/* ELF executable support for BFD. Copyright (C) 1991, 1992 Free Software Foundation, Inc. Written by Fred Fish @ Cygnus Support, from information published in "UNIX System V Release 4, Programmers Guide: ANSI C and Programming Support Tools". Sufficient support for gdb. Rewritten by Mark Eichin @ Cygnus Support, from information published in "System V Application Binary Interface", chapters 4 and 5, as well as the various "Processor Supplement" documents derived from it. Added support for assembler and other object file utilities. This file is part of BFD, the Binary File Descriptor library. This program is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 2 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program; if not, write to the Free Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. */ /**************************************** WARNING This is only a partial ELF implementation, incorporating only those parts that are required to get gdb up and running. It is expected that it will be expanded to a full ELF implementation at some future date. Unimplemented stubs call abort() to ensure that they get proper attention if they are ever called. The stubs are here since this version was hacked from the COFF version, and thus they will probably go away or get expanded appropriately in a future version. fnf@cygnus.com *****************************************/ /* Problems and other issues to resolve. (1) BFD expects there to be some fixed number of "sections" in the object file. I.E. there is a "section_count" variable in the bfd structure which contains the number of sections. However, ELF supports multiple "views" of a file. In particular, with current implementations, executable files typically have two tables, a program header table and a section header table, both of which partition the executable. In ELF-speak, the "linking view" of the file uses the section header table to access "sections" within the file, and the "execution view" uses the program header table to access "segments" within the file. "Segments" typically may contain all the data from one or more "sections". Note that the section header table is optional in ELF executables, but it is this information that is most useful to gdb. If the section header table is missing, then gdb should probably try to make do with the program header table. (FIXME) */ #include "bfd.h" #include "sysdep.h" #include "libbfd.h" #include "obstack.h" #include "elf/common.h" #include "elf/internal.h" #include "elf/external.h" #ifdef HAVE_PROCFS /* Some core file support requires host /proc files */ #include #else #define bfd_prstatus(abfd, descdata, descsz, filepos) /* Define away */ #define bfd_fpregset(abfd, descdata, descsz, filepos) /* Define away */ #define bfd_prpsinfo(abfd, descdata, descsz, filepos) /* Define away */ #endif /* Forward data declarations */ extern bfd_target elf_little_vec, elf_big_vec; /* Currently the elf_symbol_type struct just contains the generic bfd symbol structure. */ typedef struct { asymbol symbol; } elf_symbol_type; /* Some private data is stashed away for future use using the tdata pointer in the bfd structure. This information is different for ELF core files and other ELF files. */ typedef struct elf_core_tdata_struct { void *prstatus; /* The raw /proc prstatus structure */ void *prpsinfo; /* The raw /proc prpsinfo structure */ } elf_core_tdata; #define core_prpsinfo(bfd) (((bfd)->tdata.elf_core_data) -> prpsinfo) #define core_prstatus(bfd) (((bfd)->tdata.elf_core_data) -> prstatus) typedef struct elf_obj_tdata_struct { Elf_Internal_Ehdr *elf_header; Elf_Internal_Shdr *elf_sect_ptr; struct strtab *strtab_ptr; int symtab_section; } elf_obj_tdata; #define elf_tdata(bfd) ((bfd) -> tdata.elf_obj_data) #define elf_elfheader(bfd) (elf_tdata(bfd) -> elf_header) #define elf_elfsections(bfd) (elf_tdata(bfd) -> elf_sect_ptr) #define elf_shstrtab(bfd) (elf_tdata(bfd) -> strtab_ptr) #define elf_onesymtab(bfd) (elf_tdata(bfd) -> symtab_section) /* Translate an ELF symbol in external format into an ELF symbol in internal format. */ static void DEFUN(elf_swap_symbol_in,(abfd, src, dst), bfd *abfd AND Elf_External_Sym *src AND Elf_Internal_Sym *dst) { dst -> st_name = bfd_h_get_32 (abfd, (bfd_byte *) src -> st_name); dst -> st_value = bfd_h_get_32 (abfd, (bfd_byte *) src -> st_value); dst -> st_size = bfd_h_get_32 (abfd, (bfd_byte *) src -> st_size); dst -> st_info = bfd_h_get_8 (abfd, (bfd_byte *) src -> st_info); dst -> st_other = bfd_h_get_8 (abfd, (bfd_byte *) src -> st_other); dst -> st_shndx = bfd_h_get_16 (abfd, (bfd_byte *) src -> st_shndx); } /* Translate an ELF symbol in internal format into an ELF symbol in external format. */ static void DEFUN(elf_swap_symbol_out,(abfd, src, dst), bfd *abfd AND Elf_Internal_Sym *src AND Elf_External_Sym *dst) { bfd_h_put_32 (abfd, src->st_name, dst->st_name); bfd_h_put_32 (abfd, src->st_value, dst->st_value); bfd_h_put_32 (abfd, src->st_size, dst->st_size); bfd_h_put_8 (abfd, src->st_info, dst->st_info); bfd_h_put_8 (abfd, src->st_other, dst->st_other); bfd_h_put_16 (abfd, src->st_shndx, dst->st_shndx); } /* Translate an ELF file header in external format into an ELF file header in internal format. */ static void DEFUN(elf_swap_ehdr_in,(abfd, src, dst), bfd *abfd AND Elf_External_Ehdr *src AND Elf_Internal_Ehdr *dst) { memcpy (dst -> e_ident, src -> e_ident, EI_NIDENT); dst -> e_type = bfd_h_get_16 (abfd, (bfd_byte *) src -> e_type); dst -> e_machine = bfd_h_get_16 (abfd, (bfd_byte *) src -> e_machine); dst -> e_version = bfd_h_get_32 (abfd, (bfd_byte *) src -> e_version); dst -> e_entry = bfd_h_get_32 (abfd, (bfd_byte *) src -> e_entry); dst -> e_phoff = bfd_h_get_32 (abfd, (bfd_byte *) src -> e_phoff); dst -> e_shoff = bfd_h_get_32 (abfd, (bfd_byte *) src -> e_shoff); dst -> e_flags = bfd_h_get_32 (abfd, (bfd_byte *) src -> e_flags); dst -> e_ehsize = bfd_h_get_16 (abfd, (bfd_byte *) src -> e_ehsize); dst -> e_phentsize = bfd_h_get_16 (abfd, (bfd_byte *) src -> e_phentsize); dst -> e_phnum = bfd_h_get_16 (abfd, (bfd_byte *) src -> e_phnum); dst -> e_shentsize = bfd_h_get_16 (abfd, (bfd_byte *) src -> e_shentsize); dst -> e_shnum = bfd_h_get_16 (abfd, (bfd_byte *) src -> e_shnum); dst -> e_shstrndx = bfd_h_get_16 (abfd, (bfd_byte *) src -> e_shstrndx); } /* Translate an ELF file header in internal format into an ELF file header in external format. */ static void DEFUN(elf_swap_ehdr_out,(abfd, src, dst), bfd *abfd AND Elf_Internal_Ehdr *src AND Elf_External_Ehdr *dst) { memcpy (dst -> e_ident, src -> e_ident, EI_NIDENT); /* note that all elements of dst are *arrays of unsigned char* already... */ bfd_h_put_16 (abfd, src->e_type, dst->e_type); bfd_h_put_16 (abfd, src->e_machine, dst->e_machine); bfd_h_put_32 (abfd, src->e_version, dst->e_version); bfd_h_put_32 (abfd, src->e_entry, dst->e_entry); bfd_h_put_32 (abfd, src->e_phoff, dst->e_phoff); bfd_h_put_32 (abfd, src->e_shoff, dst->e_shoff); bfd_h_put_32 (abfd, src->e_flags, dst->e_flags); bfd_h_put_16 (abfd, src->e_ehsize, dst->e_ehsize); bfd_h_put_16 (abfd, src->e_phentsize, dst->e_phentsize); bfd_h_put_16 (abfd, src->e_phnum, dst->e_phnum); bfd_h_put_16 (abfd, src->e_shentsize, dst->e_shentsize); bfd_h_put_16 (abfd, src->e_shnum, dst->e_shnum); bfd_h_put_16 (abfd, src->e_shstrndx, dst->e_shstrndx); } /* Translate an ELF section header table entry in external format into an ELF section header table entry in internal format. */ static void DEFUN(elf_swap_shdr_in,(abfd, src, dst), bfd *abfd AND Elf_External_Shdr *src AND Elf_Internal_Shdr *dst) { dst->sh_name = bfd_h_get_32 (abfd, (bfd_byte *) src->sh_name); dst->sh_type = bfd_h_get_32 (abfd, (bfd_byte *) src->sh_type); dst->sh_flags = bfd_h_get_32 (abfd, (bfd_byte *) src->sh_flags); dst->sh_addr = bfd_h_get_32 (abfd, (bfd_byte *) src->sh_addr); dst->sh_offset = bfd_h_get_32 (abfd, (bfd_byte *) src->sh_offset); dst->sh_size = bfd_h_get_32 (abfd, (bfd_byte *) src->sh_size); dst->sh_link = bfd_h_get_32 (abfd, (bfd_byte *) src->sh_link); dst->sh_info = bfd_h_get_32 (abfd, (bfd_byte *) src->sh_info); dst->sh_addralign = bfd_h_get_32 (abfd, (bfd_byte *) src->sh_addralign); dst->sh_entsize = bfd_h_get_32 (abfd, (bfd_byte *) src->sh_entsize); /* we haven't done any processing on it yet, so... */ dst->rawdata = (void*)0; } /* Translate an ELF section header table entry in internal format into an ELF section header table entry in external format. */ static void DEFUN(elf_swap_shdr_out,(abfd, src, dst), bfd *abfd AND Elf_Internal_Shdr *src AND Elf_External_Shdr *dst) { /* note that all elements of dst are *arrays of unsigned char* already... */ bfd_h_put_32 (abfd, src->sh_name, dst->sh_name); bfd_h_put_32 (abfd, src->sh_type, dst->sh_type); bfd_h_put_32 (abfd, src->sh_flags, dst->sh_flags); bfd_h_put_32 (abfd, src->sh_addr, dst->sh_addr); bfd_h_put_32 (abfd, src->sh_offset, dst->sh_offset); bfd_h_put_32 (abfd, src->sh_size, dst->sh_size); bfd_h_put_32 (abfd, src->sh_link, dst->sh_link); bfd_h_put_32 (abfd, src->sh_info, dst->sh_info); bfd_h_put_32 (abfd, src->sh_addralign, dst->sh_addralign); bfd_h_put_32 (abfd, src->sh_entsize, dst->sh_entsize); } /* Translate an ELF program header table entry in external format into an ELF program header table entry in internal format. */ static void DEFUN(elf_swap_phdr_in,(abfd, src, dst), bfd *abfd AND Elf_External_Phdr *src AND Elf_Internal_Phdr *dst) { dst->p_type = bfd_h_get_32 (abfd, (bfd_byte *) src->p_type); dst->p_offset = bfd_h_get_32 (abfd, (bfd_byte *) src->p_offset); dst->p_vaddr = bfd_h_get_32 (abfd, (bfd_byte *) src->p_vaddr); dst->p_paddr = bfd_h_get_32 (abfd, (bfd_byte *) src->p_paddr); dst->p_filesz = bfd_h_get_32 (abfd, (bfd_byte *) src->p_filesz); dst->p_memsz = bfd_h_get_32 (abfd, (bfd_byte *) src->p_memsz); dst->p_flags = bfd_h_get_32 (abfd, (bfd_byte *) src->p_flags); dst->p_align = bfd_h_get_32 (abfd, (bfd_byte *) src->p_align); } /* Translate an ELF reloc from external format to internal format. */ static void DEFUN(elf_swap_reloc_in,(abfd, src, dst), bfd *abfd AND Elf_External_Rel *src AND Elf_Internal_Rel *dst) { dst->r_offset = bfd_h_get_32 (abfd, (bfd_byte *) src->r_offset); dst->r_info = bfd_h_get_32 (abfd, (bfd_byte *) src->r_info); } static void DEFUN(elf_swap_reloca_in,(abfd, src, dst), bfd *abfd AND Elf_External_Rela *src AND Elf_Internal_Rela *dst) { dst->r_offset = bfd_h_get_32 (abfd, (bfd_byte *) src->r_offset); dst->r_info = bfd_h_get_32 (abfd, (bfd_byte *) src->r_info); dst->r_addend = bfd_h_get_32 (abfd, (bfd_byte *) src->r_addend); } /* Translate an ELF reloc from internal format to external format. */ static void DEFUN(elf_swap_reloc_out,(abfd, src, dst), bfd *abfd AND Elf_Internal_Rel *src AND Elf_External_Rel *dst) { bfd_h_put_32 (abfd, src->r_offset, dst->r_offset); bfd_h_put_32 (abfd, src->r_info, dst->r_info); } static void DEFUN(elf_swap_reloca_out,(abfd, src, dst), bfd *abfd AND Elf_Internal_Rela *src AND Elf_External_Rela *dst) { bfd_h_put_32 (abfd, src->r_offset, dst->r_offset); bfd_h_put_32 (abfd, src->r_info, dst->r_info); bfd_h_put_32 (abfd, src->r_addend, dst->r_addend); } static char *EXFUN(elf_read, (bfd *, long, int)); static struct sec * EXFUN(section_from_elf_index, (bfd *, int)); static int EXFUN(elf_section_from_bfd_section, (bfd *, struct sec *)); static boolean EXFUN(elf_slurp_symbol_table, (bfd *, Elf_Internal_Shdr*)); static void EXFUN(elf_info_to_howto, (bfd *, arelent *, Elf_Internal_Rela *)); static char * DEFUN(elf_get_str_section, (abfd, shindex), bfd *abfd AND unsigned int shindex) { Elf_Internal_Shdr *i_shdrp = elf_elfsections (abfd); unsigned int shstrtabsize = i_shdrp[shindex].sh_size; unsigned int offset = i_shdrp[shindex].sh_offset; char *shstrtab; if ((shstrtab = elf_read (abfd, offset, shstrtabsize)) == NULL) { return (NULL); } i_shdrp[shindex].rawdata = (void*)shstrtab; } static char * DEFUN(elf_string_from_elf_section, (abfd, shindex, strindex), bfd *abfd AND unsigned int shindex AND unsigned int strindex) { Elf_Internal_Shdr *i_shdrp = elf_elfsections (abfd); Elf_Internal_Shdr *hdr = i_shdrp + shindex; if (! hdr->rawdata) { if (elf_get_str_section (abfd, shindex) == NULL) { return NULL; } } return ((char*)hdr->rawdata)+strindex; } #define elf_string_from_elf_strtab(abfd, strindex) \ elf_string_from_elf_section (abfd, elf_elfheader(abfd)->e_shstrndx, strindex) /* Create a new bfd section from an ELF section header. */ static boolean DEFUN(bfd_section_from_shdr, (abfd, shindex), bfd *abfd AND unsigned int shindex) { Elf_Internal_Shdr *i_shdrp = elf_elfsections (abfd); Elf_Internal_Shdr *hdr = i_shdrp + shindex; asection *newsect; char *name; name = hdr->sh_name ? elf_string_from_elf_strtab (abfd, hdr->sh_name) : "unnamed"; switch(hdr->sh_type) { case SHT_NULL: /* inactive section. Throw it away. */ return true; case SHT_PROGBITS: case SHT_NOBITS: /* Bits that get saved. This one is real. */ if (! hdr->rawdata ) { newsect = bfd_make_section (abfd, name); newsect->vma = hdr->sh_addr; newsect->_raw_size = hdr->sh_size; newsect->filepos = hdr->sh_offset; /* so we can read back the bits */ newsect->flags |= SEC_HAS_CONTENTS; if (hdr->sh_flags & SHF_ALLOC) { newsect->flags |= SEC_ALLOC; if (hdr->sh_type != SHT_NOBITS) newsect->flags |= SEC_LOAD; } if (!(hdr->sh_flags & SHF_WRITE)) newsect->flags |= SEC_READONLY; if (hdr->sh_flags & SHF_EXECINSTR) newsect->flags |= SEC_CODE; /* FIXME: may only contain SOME code */ else newsect->flags |= SEC_DATA; hdr->rawdata = (void*)newsect; } return true; break; case SHT_SYMTAB: /* we may be getting called by reference. Bring'em in... */ if (! hdr->rawdata) { /* fetch our corresponding string table. */ bfd_section_from_shdr (abfd, hdr->sh_link); /* start turning our elf symbols into bfd symbols. */ BFD_ASSERT (hdr->sh_entsize == sizeof (Elf_External_Sym)); elf_slurp_symbol_table (abfd, hdr); abfd->flags |= HAS_SYMS; } return true; case SHT_STRTAB: /* we may be getting called by reference. Bring'em in... */ if (! hdr->rawdata) { /* we don't need to do anything, just make the data available. */ if (elf_get_str_section (abfd, shindex) == NULL) return false; } return true; case SHT_REL: case SHT_RELA: /* *these* do a lot of work -- but build no sections! */ /* the spec says there can be multiple strtabs, but only one symtab */ /* but there can be lots of REL* sections. */ { asection *target_sect; unsigned int idx; bfd_section_from_shdr (abfd, hdr->sh_link); /* symbol table */ bfd_section_from_shdr (abfd, hdr->sh_info); /* target */ target_sect = section_from_elf_index (abfd, hdr->sh_info); if (!elf_slurp_symbol_table(abfd, i_shdrp + hdr->sh_link)) return false; target_sect->reloc_count = hdr->sh_size / hdr->sh_entsize; target_sect->flags |= SEC_RELOC; target_sect->relocation = 0; target_sect->rel_filepos = hdr->sh_offset; fprintf(stderr, "ELF>> section %s reading %d relocs\n", target_sect->name, target_sect->reloc_count); return true; } break; case SHT_HASH: case SHT_DYNAMIC: case SHT_DYNSYM: /* could treat this like symtab... */ fprintf(stderr, "Dynamic Linking sections not yet supported.\n"); abort (); break; case SHT_NOTE: fprintf(stderr, "Note Sections not yet supported.\n"); abort (); break; case SHT_SHLIB: fprintf(stderr, "SHLIB Sections not supported (and non conforming.)\n"); return true; default: break; } return (true); } struct strtab { char *tab; int nentries; int length; }; static struct strtab * DEFUN(bfd_new_strtab, (abfd), bfd *abfd) { struct strtab *ss; ss = (struct strtab *)malloc(sizeof(struct strtab)); ss->tab = malloc(1); BFD_ASSERT(ss->tab != 0); *ss->tab = 0; ss->nentries = 0; ss->length = 1; return ss; } static int DEFUN(bfd_add_to_strtab, (abfd, ss, str), bfd *abfd AND struct strtab *ss AND CONST char *str) { /* should search first, but for now: */ /* include the trailing NUL */ int ln = strlen(str)+1; /* should this be using obstacks? */ ss->tab = realloc(ss->tab, ss->length + ln); BFD_ASSERT(ss->tab != 0); strcpy(ss->tab + ss->length, str); ss->nentries++; ss->length += ln; return ss->length - ln; } static int DEFUN(bfd_add_2_to_strtab, (abfd, ss, str, str2), bfd *abfd AND struct strtab *ss AND char *str AND CONST char *str2) { /* should search first, but for now: */ /* include the trailing NUL */ int ln = strlen(str)+strlen(str2)+1; /* should this be using obstacks? */ if (ss->length) ss->tab = realloc(ss->tab, ss->length + ln); else ss->tab = malloc(ln); BFD_ASSERT(ss->tab != 0); strcpy(ss->tab + ss->length, str); strcpy(ss->tab + ss->length + strlen(str), str2); ss->nentries++; ss->length += ln; return ss->length - ln; } /* Create a new ELF section from a bfd section. */ static boolean DEFUN(bfd_shdr_from_section, (abfd, hdr, shstrtab, indx), bfd *abfd AND Elf_Internal_Shdr *hdr AND struct strtab *shstrtab AND int indx) { asection *sect; int ndx; /* figure out out to write the section name from the bfd section name. MWE */ sect = abfd->sections; for (ndx = indx; --ndx; ) { sect = sect->next; } hdr[indx].sh_name = bfd_add_to_strtab(abfd, shstrtab, bfd_section_name(abfd, sect)); hdr[indx].sh_addr = sect->vma; hdr[indx].sh_size = sect->_raw_size; hdr[indx].sh_flags = 0; /* these need to be preserved on */ hdr[indx].sh_link = 0; hdr[indx].sh_info = 0; hdr[indx].sh_addralign = 0; hdr[indx].sh_entsize = 0; hdr[indx].sh_type = 0; if (sect->flags & SEC_RELOC) { hdr[indx].sh_type = SHT_RELA; /* FIXME -- sparc specific */ } if (sect->flags & SEC_HAS_CONTENTS) { hdr[indx].sh_offset = sect->filepos; hdr[indx].sh_size = sect->_raw_size; } if (sect->flags & SEC_ALLOC) { hdr[indx].sh_flags |= SHF_ALLOC; if (sect->flags & SEC_LOAD) { /* do something with sh_type ? */ } } if (!