFIC (type), gdb_stdout); if (TYPE_CPLUS_SPECIFIC (type) != NULL) { printf_filtered (" (unknown data form)"); } printf_filtered ("\n"); break; } if (spaces == 0) obstack_free (&dont_print_type_obstack, NULL); } #endif /* MAINTENANCE_CMDS */ void _initialize_gdbtypes () { builtin_type_void = init_type (TYPE_CODE_VOID, 1, 0, "void", (struct objfile *) NULL); builtin_type_char = init_type (TYPE_CODE_INT, TARGET_CHAR_BIT / TARGET_CHAR_BIT, 0, "char", (struct objfile *) NULL); builtin_type_signed_char = init_type (TYPE_CODE_INT, TARGET_CHAR_BIT / TARGET_CHAR_BIT, 0, "signed char", (struct objfile *) NULL); builtin_type_unsigned_char = init_type (TYPE_CODE_INT, TARGET_CHAR_BIT / TARGET_CHAR_BIT, TYPE_FLAG_UNSIGNED, "unsigned char", (struct objfile *) NULL); builtin_type_short = init_type (TYPE_CODE_INT, TARGET_SHORT_BIT / TARGET_CHAR_BIT, 0, "short", (struct objfile *) NULL); builtin_type_unsigned_short = init_type (TYPE_CODE_INT, TARGET_SHORT_BIT / TARGET_CHAR_BIT, TYPE_FLAG_UNSIGNED, "unsigned short", (struct objfile *) NULL); builtin_type_int = init_type (TYPE_CODE_INT, TARGET_INT_BIT / TARGET_CHAR_BIT, 0, "int", (struct objfile *) NULL); builtin_type_unsigned_int = init_type (TYPE_CODE_INT, TARGET_INT_BIT / TARGET_CHAR_BIT, TYPE_FLAG_UNSIGNED, "unsigned int", (struct objfile *) NULL); builtin_type_long = init_type (TYPE_CODE_INT, TARGET_LONG_BIT / TARGET_CHAR_BIT, 0, "long", (struct objfile *) NULL); builtin_type_unsigned_long = init_type (TYPE_CODE_INT, TARGET_LONG_BIT / TARGET_CHAR_BIT, TYPE_FLAG_UNSIGNED, "unsigned long", (struct objfile *) NULL); builtin_type_long_long = init_type (TYPE_CODE_INT, TARGET_LONG_LONG_BIT / TARGET_CHAR_BIT, 0, "long long", (struct objfile *) NULL); builtin_type_unsigned_long_long = init_type (TYPE_CODE_INT, TARGET_LONG_LONG_BIT / TARGET_CHAR_BIT, TYPE_FLAG_UNSIGNED, "unsigned long long", (struct objfile *) NULL); builtin_type_float = init_type (TYPE_CODE_FLT, TARGET_FLOAT_BIT / TARGET_CHAR_BIT, 0, "float", (struct objfile *) NULL); builtin_type_double = init_type (TYPE_CODE_FLT, TARGET_DOUBLE_BIT / TARGET_CHAR_BIT, 0, "double", (struct objfile *) NULL); builtin_type_long_double = init_type (TYPE_CODE_FLT, TARGET_LONG_DOUBLE_BIT / TARGET_CHAR_BIT, 0, "long double", (struct objfile *) NULL); builtin_type_complex = init_type (TYPE_CODE_COMPLEX, 2 * TARGET_FLOAT_BIT / TARGET_CHAR_BIT, 0, "complex", (struct objfile *) NULL); TYPE_TARGET_TYPE (builtin_type_complex) = builtin_type_float; builtin_type_double_complex = init_type (TYPE_CODE_COMPLEX, 2 * TARGET_DOUBLE_BIT / TARGET_CHAR_BIT, 0, "double complex", (struct objfile *) NULL); TYPE_TARGET_TYPE (builtin_type_double_complex) = builtin_type_double; builtin_type_string = init_type (TYPE_CODE_STRING, TARGET_CHAR_BIT / TARGET_CHAR_BIT, 0, "string", (struct objfile *) NULL); }