/** * Copyright © 2018 Intel Corporation * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #include #include #include // TODO: Add testing of Payload response API TEST(PackBasics, Uint8) { ipmi::message::Payload p; uint8_t v = 4; p.pack(v); // check that the number of bytes matches ASSERT_EQ(p.size(), sizeof(v)); // check that the bytes were correctly packed (LSB first) std::vector k = {0x04}; ASSERT_EQ(p.raw, k); } TEST(PackBasics, Uint16) { ipmi::message::Payload p; uint16_t v = 0x8604; p.pack(v); // check that the number of bytes matches ASSERT_EQ(p.size(), sizeof(v)); // check that the bytes were correctly packed (LSB first) std::vector k = {0x04, 0x86}; ASSERT_EQ(p.raw, k); } TEST(PackBasics, Uint32) { ipmi::message::Payload p; uint32_t v = 0x02008604; p.pack(v); // check that the number of bytes matches ASSERT_EQ(p.size(), sizeof(v)); // check that the bytes were correctly packed (LSB first) std::vector k = {0x04, 0x86, 0x00, 0x02}; ASSERT_EQ(p.raw, k); } TEST(PackBasics, Uint64) { ipmi::message::Payload p; uint64_t v = 0x1122334402008604ull; p.pack(v); // check that the number of bytes matches ASSERT_EQ(p.size(), sizeof(v)); // check that the bytes were correctly packed (LSB first) std::vector k = {0x04, 0x86, 0x00, 0x02, 0x44, 0x33, 0x22, 0x11}; ASSERT_EQ(p.raw, k); } TEST(PackBasics, Uint24) { ipmi::message::Payload p; uint24_t v = 0x112358; p.pack(v); // check that the number of bytes matches ASSERT_EQ(p.size(), types::nrFixedBits / CHAR_BIT); // check that the bytes were correctly packed (LSB first) std::vector k = {0x58, 0x23, 0x11}; ASSERT_EQ(p.raw, k); } TEST(PackBasics, Uint3Uint5) { // individual bytes are packed low-order-bits first // v1 will occupy [2:0], v2 will occupy [7:3] ipmi::message::Payload p; uint3_t v1 = 0x1; uint5_t v2 = 0x19; p.pack(v1, v2); // check that the number of bytes matches ASSERT_EQ(p.size(), (types::nrFixedBits + types::nrFixedBits) / CHAR_BIT); // check that the bytes were correctly packed (LSB first) std::vector k = {0xc9}; ASSERT_EQ(p.raw, k); } TEST(PackBasics, Boolx8) { // individual bytes are packed low-order-bits first // [v8, v7, v6, v5, v4, v3, v2, v1] ipmi::message::Payload p; bool v8 = true, v7 = true, v6 = false, v5 = false; bool v4 = true, v3 = false, v2 = false, v1 = true; p.pack(v1, v2, v3, v4, v5, v6, v7, v8); // check that the number of bytes matches ASSERT_EQ(p.size(), sizeof(uint8_t)); // check that the bytes were correctly packed (LSB first) std::vector k = {0xc9}; ASSERT_EQ(p.raw, k); } TEST(PackBasics, Bitset8) { // individual bytes are packed low-order-bits first // a bitset for 8 bits fills the full byte ipmi::message::Payload p; std::bitset<8> v(0xc9); p.pack(v); // check that the number of bytes matches ASSERT_EQ(p.size(), v.size() / CHAR_BIT); // check that the bytes were correctly packed (LSB first) std::vector k = {0xc9}; ASSERT_EQ(p.raw, k); } TEST(PackBasics, Bitset3Bitset5) { // individual bytes are packed low-order-bits first // v1 will occupy [2:0], v2 will occupy [7:3] ipmi::message::Payload p; std::bitset<3> v1(0x1); std::bitset<5> v2(0x19); p.pack(v1, v2); // check that the