(sect->flags & SEC_READONLY)) hdr[indx].sh_flags |= SHF_WRITE; if (sect->flags & SEC_CODE) hdr[indx].sh_flags |= SHF_EXECINSTR; return (true); } /* Create a new bfd section from an ELF program header. Since program segments have no names, we generate a synthetic name of the form segment, where NUM is generally the index in the program header table. For segments that are split (see below) we generate the names segmenta and segmentb. Note that some program segments may have a file size that is different than (less than) the memory size. All this means is that at execution the system must allocate the amount of memory specified by the memory size, but only initialize it with the first "file size" bytes read from the file. This would occur for example, with program segments consisting of combined data+bss. To handle the above situation, this routine generates TWO bfd sections for the single program segment. The first has the length specified by the file size of the segment, and the second has the length specified by the difference between the two sizes. In effect, the segment is split into it's initialized and uninitialized parts. */ static boolean DEFUN(bfd_section_from_phdr, (abfd, hdr, index), bfd *abfd AND Elf_Internal_Phdr *hdr AND int index) { asection *newsect; char *name; char namebuf[64]; int split; split = ((hdr -> p_memsz > 0) && (hdr -> p_filesz > 0) && (hdr -> p_memsz > hdr -> p_filesz)); sprintf (namebuf, split ? "segment%da" : "segment%d", index); name = bfd_alloc (abfd, strlen (namebuf) + 1); (void) strcpy (name, namebuf); newsect = bfd_make_section (abfd, name); newsect -> vma = hdr -> p_vaddr; newsect -> _raw_size = hdr -> p_filesz; newsect -> filepos = hdr -> p_offset; newsect -> flags |= SEC_HAS_CONTENTS; if (hdr -> p_type == PT_LOAD) { newsect -> flags |= SEC_ALLOC; newsect -> flags |= SEC_LOAD; if (hdr -> p_flags & PF_X) { /* FIXME: all we known is that it has execute PERMISSION, may be data. */ newsect -> flags |= SEC_CODE; } } if (!(hdr -> p_flags & PF_W)) { newsect -> flags |= SEC_READONLY; } if (split) { sprintf (namebuf, "segment%db", index); name = bfd_alloc (abfd, strlen (namebuf) + 1); (void) strcpy (name, namebuf); newsect = bfd_make_section (abfd, name); newsect -> vma = hdr -> p_vaddr + hdr -> p_filesz; newsect -> _raw_size = hdr -> p_memsz - hdr -> p_filesz; if (hdr -> p_type == PT_LOAD) { newsect -> flags |= SEC_ALLOC; if (hdr -> p_flags & PF_X) newsect -> flags |= SEC_CODE; } if (!(hdr -> p_flags & PF_W)) newsect -> flags |= SEC_READONLY; } return (true); } #ifdef HAVE_PROCFS static void DEFUN(bfd_prstatus,(abfd, descdata, descsz, filepos), bfd *abfd AND char *descdata AND int descsz AND long filepos) { asection *newsect; prstatus_t *status = (prstatus_t *)0; if (descsz == sizeof (prstatus_t)) { newsect = bfd_make_section (abfd, ".reg"); newsect -> _raw_size = sizeof (status->pr_reg); newsect -> filepos = filepos + (long) &status->pr_reg; newsect -> flags = SEC_ALLOC | SEC_HAS_CONTENTS; newsect -> alignment_power = 2; if ((core_prstatus (abfd) = bfd_alloc (abfd, descsz)) != NULL) { memcpy (core_prstatus (abfd), descdata, descsz); } } } /* Stash a copy of the prpsinfo structure away for future use. */ static void DEFUN(bfd_prpsinfo,(abfd, descdata, descsz, filepos), bfd *abfd AND char *descdata AND int descsz AND long filepos) { asection *newsect; if (descsz == sizeof (prpsinfo_t)) { if ((core_prpsinfo (abfd) = bfd_alloc (abfd, descsz)) != NULL) { bcopy (descdata, core_prpsinfo (abfd), descsz); } } } static void DEFUN(bfd_fpregset,(abfd, descdata, descsz, filepos), bfd *abfd AND char *descdata AND int descsz AND long filepos) { asection *newsect; newsect = bfd_make_section (abfd, ".reg2"); newsect -> _raw_size = descsz; newsect -> filepos = filepos; newsect -> flags = SEC_ALLOC | SEC_HAS_CONTENTS; newsect -> alignment_power = 2; } #endif /* HAVE_PROCFS */ /* Return a pointer to the args (including the command name) that were seen by the program that generated the core dump. Note that for some reason, a spurious space is tacked onto the end of the args in some (at least one anyway) implementations, so strip it off if it exists. */ char * DEFUN(elf_core_file_failing_command, (abfd), bfd *abfd) { #ifdef HAVE_PROCFS if (core_prpsinfo (abfd)) { prpsinfo_t *p = core_prpsinfo (abfd); char *scan = p -> pr_psargs; while (*scan++) {;} scan -= 2; if ((scan > p -> pr_psargs) && (*scan == ' ')) { *scan = '\000'; } return (p -> pr_psargs); } #endif return (NULL); } /* Return the number of the signal that caused the core dump. Presumably, since we have a core file, we got a signal of some kind, so don't bother checking the other process status fields, just return the signal number. */ static int DEFUN(elf_core_file_failing_signal, (abfd), bfd *abfd) { #ifdef HAVE_PROCFS if (core_prstatus (abfd)) { return (((prstatus_t *)(core_prstatus (abfd))) -> pr_cursig); } #endif return (-1); } /* Check to see if the core file could reasonably be expected to have come for the current executable file. Note that by default we return true unless we find something that indicates that there might be a problem. */ static boolean DEFUN(elf_core_file_matches_executable_p, (core_bfd, exec_bfd), bfd *core_bfd AND bfd *exec_bfd) { #ifdef HAVE_PROCFS char *corename; char *execname; #endif /* First, xvecs must match since both are ELF files for the same target. */ if (core_bfd->xvec != exec_bfd->xvec) { bfd_error = system_call_error; return (false); } #ifdef HAVE_PROCFS /* If no prpsinfo, just return true. Otherwise, grab the last component of the exec'd pathname from the prpsinfo. */ if (core_prpsinfo (core_bfd)) { corename = (((struct prpsinfo *) core_prpsinfo (core_bfd)) -> pr_fname); } else { return (true); } /* Find the last component of the executable pathname. */ if ((execname = strrchr (exec_bfd -> filename, '/')) != NULL) { execname++; } else { execname = (char *) exec_bfd -> filename; } /* See if they match */ return (strcmp (execname, corename) ? false : true); #else return (true); #endif /* HAVE_PROCFS */ } /* ELF core files contain a segment of type PT_NOTE, that holds much of the information that would normally be available from the /proc interface for the process, at the time the process dumped core. Currently this includes copies of the prstatus, prpsinfo, and fpregset structures. Since these structures are potentially machine dependent in size and ordering, bfd provides two levels of support for them. The first level, available on all machines since it does not require that the host have /proc support or the relevant include files, is to create a bfd section for each of the prstatus, prpsinfo, and fpregset structures, without any interpretation of their contents. With just this support, the bfd client will have to interpret the structures itself. Even with /proc support, it might want these full structures for it's own reasons. In the second level of support, where HAVE_PROCFS is defined, bfd will pick apart the structures to gather some additional information that clients may want, such as the general register set, the name of the exec'ed file and its arguments, the signal (if any) that caused the core dump, etc. */ static boolean DEFUN(elf_corefile_note, (abfd, hdr), bfd *abfd AND Elf_Internal_Phdr *hdr) { Elf_External_Note *x_note_p; /* Elf note, external form */ Elf_Internal_Note i_note; /* Elf note, internal form */ char *buf = NULL; /* Entire note segment contents */ char *namedata; /* Name portion of the note */ char *descdata; /* Descriptor portion of the note */ char *sectname; /* Name to use for new section */ long filepos; /* File offset to descriptor data */ asection *newsect; if (hdr -> p_filesz > 0 && (buf = (char *) bfd_xmalloc (hdr -> p_filesz)) != NULL && bfd_seek (abfd, hdr -> p_offset, SEEK_SET) != -1L && bfd_read ((PTR) buf, hdr -> p_filesz, 1, abfd) == hdr -> p_filesz) { x_note_p = (Elf_External_Note *) buf; while ((char *) x_note_p < (buf + hdr -> p_filesz)) { i_note.namesz = bfd_h_get_32 (abfd, (bfd_byte *) x_note_p -> namesz); i_note.descsz = bfd_h_get_32 (abfd, (bfd_byte *) x_note_p -> descsz); i_note.type = bfd_h_get_32 (abfd, (bfd_byte *) x_note_p -> type); namedata = x_note_p -> name; descdata = namedata + BFD_ALIGN (i_note.namesz, 4); filepos = hdr -> p_offset + (descdata - buf); switch (i_note.type) { case NT_PRSTATUS: /* process descdata as prstatus info */ bfd_prstatus (abfd, descdata, i_note.descsz, filepos); sectname = ".prstatus"; break; case NT_FPREGSET: /* process descdata as fpregset info */ bfd_fpregset (abfd, descdata, i_note.descsz, filepos); sectname = ".fpregset"; break; case NT_PRPSINFO: /* process descdata as prpsinfo */ bfd_prpsinfo (abfd, descdata, i_note.descsz, filepos); sectname = ".prpsinfo"; break; default: /* Unknown descriptor, just ignore it. */ sectname = NULL; break; } if (sectname != NULL) { newsect = bfd_make_section (abfd, sectname); newsect -> _raw_size = i_note.descsz; newsect -> filepos = filepos; newsect -> flags = SEC_ALLOC | SEC_HAS_CONTENTS; newsect -> alignment_power = 2; } x_note_p = (Elf_External_Note *) (descdata + BFD_ALIGN (i_note.descsz, 4)); } } if (buf != NULL) { free (buf); } return true; } /* Read a specified number of bytes at a specified offset in an ELF file, into a newly allocated buffer, and return a pointer to the buffer. */ static char * DEFUN(elf_read, (abfd, offset, size), bfd *abfd AND long offset AND int size) { char *buf; if ((buf = bfd_alloc (abfd, size)) == NULL) { bfd_error = no_memory; return (NULL); } if (bfd_seek (abfd, offset, SEEK_SET) == -1) { bfd_error = system_call_error; return (NULL); } if (bfd_read ((PTR) buf, size, 1, abfd) != size) { bfd_error = system_call_error; return (NULL); } return (buf); } /* Begin processing a given object. First we validate the file by reading in the ELF header and checking the magic number. */ static bfd_target * DEFUN (elf_object_p, (abfd), bfd *abfd) { Elf_External_Ehdr x_ehdr; /* Elf file header, external form */ Elf_Internal_Ehdr i_ehdr; /* Elf file header, internal form */ Elf_External_Shdr x_shdr; /* Section header table entry, external form */ Elf_Internal_Shdr *i_shdrp; /* Section header table, internal form */ int shindex; char *shstrtab; /* Internal copy of section header stringtab */ Elf_Off offset; /* Temp place to stash file offsets */ /* Read in the ELF header in external format. */ if (bfd_read ((PTR) &x_ehdr, sizeof (x_ehdr), 1, abfd) != sizeof (x_ehdr)) { bfd_error = system_call_error; return (NULL); } /* Now check to see if we have a valid ELF file, and one that BFD can make use of. The magic number must match, the address size ('class') and byte-swapping must match our XVEC entry, and it must have a section header table (FIXME: See comments re sections at top of this file). */ if (x_ehdr.e_ident[EI_MAG0] != ELFMAG0 || x_ehdr.e_ident[EI_MAG1] != ELFMAG1 || x_ehdr.e_ident[EI_MAG2] != ELFMAG2 || x_ehdr.e_ident[EI_MAG3] != ELFMAG3) { wrong: bfd_error = wrong_format; return (NULL); } /* FIXME, Check EI_VERSION here ! */ switch (x_ehdr.e_ident[EI_CLASS]) { case ELFCLASSNONE: /* address size not specified */ goto wrong; /* No support if can't tell address size */ case ELFCLASS32: /* 32-bit addresses */ break; case ELFCLASS64: /* 64-bit addresses */ goto wrong; /* FIXME: 64 bits not yet supported */ default: goto wrong; /* No support if unknown address class */ } /* Switch xvec to match the specified byte order. */ switch (x_ehdr.e_ident[EI_DATA]) { case ELFDATA2MSB: /* Big-endian */ if (!abfd->xvec->header_byteorder_big_p) goto wrong; break; case ELFDATA2LSB: /* Little-endian */ if (abfd->xvec->header_byteorder_big_p) goto wrong; break; case ELFDATANONE: /* No data encoding specified */ default: /* Unknown data encoding specified */ goto wrong; } /* Allocate an instance of the elf_obj_tdata structure and hook it up to the tdata pointer in the bfd. */ if ((abfd -> tdata.elf_obj_data = (elf_obj_tdata*) bfd_zalloc (abfd, sizeof (elf_obj_tdata))) == NULL) { bfd_error = no_memory; return (NULL); } /* Now that we know the byte order, swap in the rest of the header */ elf_swap_ehdr_in (abfd, &x_ehdr, &i_ehdr); /* FIXME: should be alloc'ed */ elf_elfheader (abfd) = &i_ehdr; /* If there is no section header table, we're hosed. */ if (i_ehdr.e_shoff == 0) goto wrong; if (i_ehdr.e_type == ET_EXEC || i_ehdr.e_type == ET_DYN) abfd -> flags |= EXEC_P; switch (i_ehdr.e_machine) { case EM_NONE: case EM_M32: /* or should this be bfd_arch_obscure? */ bfd_default_set_arch_mach(abfd, bfd_arch_unknown, 0); break; case EM_SPARC: bfd_default_set_arch_mach(abfd, bfd_arch_sparc, 0); break; case EM_386: bfd_default_set_arch_mach(abfd, bfd_arch_i386, 0); break; case EM_68K: bfd_default_set_arch_mach(abfd, bfd_arch_m68k, 0); break; case EM_88K: bfd_default_set_arch_mach(abfd, bfd_arch_m88k, 0); break; case EM_860: bfd_default_set_arch_mach(abfd, bfd_arch_i860, 0); break; case EM_MIPS: bfd_default_set_arch_mach(abfd, bfd_arch_mips, 0); break; default: goto wrong; } /* Allocate space for a copy of the section header table in internal form, seek to the section header table in the file, read it in, and convert it to internal form. As a simple sanity check, verify that the what BFD thinks is the size of each section header table entry actually matches the size recorded in the file. */ if (i_ehdr.e_shentsize != sizeof (x_shdr)) goto wrong; i_shdrp = (Elf_Internal_Shdr *) bfd_alloc (abfd, sizeof (*i_shdrp) * i_ehdr.e_shnum); if (! i_shdrp) { bfd_error = no_memory; return (NULL); } if (bfd_seek (abfd, i_ehdr.e_shoff, SEEK_SET) == -1) { bfd_error = system_call_error; return (NULL); } for (shindex = 0; shindex < i_ehdr.e_shnum; shindex++) { if (bfd_read ((PTR) &x_shdr, sizeof x_shdr, 1, abfd) != sizeof (x_shdr)) { bfd_error = system_call_error; return (NULL); } elf_swap_shdr_in (abfd, &x_shdr, i_shdrp + shindex); } elf_elfsections (abfd) = i_shdrp; /* Read in the string table containing the names of the sections. We will need the base pointer to this table later. */ /* We read this inline now, so that we don't have to go through bfd_section_from_shdr with it (since this particular strtab is used to find all of the ELF section names.) */ shstrtab = elf_get_str_section (abfd, i_ehdr.e_shstrndx); if (! shstrtab) return (NULL); /* Once all of the section headers have been read and converted, we can start processing them. Note that the first section header is a dummy placeholder entry, so we ignore it. We also watch for the symbol table section and remember the file offset and section size for both the symbol table section and the associated string table section. */ for (shindex = 1; shindex < i_ehdr.e_shnum; shindex++) { bfd_section_from_shdr (abfd, shindex); } /* Remember the entry point specified in the ELF file header. */ bfd_get_start_address (abfd) = i_ehdr.e_entry; return (abfd->xvec); } /* Core files are simply standard ELF formatted files that partition the file using the execution view of the file (program header table) rather than the linking view. In fact, there is no section header table in a core file. The process status information (including the contents of the general register set) and the floating point register set are stored in a segment of type PT_NOTE. We handcraft a couple of extra bfd sections that allow standard bfd access to the general registers (.reg) and the floating point registers (.reg2). */ static bfd_target * DEFUN (elf_core_file_p, (abfd), bfd *abfd) { Elf_External_Ehdr x_ehdr; /* Elf file header, external form */ Elf_Internal_Ehdr i_ehdr; /* Elf file header, internal form */ Elf_External_Phdr x_phdr; /* Program header table entry, external form */ Elf_Internal_Phdr *i_phdrp; /* Program header table, internal form */ unsigned int phindex; /* Read in the ELF header in external format. */ if (bfd_read ((PTR) &x_ehdr, sizeof (x_ehdr), 1, abfd) != sizeof (x_ehdr)) { bfd_error = system_call_error; return (NULL); } /* Now check to see if we have a valid ELF file, and one that BFD can make use of. The magic number must match, the address size ('class') and byte-swapping must match our XVEC entry, and it must have a program header table (FIXME: See comments re segments at top of this file). */ if (x_ehdr.e_ident[EI_MAG0] != ELFMAG0 || x_ehdr.e_ident[EI_MAG1] != ELFMAG1 || x_ehdr.e_ident[EI_MAG2] != ELFMAG2 || x_ehdr.e_ident[EI_MAG3] != ELFMAG3) { wrong: bfd_error = wrong_format; return (NULL); } /* FIXME, Check EI_VERSION here ! */ switch (x_ehdr.e_ident[EI_CLASS]) { case ELFCLASSNONE: /* address size not specified */ goto wrong; /* No support if can't tell address size */ case ELFCLASS32: /* 32-bit addresses */ break; case ELFCLASS64: /* 64-bit addresses */ goto wrong; /* FIXME: 64 bits not yet supported */ default: goto wrong; /* No support if unknown address class */ } /* Switch xvec to match the specified byte order. */ switch (x_ehdr.e_ident[EI_DATA]) { case ELFDATA2MSB: /* Big-endian */ abfd->xvec = &elf_big_vec; break; case ELFDATA2LSB: /* Little-endian */ abfd->xvec = &elf_little_vec; break; case ELFDATANONE: /* No data encoding specified */ default: /* Unknown data encoding specified */ goto wrong; } /* Now that we know the byte order, swap in the rest of the header */ elf_swap_ehdr_in (abfd, &x_ehdr, &i_ehdr); /* If there is no program header, or the type is not a core file, then we are hosed. */ if (i_ehdr.e_phoff == 0 || i_ehdr.e_type != ET_CORE) goto wrong; /* Allocate an instance of the elf_core_tdata structure and hook it up to the tdata pointer in the bfd. */ abfd->tdata.elf_core_data = (elf_core_tdata *) bfd_zalloc (abfd, sizeof (elf_core_tdata)); if (abfd->tdata.elf_core_data == NULL) { bfd_error = no_memory; return (NULL); } /* Allocate space for a copy of the program header table in internal form, seek to the program header table in the file, read it in, and convert it