number of bytes matches ASSERT_EQ(p.size(), (v1.size() + v2.size()) / CHAR_BIT); // check that the bytes were correctly packed (LSB first) std::vector k = {0xc9}; ASSERT_EQ(p.raw, k); } TEST(PackBasics, Bitset32) { // individual bytes are packed low-order-bits first // v1 will occupy 4 bytes, but in LSByte first order // v1[7:0] v1[15:9] v1[23:16] v1[31:24] ipmi::message::Payload p; std::bitset<32> v(0x02008604); p.pack(v); // check that the number of bytes matches ASSERT_EQ(p.size(), v.size() / CHAR_BIT); // check that the bytes were correctly packed (LSB first) std::vector k = {0x04, 0x86, 0x00, 0x02}; ASSERT_EQ(p.raw, k); } TEST(PackBasics, Tuple) { // tuples are the new struct, pack a tuple ipmi::message::Payload p; auto v = std::make_tuple(static_cast(0x8604), 'A'); p.pack(v); // check that the number of bytes matches ASSERT_EQ(p.size(), sizeof(uint16_t) + sizeof(char)); // check that the bytes were correctly packed (LSB first) std::vector k = {0x04, 0x86, 0x41}; ASSERT_EQ(p.raw, k); } TEST(PackBasics, Array4xUint8) { // an array of bytes will be output verbatim, low-order element first ipmi::message::Payload p; std::array v = {{0x02, 0x00, 0x86, 0x04}}; p.pack(v); // check that the number of bytes matches ASSERT_EQ(p.size(), v.size() * sizeof(v[0])); // check that the bytes were correctly packed (in byte order) std::vector k = {0x02, 0x00, 0x86, 0x04}; ASSERT_EQ(p.raw, k); } TEST(PackBasics, Array4xUint32) { // an array of multi-byte values will be output in order low-order // element first, each multi-byte element in LSByte order // v[0][7:0] v[0][15:9] v[0][23:16] v[0][31:24] // v[1][7:0] v[1][15:9] v[1][23:16] v[1][31:24] // v[2][7:0] v[2][15:9] v[2][23:16] v[2][31:24] // v[3][7:0] v[3][15:9] v[3][23:16] v[3][31:24] ipmi::message::Payload p; std::array v = { {0x11223344, 0x22446688, 0x33557799, 0x12345678}}; p.pack(v); // check that the number of bytes matches ASSERT_EQ(p.size(), v.size() * sizeof(v[0])); // check that the bytes were correctly packed (in byte order) std::vector k = {0x44, 0x33, 0x22, 0x11, 0x88, 0x66, 0x44, 0x22, 0x99, 0x77, 0x55, 0x33, 0x78, 0x56, 0x34, 0x12}; ASSERT_EQ(p.raw, k); } TEST(PackBasics, VectorUint32) { // a vector of multi-byte values will be output in order low-order // element first, each multi-byte element in LSByte order // v[0][7:0] v[0][15:9] v[0][23:16] v[0][31:24] // v[1][7:0] v[1][15:9] v[1][23:16] v[1][31:24] // v[2][7:0] v[2][15:9] v[2][23:16] v[2][31:24] // v[3][7:0] v[3][15:9] v[3][23:16] v[3][31:24] ipmi::message::Payload p; std::vector v = { {0x11223344, 0x22446688, 0x33557799, 0x12345678}}; p.pack(v); // check that the number of bytes matches ASSERT_EQ(p.size(), v.size() * sizeof(v[0])); // check that the bytes were correctly packed (in byte order) std::vector k = {0x44, 0x33, 0x22, 0x11, 0x88, 0x66, 0x44, 0x22, 0x99, 0x77, 0x55, 0x33, 0x78, 0x56, 0x34, 0x12}; ASSERT_EQ(p.raw, k); } TEST(PackBasics, VectorUint8) { // a vector of bytes will be output verbatim, low-order element first ipmi::message::Payload p; std::vector v = {0x02, 0x00, 0x86, 0x04}; p.pack(v); // check that the number of bytes matches ASSERT_EQ(p.size(), v.size() * sizeof(v[0])); // check that the bytes were correctly packed (in byte order) std::vector k = {0x02, 0x00, 0x86, 0x04}; ASSERT_EQ(p.raw, k); } TEST(PackBasics, OptionalEmpty) { // an optional will only pack if the value is present ipmi::message::Payload p; std::optional v; p.pack(v); // check that the number of bytes matches ASSERT_EQ(p.size(), 0); // check that the bytes were correctly packed (in byte order) std::vector k = {}; ASSERT_EQ(p.raw, k); } TEST(PackBasics, OptionalContainsValue) { // an optional will only pack if the value is present ipmi::message::Payload p; std::optional v(0x04860002); p.pack(v); // check that the number of bytes matches ASSERT_EQ(p.size(), sizeof(uint32_t)); // check that the bytes were correctly packed (in byte order) std::vector k = {0x02, 0x00, 0x86, 0x04}; ASSERT_EQ(p.raw, k); } TEST(PackAdvanced, Uints) { // all elements will be processed in order, with each multi-byte // element being processed LSByte first // v1[7:0] v2[7:0] v2[15:8] v3[7:0] v3[15:8] v3[23:16] v3[31:24] // v4[7:0] v4[15:8] v4[23:16] v4[31:24] // v4[39:25] v4[47:40] v4[55:48] v4[63:56] ipmi::message::Payload p; uint8_t v1 = 0x02; uint16_t v2 = 0x0604; uint32_t v3 = 0x44332211; uint64_t v4 = 0xccbbaa9988776655ull; p.pack(v1, v2, v3, v4); // check that the number of bytes matches ASSERT_EQ(p.size(), sizeof(v1) + sizeof(v2) + sizeof(v3) + sizeof(v4)); // check that the bytes were correctly packed (LSB first) std::vector k = {0x02, 0x04, 0x06, 0x11, 0x22, 0x33, 0x44, 0x55, 0x66, 0x77, 0x88, 0x99, 0xaa, 0xbb, 0xcc}; ASSERT_EQ(p.raw, k); } TEST(PackAdvanced, TupleInts) { // all elements will be processed in order, with each multi-byte // element being processed LSByte first // v1[7:0] v2[7:0] v2[15:8] v3[7:0] v3[15:8] v3[23:16] v3[31:24] // v4[7:0] v4[15:8] v4[23:16] v4[31:24] // v4[39:25] v4[47:40] v4[55:48] v4[63:56] ipmi::message::Payload p; uint8_t v1 = 0x02; uint16_t v2 = 0x0604; uint32_t v3 = 0x44332211; uint64_t v4 = 0xccbbaa9988776655ull; auto v = std::make_tuple(v1, v2, v3, v4); p.pack(v); // check that the number of bytes matches ASSERT_EQ(p.size(), sizeof(v1) + sizeof(v2) + sizeof(v3) + sizeof(v4)); // check that the bytes were correctly packed (LSB first) std::vector k = {0x02, 0x04, 0x06, 0x11, 0x22, 0x33, 0x44, 0x55, 0x66, 0x77, 0x88, 0x99, 0xaa, 0xbb, 0xcc}; ASSERT_EQ(p.raw, k); } TEST(PackAdvanced, VariantArray) { ipmi::message::Payload p; std::variant, uint32_t> variant; auto data = std::array{2, 4}; variant = data; p.pack(variant); ASSERT_EQ(p.size(), sizeof(data)); // check that the bytes were correctly packed packed (LSB first) std::vector k = {2, 4}; ASSERT_EQ(p.raw, k); } TEST(PackAdvanced, BoolsnBitfieldsnFixedIntsOhMy) { // each element will be added, filling the low-order bits first // with multi-byte values getting added LSByte first // v1 will occupy k[0][1:0] // v2 will occupy k[0][2] // v3[4:0] will occupy k[0][7:3], v3[6:5] will occupy k[1][1:0] // v4 will occupy k[1][2] // v5 will occupy k[1][7:3] ipmi::message::Payload p; uint2_t v1 = 2; // binary 0b10 bool v2 = true; // binary 0b1 std::bitset<7> v3(0x73); // binary 