to internal form. As a simple sanity check, verify that the what BFD thinks is the size of each program header table entry actually matches the size recorded in the file. */ if (i_ehdr.e_phentsize != sizeof (x_phdr)) goto wrong; i_phdrp = (Elf_Internal_Phdr *) bfd_alloc (abfd, sizeof (*i_phdrp) * i_ehdr.e_phnum); if (! i_phdrp) { bfd_error = no_memory; return (NULL); } if (bfd_seek (abfd, i_ehdr.e_phoff, SEEK_SET) == -1) { bfd_error = system_call_error; return (NULL); } for (phindex = 0; phindex < i_ehdr.e_phnum; phindex++) { if (bfd_read ((PTR) &x_phdr, sizeof (x_phdr), 1, abfd) != sizeof (x_phdr)) { bfd_error = system_call_error; return (NULL); } elf_swap_phdr_in (abfd, &x_phdr, i_phdrp + phindex); } /* Once all of the program headers have been read and converted, we can start processing them. */ for (phindex = 0; phindex < i_ehdr.e_phnum; phindex++) { bfd_section_from_phdr (abfd, i_phdrp + phindex, phindex); if ((i_phdrp + phindex) -> p_type == PT_NOTE) { elf_corefile_note (abfd, i_phdrp + phindex); } } /* Remember the entry point specified in the ELF file header. */ bfd_get_start_address (abfd) = i_ehdr.e_entry; return (abfd->xvec); } static boolean DEFUN (elf_mkobject, (abfd), bfd *abfd) { /* this just does initialization */ /* coff_mkobject zalloc's space for tdata.coff_obj_data ... */ elf_tdata(abfd) = (elf_obj_tdata *) bfd_zalloc (abfd, sizeof(elf_obj_tdata)); if (elf_tdata(abfd) == 0) { bfd_error = no_memory; return false; } /* since everything is done at close time, do we need any initialization? */ return (true); } /* Create ELF output from BFD sections. Essentially, just create the section header and forget about the program header for now. */ /* lacking nested functions and nested types, set up for mapping over BFD sections to produce ELF sections */ typedef struct { Elf_Internal_Ehdr *i_ehdr; Elf_Internal_Shdr *i_shdrp; struct strtab *shstrtab; int symtab_section; } elf_sect_thunk; static void DEFUN (elf_make_sections, (abfd, asect, obj), bfd *abfd AND asection *asect AND PTR obj) { elf_sect_thunk *thunk = (elf_sect_thunk*)obj; /* most of what is in bfd_shdr_from_section goes in here... */ /* and all of these sections generate at *least* one ELF section. */ int this_section; int idx; /* check if we're making a PROGBITS section... */ /* if ((asect->flags & SEC_ALLOC) && (asect->flags & SEC_LOAD)) */ /* this was too strict... what *do* we want to check here? */ if(1) { Elf_Internal_Shdr *this_hdr; this_section = elf_section_from_bfd_section (abfd, asect); this_hdr = &thunk->i_shdrp[this_section]; this_hdr->sh_addr = asect->vma; this_hdr->sh_size = asect->_raw_size; /* contents already set by elf_set_section_contents */ if (asect->flags & SEC_RELOC) { /* emit a reloc section, and thus strtab and symtab... */ Elf_Internal_Shdr *rela_hdr; Elf_Internal_Shdr *symtab_hdr; Elf_Internal_Shdr *symstrtab_hdr; Elf_External_Rela *outbound_relocs; Elf_External_Sym *outbound_syms; int rela_section; int symstrtab_section; symtab_hdr = &thunk->i_shdrp[thunk->symtab_section]; if (thunk->symtab_section == this_section + 1) rela_section = thunk->symtab_section + 2; /* symtab + symstrtab */ else rela_section = this_section + 1; rela_hdr = &thunk->i_shdrp[rela_section]; rela_hdr->sh_type = SHT_RELA; rela_hdr->sh_link = thunk->symtab_section; rela_hdr->sh_info = this_section; rela_hdr->sh_entsize = sizeof (Elf_External_Rela); /* orelocation has the data, reloc_count has the count... */ rela_hdr->sh_size = rela_hdr->sh_entsize * asect->reloc_count; fprintf(stderr,"ELF>> sending out %d relocs to %s\n", asect->reloc_count, asect->name); outbound_relocs = (Elf_External_Rela *) bfd_alloc(abfd, asect->reloc_count * sizeof(Elf_External_Rela)); for (idx = 0; idx < asect->reloc_count; idx++) { Elf_Internal_Rela dst; arelent *ptr; Elf_External_Rela *src; ptr = asect->orelocation[idx]; src = outbound_relocs + idx; if (asect->flags & SEC_RELOC) dst.r_offset = ptr->address - asect->vma; else dst.r_offset = ptr->address; dst.r_info = ELF_R_INFO(1 /*ptr->sym_ptr_ptr*/, /* needs index into symtab (FIXME) */ ptr->howto->type); dst.r_addend = ptr->addend; elf_swap_reloca_out(abfd, &dst, src); } rela_hdr->contents = (void*)outbound_relocs; } } } static void DEFUN (elf_fake_sections, (abfd, asect, obj), bfd *abfd AND asection *asect AND PTR obj) { elf_sect_thunk *thunk = (elf_sect_thunk*)obj; /* most of what is in bfd_shdr_from_section goes in here... */ /* and all of these sections generate at *least* one ELF section. */ int this_section; int idx; /* check if we're making a PROGBITS section... */ /* if ((asect->flags & SEC_ALLOC) && (asect->flags & SEC_LOAD)) */ /* this was too strict... what *do* we want to check here? */ if(1) { Elf_Internal_Shdr *this_hdr; this_section = thunk->i_ehdr->e_shnum++; this_hdr = &thunk->i_shdrp[this_section]; this_hdr->sh_name = bfd_add_to_strtab (abfd, thunk->shstrtab, asect->name); /* we need to log the type *now* so that elf_section_from_bfd_section can find us... have to set rawdata too. */ this_hdr->rawdata = (void*)asect; if ((asect->flags & SEC_ALLOC) && (asect->flags & SEC_LOAD)) this_hdr->sh_type = SHT_PROGBITS; else /* what *do* we put here? */ this_hdr->sh_type = SHT_PROGBITS; if (asect->flags & SEC_RELOC) { /* emit a reloc section, and thus strtab and symtab... */ Elf_Internal_Shdr *rela_hdr; Elf_Internal_Shdr *symtab_hdr; Elf_Internal_Shdr *symstrtab_hdr; Elf_External_Rela *outbound_relocs; Elf_External_Sym *outbound_syms; int rela_section; int symstrtab_section; /* note that only one symtab is used, so just remember it for now */ if (! thunk->symtab_section) { thunk->symtab_section = thunk->i_ehdr->e_shnum++; symtab_hdr = &thunk->i_shdrp[thunk->symtab_section]; symtab_hdr->sh_name = bfd_add_to_strtab (abfd, thunk->shstrtab, ".symtab"); symtab_hdr->sh_type = SHT_SYMTAB; symtab_hdr->sh_entsize = sizeof (Elf_External_Sym); symstrtab_section = thunk->i_ehdr->e_shnum++; BFD_ASSERT(symstrtab_section == thunk->symtab_section+1); symstrtab_hdr = &thunk->i_shdrp[symstrtab_section]; symtab_hdr->sh_link = symstrtab_section; symstrtab_hdr->sh_name = bfd_add_to_strtab (abfd, thunk->shstrtab, ".strtab"); symstrtab_hdr->sh_type = SHT_STRTAB; symtab_hdr->contents = 0; symstrtab_hdr->contents = 0; symstrtab_hdr->sh_size = 0; } else symtab_hdr = &thunk->i_shdrp[thunk->symtab_section]; rela_section = thunk->i_ehdr->e_shnum++; rela_hdr = &thunk->i_shdrp[rela_section]; rela_hdr->sh_name = bfd_add_2_to_strtab (abfd, thunk->shstrtab, ".rela", asect->name); rela_hdr->sh_type = SHT_RELA; rela_hdr->sh_link = thunk->symtab_section; rela_hdr->sh_info = this_section; rela_hdr->sh_entsize = sizeof (Elf_External_Rela); } } } static boolean DEFUN (elf_compute_section_file_positions, (abfd), bfd *abfd) { Elf_Internal_Ehdr *i_ehdrp; /* Elf file header, internal form */ Elf_Internal_Shdr *i_shdrp; /* Section header table, internal form */ struct strtab *shstrtab; int count, maxsections; int outbase; elf_sect_thunk est; if (! elf_shstrtab (abfd)) { i_ehdrp = (Elf_Internal_Ehdr *) bfd_alloc (abfd, sizeof (*i_ehdrp)); shstrtab = bfd_new_strtab(abfd); i_ehdrp->e_ident[EI_MAG0] = ELFMAG0; i_ehdrp->e_ident[EI_MAG1] = ELFMAG1; i_ehdrp->e_ident[EI_MAG2] = ELFMAG2; i_ehdrp->e_ident[EI_MAG3] = ELFMAG3; i_ehdrp->e_ident[EI_CLASS] = ELFCLASS32; /* FIXME: find out from bfd */ i_ehdrp->e_ident[EI_DATA] = abfd->xvec->byteorder_big_p ? ELFDATA2MSB : ELFDATA2LSB; i_ehdrp->e_ident[EI_VERSION] = EV_CURRENT; for(count = EI_PAD; count < EI_NIDENT; count ++) i_ehdrp->e_ident[count] = 0; i_ehdrp->e_type = (abfd->flags & EXEC_P)? ET_EXEC : ET_REL; switch(bfd_get_arch(abfd)) { case bfd_arch_unknown: i_ehdrp->e_machine = EM_NONE; break; case bfd_arch_sparc: i_ehdrp->e_machine = EM_SPARC; break; case bfd_arch_i386: i_ehdrp->e_machine = EM_386; break; case bfd_arch_m68k: i_ehdrp->e_machine = EM_68K; break; case bfd_arch_m88k: i_ehdrp->e_machine = EM_88K; break; case bfd_arch_i860: i_ehdrp->e_machine = EM_860; break; case bfd_arch_mips: /* MIPS Rxxxx */ i_ehdrp->e_machine = EM_MIPS; /* only MIPS R3000 */ break; /* also note that EM_M32, AT&T WE32100 is unknown to bfd */ default: i_ehdrp->e_machine = EM_NONE; } i_ehdrp->e_version = EV_CURRENT; i_ehdrp->e_ehsize = sizeof(Elf_External_Ehdr); /* no program header, for now. */ i_ehdrp->e_phoff = 0; i_ehdrp->e_phentsize = 0; i_ehdrp->e_phnum = 0; /* each bfd section is section header entry */ i_ehdrp->e_entry = bfd_get_start_address (abfd); i_ehdrp->e_shentsize = sizeof (Elf_External_Shdr); /* can't do this: we'll need many more... */ /* i_ehdr.e_shnum = bfd_count_sections(abfd)+1; /* include 0th, shstrtab */ /* figure at most each section can have a rel, strtab, symtab */ maxsections = 4*bfd_count_sections(abfd)+2; i_ehdrp->e_shoff = i_ehdrp->e_ehsize; /* and we'll just have to fix up the offsets later. */ /* outbase += i_ehdr.e_shentsize * i_ehdr.e_shnum; */ i_shdrp = (Elf_Internal_Shdr *) bfd_alloc (abfd, sizeof (*i_shdrp) * maxsections); if (! i_shdrp) { bfd_error = no_memory; return (false); } for (count=0; count < maxsections; count++) { i_shdrp[count].rawdata = 0; i_shdrp[count].contents = 0; } i_shdrp[0].sh_name = 0; i_shdrp[0].sh_type = SHT_NULL; i_shdrp[0].sh_flags = 0; i_shdrp[0].sh_addr = 0; i_shdrp[0].sh_offset = 0; i_shdrp[0].sh_size = 0; i_shdrp[0].sh_link = SHN_UNDEF; i_shdrp[0].sh_info = 0; i_shdrp[0].sh_addralign = 0; i_shdrp[0].sh_entsize = 0; i_ehdrp->e_shnum = 1; elf_elfheader (abfd) = i_ehdrp; elf_elfsections (abfd) = i_shdrp; elf_shstrtab (abfd) = shstrtab; } est.i_ehdr = elf_elfheader(abfd); est.i_shdrp = elf_elfsections(abfd); est.shstrtab = elf_shstrtab(abfd); est.symtab_section = 0; /* elf_fake_sections fils it in */ bfd_map_over_sections(abfd, elf_fake_sections, &est); elf_onesymtab (abfd) = est.symtab_section; return (true); } static boolean DEFUN (elf_write_object_contents, (abfd), bfd *abfd) { Elf_External_Ehdr x_ehdr; /* Elf file header, external form */ Elf_Internal_Ehdr *i_ehdrp; /* Elf file header, internal form */ Elf_External_Phdr *x_phdrp; /* Program header table, external form */ Elf_Internal_Phdr *i_phdrp; /* Program header table, internal form */ Elf_External_Shdr *x_shdrp; /* Section header table, external form */ Elf_Internal_Shdr *i_shdrp; /* Section header table, internal form */ asection *nsect; int maxsections; elf_sect_thunk est; int outbase = 0; int count; struct strtab *shstrtab; if(abfd->output_has_begun == false) elf_compute_section_file_positions(abfd); i_ehdrp = elf_elfheader (abfd); i_shdrp = elf_elfsections (abfd); shstrtab = elf_shstrtab (abfd); est.i_ehdr = i_ehdrp; est.i_shdrp = i_shdrp; est.shstrtab = shstrtab; est.symtab_section = elf_onesymtab (abfd); /* filled in by elf_fake */ bfd_map_over_sections(abfd, elf_make_sections, &est); /* dump out the one symtab */ { int symcount = bfd_get_symcount (abfd); asymbol ** syms = bfd_get_outsymbols (abfd); struct strtab * stt = bfd_new_strtab (abfd); Elf_Internal_Shdr *symtab_hdr; Elf_Internal_Shdr *symstrtab_hdr; int symstrtab_section; Elf_External_Sym *outbound_syms; int idx; symtab_hdr = &i_shdrp[est.symtab_section]; symtab_hdr->sh_type = SHT_SYMTAB; symtab_hdr->sh_entsize = sizeof (Elf_External_Sym); symtab_hdr->sh_size = symtab_hdr->sh_entsize * symcount; /* see assert in elf_fake_sections that supports this: */ symstrtab_section = est.symtab_section+1; symstrtab_hdr = &i_shdrp[symstrtab_section]; symtab_hdr->sh_link = symstrtab_section; symstrtab_hdr->sh_type = SHT_STRTAB; fprintf(stderr,"ELF>> sending out %d syms\n",symcount); outbound_syms = (Elf_External_Sym*) bfd_alloc(abfd, (1+symcount) * sizeof(Elf_External_Sym)); /* now generate the data (for "contents") */ for (idx = 0; idx < symcount; idx++) { Elf_Internal_Sym sym; sym.st_name = bfd_add_to_strtab (abfd, stt, syms[idx]->name); sym.st_value = syms[idx]->value; sym.st_size = 0; /* we should recover this (FIXME) */ if (syms[idx]->flags & BSF_WEAK) sym.st_info = ELF_ST_INFO(STB_WEAK, STT_OBJECT); else if (syms[idx]->flags & BSF_LOCAL) sym.st_info = ELF_ST_INFO(STB_LOCAL, STT_OBJECT); else if (syms[idx]->flags & BSF_GLOBAL) sym.st_info = ELF_ST_INFO(STB_GLOBAL, STT_OBJECT); sym.st_other = 0; if (syms[idx]->section) sym.st_shndx = elf_section_from_bfd_section(abfd, syms[idx]->section->output_section); else sym.st_shndx = SHN_UNDEF; elf_swap_symbol_out (abfd, &sym, outbound_syms+idx+1); } { /* fill in 0th symbol */ Elf_Internal_Sym sym; sym.st_name = 0; sym.st_value = 0; sym.st_size = 0; sym.st_info = 0; sym.st_other = 0; sym.st_shndx = SHN_UNDEF; elf_swap_symbol_out (abfd, &sym, outbound_syms); } symtab_hdr->contents = (void*)outbound_syms; symstrtab_hdr->contents = (void*)stt->tab; symstrtab_hdr->sh_size = stt->length; } /* put the strtab out too... */ { Elf_Internal_Shdr *this_hdr; int this_section; this_section = i_ehdrp->e_shnum++; i_ehdrp->e_shstrndx = this_section; this_hdr = &i_shdrp[this_section]; this_hdr->sh_name = bfd_add_to_strtab (abfd, shstrtab, ".shstrtab"); this_hdr->sh_size = shstrtab->length; this_hdr->contents = (void*)shstrtab->tab; } outbase = i_ehdrp->e_ehsize; /* swap the header before spitting it out... */ elf_swap_ehdr_out (abfd, i_ehdrp, &x_ehdr); bfd_seek (abfd, 0L, SEEK_SET); bfd_write ((PTR) &x_ehdr, sizeof(x_ehdr), 1, abfd); outbase += i_ehdrp->e_shentsize * i_ehdrp->e_shnum; /* now we fix up the offsets... */ for (count = 0; count < i_ehdrp->e_shnum; count ++) { i_shdrp[count].sh_offset = outbase; outbase += i_shdrp[count].sh_size; } /* at this point we've concocted all the ELF sections... */ x_shdrp = (Elf_External_Shdr *) bfd_alloc (abfd, sizeof (*x_shdrp) * (i_ehdrp->e_shnum)); if (! x_shdrp) { bfd_error = no_memory; return (false); } fprintf(stderr, "ELF>> total sections: %d\n", i_ehdrp->e_shnum); for (count = 0; count < i_ehdrp->e_shnum; count ++) { elf_swap_shdr_out (abfd, i_shdrp+count, x_shdrp+count); } bfd_write ((PTR) x_shdrp, sizeof(*x_shdrp), i_ehdrp->e_shnum, abfd); /* need to dump the string table too... */ /* after writing the headers, we need to write the sections too... */ nsect = abfd->sections; for (count = 0; count < i_ehdrp->e_shnum; count ++) { if(i_shdrp[count].contents) { fprintf(stderr, "found some userdata: count %d, pos 0x%x\n", count, i_shdrp[count].sh_offset); bfd_seek (abfd, i_shdrp[count].sh_offset, SEEK_SET); bfd_write (i_shdrp[count].contents, i_shdrp[count].sh_size, 1, abfd); } } /* sample use of bfd: * bfd_seek (abfd, 0L, false); * bfd_write ((PTR) &exec_bytes, 1, EXEC_BYTES_SIZE, abfd); * if (bfd_seek(abfd, scn_base, SEEK_SET) != 0) * return false; * old = bfd_tell(abfd); */ return true; } /* Given an index of a section, retrieve a pointer to it. Note that for our purposes, sections are indexed by {1, 2, ...} with 0 being an illegal index. */ /* In the original, each ELF section went into exactly one BFD section. This doesn't really make sense, so we need a real mapping. The mapping has to hide in the Elf_Internal_Shdr since asection doesn't have anything like a tdata field... */ static struct sec * DEFUN (section_from_elf_index, (abfd, index), bfd *abfd AND int index) { Elf_Internal_Shdr *i_shdrp = elf_elfsections (abfd); Elf_Internal_Shdr *hdr = i_shdrp + index; switch (hdr->sh_type) { /* ELF sections that map to BFD sections */ case SHT_PROGBITS: case SHT_NOBITS: if (! hdr->rawdata) bfd_section_from_shdr (abfd, index); return (struct sec *)hdr->rawdata; break; default: return 0; } } /* given a section, search the header to find them... */ static int DEFUN (elf_section_from_bfd_section, (abfd, asect), bfd *abfd AND struct sec *asect) { Elf_Internal_Shdr *i_shdrp = elf_elfsections (abfd); int index; Elf_Internal_Shdr *hdr; int maxindex = elf_elfheader (abfd)->e_shnum; for(index = 0; index < maxindex; index++) { hdr = &i_shdrp[index]; switch (hdr->sh_type) { /* ELF sections that map to BFD sections */ case SHT_PROGBITS: case SHT_NOBITS: if (hdr->rawdata) { if (((struct sec *)(hdr->rawdata)) == asect) return index; } break; default: break; } } return 0; } static boolean DEFUN (elf_slurp_symbol_table, (abfd, hdr), bfd *abfd AND Elf_Internal_Shdr *hdr) { int symcount; /* Number of external ELF symbols */ char *strtab; /* Buffer for raw ELF string table section */ asymbol *sym; /* Pointer to current bfd symbol */ asymbol *symbase; /* Buffer for generated bfd symbols */ asymbol **vec; /* Pointer to current bfd symbol pointer */ Elf_Internal_Sym i_sym; Elf_External_Sym x_sym; Elf_External_Sym *x_symp; unsigned int *table_ptr; /* bfd symbol translation table */ /* this is only valid because there is only one symtab... */ if (bfd_get_outsymbols (abfd) != NULL) { return (true); } /* Read each raw ELF symbol, converting from external ELF form to internal ELF form, and then using the information to create a canonical bfd symbol table entry. Note that we allocate the initial bfd canonical symbol buffer based on a one-to-one mapping of the ELF symbols to canonical symbols. However, it is likely that not all the ELF symbols will be used, so there will be some space leftover at the end. Once we know how many symbols we actual generate, we realloc the buffer to the correct size and then build the pointer vector. */ if (bfd_seek (abfd, hdr->sh_offset, SEEK_SET) == -1) { bfd_error = system_call_error; return (false); } symcount = hdr->sh_size / sizeof (Elf_External_Sym); sym = symbase = (asymbol *) bfd_zalloc (abfd, symcount * sizeof (asymbol)); x_symp = (Elf_External_Sym *) bfd_zalloc (abfd, symcount * sizeof (Elf_External_Sym)); if (bfd_read ((PTR) x_symp, sizeof (Elf_External_Sym), symcount, abfd) != symcount * sizeof (Elf_External_Sym)) { bfd_error = system_call_error; return (false); } while (symcount-- > 0) { elf_swap_symbol_in (abfd, x_symp + symcount, &i_sym); if (i_sym.st_name > 0) { sym -> the_bfd = abfd; sym -> name = elf_string_from_elf_section(abfd, hdr->sh_link, i_sym.st_name); sym -> value = i_sym.st_value; if (i_sym.st_shndx > 0 && i_sym.st_shndx < SHN_LORESERV) { sym -> section = section_from_elf_index (abfd, i_sym.st_shndx); } else if (i_sym.st_shndx == SHN_ABS) { sym -> section = &bfd_abs_section; } else if (i_sym.st_shndx == SHN_COMMON) { sym -> section = &bfd_com_section; } else if (i_sym.st_shndx == SHN_UNDEF) { sym -> section = &bfd_und_section; } switch (ELF_ST_BIND (i_sym.st_info)) { case STB_LOCAL: sym -> flags |= BSF_LOCAL; break; case STB_GLOBAL: sym -> flags |= (BSF_GLOBAL | BSF_EXPORT); break; case STB_WEAK: sym -> flags |= BSF_WEAK; break; } sym++; } else { /* let's try *not* punting unnamed symbols... */ sym -> the_bfd = abfd; sym -> name = "unnamed"; /* perhaps should include the number? */ sym -> value = i_sym.st_value; if (i_sym.st_shndx > 0 && i_sym.st_shndx < SHN_LORESERV) { sym -> section = section_from_elf_index (abfd, i_sym.st_shndx); } else if (i_sym.st_shndx == SHN_ABS) { sym -> section = &bfd_abs_section; } else if (i_sym.st_shndx == SHN_COMMON) { sym -> section = &bfd_com_section; } else if (i_sym.st_shndx == SHN_UNDEF) { sym -> section = &bfd_und_section; } switch (ELF_ST_BIND (i_sym.st_info)) { case STB_LOCAL: sym -> flags |= BSF_LOCAL; break; case STB_GLOBAL: sym -> flags |= (BSF_GLOBAL | BSF_EXPORT); break; case STB_WEAK: sym -> flags |= BSF_WEAK; break; } sym++; } } bfd_get_symcount(abfd) = symcount = sym - symbase; sym = symbase = (asymbol *) bfd_realloc (abfd, symbase, symcount * sizeof (asymbol)); bfd_get_outsymbols(abfd) = vec = (asymbol **) bfd_alloc (abfd, symcount * sizeof (asymbol *)); while (symcount-- > 0) { *vec++ = sym++; } return (true); } /* Return the number of bytes required to hold the symtab vector. Note that we base it on the count plus 1, since we will null terminate the vector allocated based on this size. */ static unsigned int DEFUN (elf_get_symtab_upper_bound, (abfd), bfd *abfd) { unsigned int symtab_size = 0; /* if (elf_slurp_symbol_table (abfd, ???)) */ { symtab_size = (bfd_get_symcount (abfd) + 1) * (sizeof (asymbol)); } return (symtab_size); } /* This function return the number of bytes required to store the relocation information associated with section <> attached to bfd <> */ static unsigned int elf_get_reloc_upper_bound (abfd, asect) bfd *abfd; sec_ptr asect; { if (asect->flags & SEC_RELOC) { /* either rel or rela */ return asect->_raw_size; } else return (0); } /* FIXME!!! sparc howto should go into elf-32-sparc.c */ #ifdef sparc enum reloc_type { R_SPARC_NONE = 0, R_SPARC_8, R_SPARC_16, R_SPARC_32, R_SPARC_DISP8, R_SPARC_DISP16, R_SPARC_DISP32, R_SPARC_WDISP30, R_SPARC_WDISP22, R_SPARC_HI22, R_SPARC_22, R_SPARC_13, R_SPARC_LO10, R_SPARC_GOT10, R_SPARC_GOT13, R_SPARC_GOT22, R_SPARC_PC10, R_SPARC_PC22, R_SPARC_WPLT30, R_SPARC_COPY, R_SPARC_GLOB_DAT, R_SPARC_JMP_SLOT, R_SPARC_RELATIVE, R_SPARC_UA32, }; #define RELOC_TYPE_NAMES \ "R_SPARC_NONE", \ "R_SPARC_8", "R_SPARC_16", "R_SPARC_32", \ "R_SPARC_DISP8", "R_SPARC_DISP16", "R_SPARC_DISP32", \ "R_SPARC_WDISP30", "R_SPARC_WDISP22", \ "R_SPARC_HI22", "R_SPARC_22", \ "R_SPARC_13", "R_SPARC_LO10", \ "R_SPARC_GOT10", "R_SPARC_GOT13", "R_SPARC_GOT22", \ "R_SPARC_PC10", "R_SPARC_PC22", \ "R_SPARC_WPLT30", \ "R_SPARC_COPY", \ "R_SPARC_GLOB_DAT", "R_SPARC_JMP_SLOT", \ "R_SPARC_RELATIVE", \ "R_SPARC_UA32" static reloc_howto_type elf_howto_table[] = { HOWTO(R_SPARC_NONE, 0,0, 0,false,0,false,false, 0,"R_SPARC_NONE", false,0,0x00000000,false), HOWTO(R_SPARC_8, 0,0, 8,false,0,true, true, 0,"R_SPARC_8", false,0,0x000000ff,false), HOWTO(R_SPARC_16, 0,1,16,false,0,true, true, 0,"R_SPARC_16", false,0,0x0000ffff,false), HOWTO(R_SPARC_32, 0,2,32,false,0,true, true, 0,"R_SPARC_32", false,0,0xffffffff,false), HOWTO(R_SPARC_DISP8, 0,0, 8,true, 0,false, true, 0,"R_SPARC_DISP8", false,0,0x000000ff,false), HOWTO(R_SPARC_DISP16, 0,1,16,true, 0,false, true, 0,"R_SPARC_DISP16", false,0,0x0000ffff,false), HOWTO(R_SPARC_DISP32, 0,2,32,true, 0,false, true, 0,"R_SPARC_DISP32", false,0,0x00ffffff,false), HOWTO(R_SPARC_WDISP30,2,2,30,true, 0,false, true, 0,"R_SPARC_WDISP30",false,0,0x3fffffff,false), HOWTO(R_SPARC_WDISP22,2,2,22,true, 0,false, true, 0,"R_SPARC_WDISP22",false,0,0x003fffff,false), HOWTO(R_SPARC_HI22, 10,2,22,false,0,true, false, 0,"R_SPARC_HI22", false,0,0x003fffff,false), HOWTO(R_SPARC_22, 0,2,22,false,0,true, true, 0,"R_SPARC_22", false,0,0x003fffff,false), HOWTO(R_SPARC_13, 0,1,13,false,0,true, true, 0,"R_SPARC_13", false,0,0x00001fff,false), HOWTO(R_SPARC_LO10, 0,1,10,false,0,true, false, 0,"R_SPARC_LO10", false,0,0x000003ff,false), HOWTO(R_SPARC_GOT10, 0,1,10,false,0,false, true, 0,"R_SPARC_GOT10", false,0,0x000003ff,false), HOWTO(R_SPARC_GOT13, 0,1,13,false,0,false, true, 0,"R_SPARC_GOT13", false,0,0x00001fff,false), HOWTO(R_SPARC_GOT22, 10,2,22,false,0,false, true, 0,"R_SPARC_GOT22", false,0,0x003fffff,false), HOWTO(R_SPARC_PC10, 0,1,10,false,0,true, true, 0,"R_SPARC_PC10", false,0,0x000003ff,false), HOWTO(R_SPARC_PC22, 0,2,22,false,0,true, true, 0,"R_SPARC_PC22", false,0,0x003fffff,false), HOWTO(R_SPARC_WPLT30, 0,0,00,false,0,false,false, 0,"R_SPARC_WPLT30", false,0,0x00000000,false), HOWTO(R_SPARC_COPY, 0,0,00,false,0,false,false, 0,"R_SPARC_COPY", false,0,0x00000000,false), HOWTO(R_SPARC_GLOB_DAT,0,0,00,false,0,false,false,0,"R_SPARC_GLOB_DAT",false,0,0x00000000,false), HOWTO(R_SPARC_JMP_SLOT,0,0,00,false,0,false,false,0,"R_SPARC_JMP_SLOT",false,0,0x00000000,false), HOWTO(R_SPARC_RELATIVE,0,0,00,false,0,false,false,0,"R_SPARC_RELATIVE",false,0,0x00000000,false), HOWTO(R_SPARC_UA32, 0,0,00,false,0,false,false,0,"R_SPARC_UA32", false,0,0x00000000,false), }; #endif static void DEFUN(elf_info_to_howto, (abfd, cache_ptr, dst), bfd *abfd AND arelent *cache_ptr AND Elf_Internal_Rela *dst) { /* FIXME!!! just doing sparc for now... */ #ifdef sparc BFD_ASSERT (ELF_R_TYPE(dst->r_info) < 24); cache_ptr->howto = &elf_howto_table[ELF_R_TYPE(dst->r_info)]; #else fprintf (stderr, "elf_info_to_howto not implemented\n"); abort (); #endif } static boolean DEFUN(elf_slurp_reloca_table,(abfd, asect, symbols), bfd *abfd AND sec_ptr asect AND asymbol **symbols) { Elf_External_Rela *native_relocs; arelent *reloc_cache; arelent *cache_ptr; unsigned int idx; if (asect->relocation) return true; if (asect->reloc_count == 0) return true; if (asect->flags & SEC_CONSTRUCTOR) return true; /* if (!elf_slurp_symbol_table(abfd)) return false; -- should be done by now */ bfd_seek (abfd, asect->rel_filepos, SEEK_SET); native_relocs = (Elf_External_Rela *) bfd_alloc(abfd, asect->reloc_count * sizeof(Elf_External_Rela)); fprintf(stderr, "ELF>> really reading %d relocs for section %s\n", asect->reloc_count, asect->name); bfd_read ((PTR) native_relocs, sizeof(Elf_External_Rela), asect->reloc_count, abfd); reloc_cache = (arelent *) bfd_alloc(abfd, (size_t) (asect->reloc_count * sizeof(arelent))); if (! reloc_cache) { bfd_error = no_memory; return false; } for (idx = 0; idx < asect->reloc_count; idx ++) { #ifdef RELOC_PROCESSING /* sparc, 68k, 88k, 860 use rela only. */ /* 386 and we32000 use rel only... fix it for them later. */ Elf_Internal_Rela dst; Elf_External_Rela *src; cache_ptr = reloc_cache + idx; src = native_relocs + idx; elf_swap_reloca_in(abfd, src, &dst); RELOC_PROCESSING(cache_ptr, &dst, symbols, abfd, asect); #else Elf_Internal_Rela dst; asymbol *ptr; Elf_External_Rela *src; cache_ptr = reloc_cache + idx; src = native_relocs + idx; elf_swap_reloca_in(abfd, src, &dst); if(asect->flags & SEC_RELOC) { /* relocatable, so the offset is off of the section */ cache_ptr->address = dst.r_offset + asect->vma; } else { /* non-relocatable, so the offset a virtual address */ cache_ptr->address = dst.r_offset; } /* ELF_R_SYM(dst.r_info) is the symbol table offset... */ cache_ptr->sym_ptr_ptr = symbols + ELF_R_SYM(dst.r_info); cache_ptr->addend = dst.r_addend; /* ptr = *(cache_ptr->sym_ptr_ptr); */ /* Fill in the cache_ptr->howto field from dst.r_type */ elf_info_to_howto(abfd, cache_ptr, &dst); #endif } asect->relocation = reloc_cache; return true; } static unsigned int elf_canonicalize_reloc (abfd, section, relptr, symbols) bfd *abfd; sec_ptr section; arelent **relptr; asymbol **symbols; { arelent *tblptr = section->relocation; unsigned int count = 0; /* snarfed from coffcode.h */ /* FIXME: this could be reloc... */ elf_slurp_reloca_table(abfd, section, symbols); tblptr = section->relocation; if (!tblptr) return 0; for (; count++ < section->reloc_count;) *relptr++ = tblptr++; *relptr = 0; return section->reloc_count; } static unsigned int DEFUN (elf_get_symtab, (abfd, alocation), bfd *abfd AND asymbol **alocation) { unsigned int symcount; asymbol **vec; /* if (!elf_slurp_symbol_table (abfd)) return (0); else */ { symcount = bfd_get_symcount (abfd); vec = bfd_get_outsymbols (abfd); while (symcount-- > 