0b1110011 bool v4 = false; // binary 0b0 uint5_t v5 = 27; // binary 0b11011 // concat binary: 0b1101101110011110 -> 0xdb9e -> 0x9e 0xdb (LSByte first) p.pack(v1, v2, v3, v4, v5); // check that the number of bytes matches ASSERT_EQ(p.size(), sizeof(uint16_t)); // check that the bytes were correctly packed (LSB first) std::vector k = {0x9e, 0xdb}; ASSERT_EQ(p.raw, k); } TEST(PackAdvanced, UnalignedBitPacking) { // unaligned multi-byte values will be packed the same as // other bits, effectively building up a large value, low-order // bits first, then outputting a stream of LSByte values // v1 will occupy k[0][1:0] // v2[5:0] will occupy k[0][7:2], v2[7:6] will occupy k[1][1:0] // v3 will occupy k[1][2] // v4[4:0] will occupy k[1][7:3] v4[12:5] will occupy k[2][7:0] // v4[15:13] will occupy k[3][2:0] // v5 will occupy k[3][3] // v6[3:0] will occupy k[3][7:0] v6[11:4] will occupy k[4][7:0] // v6[19:12] will occupy k[5][7:0] v6[27:20] will occupy k[6][7:0] // v6[31:28] will occupy k[7][3:0] // v7 will occupy k[7][7:4] ipmi::message::Payload p; uint2_t v1 = 2; // binary 0b10 uint8_t v2 = 0xa5; // binary 0b10100101 bool v3 = false; // binary 0b0 uint16_t v4 = 0xa55a; // binary 0b1010010101011010 bool v5 = true; // binary 0b1 uint32_t v6 = 0xdbc3bd3c; // binary 0b11011011110000111011110100111100 uint4_t v7 = 9; // binary 0b1001 // concat binary: // 0b1001110110111100001110111101001111001101001010101101001010010110 // -> 0x9dbc3bd3cd2ad296 -> 0x96 0xd2 0x2a 0xcd 0xd3 0x3b 0xbc 0x9d p.pack(v1, v2, v3, v4, v5, v6, v7); // check that the number of bytes matches ASSERT_EQ(p.size(), sizeof(uint64_t)); // check that the bytes were correctly packed (LSB first) std::vector k = {0x96, 0xd2, 0x2a, 0xcd, 0xd3, 0x3b, 0xbc, 0x9d}; ASSERT_EQ(p.raw, k); } TEST(PackAdvanced, ComplexOptionalTuple) { constexpr size_t macSize = 6; // inspired from a real-world case of Get Session Info constexpr uint8_t handle = 0x23; // handle for active session constexpr uint8_t maxSessions = 15; // number of possible active sessions constexpr uint8_t currentSessions = 4; // number of current active sessions std::optional< // only returned for active session std::tuple> activeSession; std::optional< // only returned for channel type LAN std::tuple, // MAC address uint16_t // port >> lanSession; constexpr uint8_t userID = 7; constexpr uint8_t priv = 4; constexpr uint4_t channel = 2; constexpr uint4_t protocol = 1; activeSession.emplace(userID, priv, channel, protocol); constexpr std::array macAddr{0}; lanSession.emplace(0x0a010105, macAddr, 55327); ipmi::message::Payload p; p.pack(handle, maxSessions, currentSessions, activeSession, lanSession); ASSERT_EQ(p.size(), sizeof(handle) + sizeof(maxSessions) + sizeof(currentSessions) + 3 * sizeof(uint8_t) + sizeof(uint32_t) + sizeof(uint8_t) * macSize + sizeof(uint16_t)); uint8_t protocol_channel = (static_cast(protocol) << 4) | static_cast(channel); std::vector k = {handle, maxSessions, currentSessions, userID, priv, protocol_channel, // ip addr 0x05, 0x01, 0x01, 0x0a, // mac addr 0, 0, 0, 0, 0, 0, // port 0x1f, 0xd8}; ASSERT_EQ(p.raw, k); }