0) { *alocation++ = *vec++; } *alocation++ = NULL; return (bfd_get_symcount (abfd)); } } static asymbol * DEFUN (elf_make_empty_symbol, (abfd), bfd *abfd) { elf_symbol_type *newsym; newsym = (elf_symbol_type *) bfd_zalloc (abfd, sizeof (elf_symbol_type)); if (! newsym) { bfd_error = no_memory; return (NULL); } else { newsym -> symbol.the_bfd = abfd; return (&newsym -> symbol); } } static void DEFUN (elf_print_symbol,(ignore_abfd, filep, symbol, how), bfd *ignore_abfd AND PTR filep AND asymbol *symbol AND bfd_print_symbol_type how) { FILE *file = (FILE *)filep; switch (how) { case bfd_print_symbol_name: fprintf(file, "%s", symbol->name); break; case bfd_print_symbol_more: fprintf(file, "elf %lx %lx", symbol->value, symbol->flags); break; case bfd_print_symbol_nm: case bfd_print_symbol_all: { char *section_name; section_name = symbol->section? symbol->section->name : "(*none*)"; bfd_print_symbol_vandf((PTR) file, symbol); fprintf(file, " %-5s %s %s %s", section_name, " ", " ", symbol->name); } break; } } static alent * DEFUN (elf_get_lineno,(ignore_abfd, symbol), bfd *ignore_abfd AND asymbol *symbol) { fprintf (stderr, "elf_get_lineno unimplemented\n"); fflush (stderr); abort (); return (NULL); } static boolean DEFUN (elf_set_arch_mach,(abfd, arch, machine), bfd *abfd AND enum bfd_architecture arch AND unsigned long machine) { /* Allow any architecture to be supported by the elf backend */ switch(arch) { case bfd_arch_unknown: /* EM_NONE */ case bfd_arch_sparc: /* EM_SPARC */ case bfd_arch_i386: /* EM_386 */ case bfd_arch_m68k: /* EM_68K */ case bfd_arch_m88k: /* EM_88K */ case bfd_arch_i860: /* EM_860 */ case bfd_arch_mips: /* EM_MIPS (MIPS R3000) */ return bfd_default_set_arch_mach(abfd, arch, machine); default: return false; } } static boolean DEFUN (elf_find_nearest_line,(abfd, section, symbols, offset, filename_ptr, functionname_ptr, line_ptr), bfd *abfd AND asection *section AND asymbol **symbols AND bfd_vma offset AND CONST char **filename_ptr AND CONST char **functionname_ptr AND unsigned int *line_ptr) { fprintf (stderr, "elf_find_nearest_line unimplemented\n"); fflush (stderr); abort (); return (false); } static int DEFUN (elf_sizeof_headers, (abfd, reloc), bfd *abfd AND boolean reloc) { fprintf (stderr, "elf_sizeof_headers unimplemented\n"); fflush (stderr); abort (); return (0); } boolean DEFUN(elf_set_section_contents, (abfd, section, location, offset, count), bfd *abfd AND sec_ptr section AND PTR location AND file_ptr offset AND bfd_size_type count) { int dest_sect; void *contents; if (abfd->output_has_begun == false) /* set by bfd.c handler? */ { /* do setup calculations (FIXME) */ elf_compute_section_file_positions(abfd); } #if 0 if(bfd_seek (abfd, (file_ptr)section->filepos + offset, SEEK_SET) == -1) return false; if(bfd_write (location, (bfd_size_type)1, count, abfd) != count) return false; #endif /* we really just need to save the contents away... */ dest_sect = elf_section_from_bfd_section(abfd, section); if(!dest_sect) return false; /* FIXME: allocate in set_section_size, then copy in here... */ contents = (void*)bfd_alloc(abfd, count); BFD_ASSERT(contents); memcpy(contents, location, count); elf_elfsections (abfd)[dest_sect].contents = contents; return true; } /* This structure contains everything that BFD knows about a target. It includes things like its byte order, name, what routines to call to do various operations, etc. Every BFD points to a target structure with its "xvec" member. There are two such structures here: one for big-endian machines and one for little-endian machines. */ /* Archives are generic or unimplemented. */ #define elf_slurp_armap bfd_false #define elf_slurp_extended_name_table _bfd_slurp_extended_name_table #define elf_truncate_arname bfd_dont_truncate_arname #define elf_openr_next_archived_file bfd_generic_openr_next_archived_file #define elf_generic_stat_arch_elt bfd_generic_stat_arch_elt #define elf_write_armap (PROTO (boolean, (*), \ (bfd *arch, unsigned int elength, struct orl *map, unsigned int orl_count, \ int stridx))) bfd_false /* Ordinary section reading and writing */ #define elf_new_section_hook _bfd_dummy_new_section_hook #define elf_get_section_contents bfd_generic_get_section_contents /* #define elf_set_section_contents bfd_generic_set_section_contents */ #define elf_close_and_cleanup bfd_generic_close_and_cleanup #define elf_bfd_debug_info_start bfd_void #define elf_bfd_debug_info_end bfd_void #define elf_bfd_debug_info_accumulate (PROTO(void,(*),(bfd*, struct sec *))) bfd_void #define elf_bfd_get_relocated_section_contents \ bfd_generic_get_relocated_section_contents #define elf_bfd_relax_section bfd_generic_relax_section bfd_target elf_big_vec = { /* name: identify kind of target */ "elf-big", /* flavour: general indication about file */ bfd_target_elf_flavour, /* byteorder_big_p: data is big endian */ true, /* header_byteorder_big_p: header is also big endian */ true, /* object_flags: mask of all file flags */ (HAS_RELOC | EXEC_P | HAS_LINENO | HAS_DEBUG | HAS_SYMS | HAS_LOCALS | DYNAMIC | WP_TEXT), /* section_flags: mask of all section flags */ (SEC_HAS_CONTENTS | SEC_ALLOC | SEC_LOAD | SEC_RELOC | SEC_READONLY | SEC_CODE | SEC_DATA), /* ar_pad_char: pad character for filenames within an archive header FIXME: this really has nothing to do with ELF, this is a characteristic of the archiver and/or os and should be independently tunable */ '/', /* ar_max_namelen: maximum number of characters in an archive header FIXME: this really has nothing to do with ELF, this is a characteristic of the archiver and should be independently tunable. This value is a WAG (wild a** guess) */ 15, /* align_power_min: minimum alignment restriction for any section FIXME: this value may be target machine dependent */ 3, /* Routines to byte-swap various sized integers from the data sections */ _do_getb64, _do_putb64, _do_getb32, _do_putb32, _do_getb16, _do_putb16, /* Routines to byte-swap various sized integers from the file headers */ _do_getb64, _do_putb64, _do_getb32, _do_putb32, _do_getb16, _do_putb16, /* bfd_check_format: check the format of a file being read */ { _bfd_dummy_target, /* unknown format */ elf_object_p, /* assembler/linker output (object file) */ bfd_generic_archive_p, /* an archive */ elf_core_file_p /* a core file */ }, /* bfd_set_format: set the format of a file being written */ { bfd_false, elf_mkobject, _bfd_generic_mkarchive, bfd_false }, /* bfd_write_contents: write cached information into a file being written */ { bfd_false, elf_write_object_contents, _bfd_write_archive_contents, bfd_false }, /* Initialize a jump table with the standard macro. All names start with "elf" */ JUMP_TABLE(elf), /* SWAP_TABLE */ NULL, NULL, NULL }; bfd_target elf_little_vec = { /* name: identify kind of target */ "elf-little", /* flavour: general indication about file */ bfd_target_elf_flavour, /* byteorder_big_p: data is big endian */ false, /* Nope -- this one's little endian */ /* header_byteorder_big_p: header is also big endian */ false, /* Nope -- this one's little endian */ /* object_flags: mask of all file flags */ (HAS_RELOC | EXEC_P | HAS_LINENO | HAS_DEBUG | HAS_SYMS | HAS_LOCALS | DYNAMIC | WP_TEXT), /* section_flags: mask of all section flags */ (SEC_HAS_CONTENTS | SEC_ALLOC | SEC_LOAD | SEC_RELOC | SEC_READONLY | SEC_DATA), /* ar_pad_char: pad character for filenames within an archive header FIXME: this really has nothing to do with ELF, this is a characteristic of the archiver and/or os and should be independently tunable */ '/', /* ar_max_namelen: maximum number of characters in an archive header FIXME: this really has nothing to do with ELF, this is a characteristic of the archiver and should be independently tunable. This value is a WAG (wild a** guess) */ 15, /* align_power_min: minimum alignment restriction for any section FIXME: this value may be target machine dependent */ 3, /* Routines to byte-swap various sized integers from the data sections */ _do_getl64, _do_putl64, _do_getl32, _do_putl32, _do_getl16, _do_putl16, /* Routines to byte-swap various sized integers from the file headers */ _do_getl64, _do_putl64, _do_getl32, _do_putl32, _do_getl16, _do_putl16, /* bfd_check_format: check the format of a file being read */ { _bfd_dummy_target, /* unknown format */ elf_object_p, /* assembler/linker output (object file) */ bfd_generic_archive_p, /* an archive */ elf_core_file_p /* a core file */ }, /* bfd_set_format: set the format of a file being written */ { bfd_false, elf_mkobject, _bfd_generic_mkarchive, bfd_false }, /* bfd_write_contents: write cached information into a file being written */ { bfd_false, elf_write_object_contents, _bfd_write_archive_contents, bfd_false }, /* Initialize a jump table with the standard macro. All names start with "elf" */ JUMP_TABLE(elf), /* SWAP_TABLE */ NULL, NULL, NULL };