#include "sensorhandler.h" #include "fruread.hpp" #include "ipmid.hpp" #include "types.hpp" #include "utils.hpp" #include #include #include #include #include #include #include #include #include #include #include #include "host-ipmid/ipmid-api.h" static constexpr uint8_t fruInventoryDevice = 0x10; static constexpr uint8_t IPMIFruInventory = 0x02; static constexpr uint8_t BMCSlaveAddress = 0x20; extern int updateSensorRecordFromSSRAESC(const void*); extern sd_bus* bus; extern const ipmi::sensor::IdInfoMap sensors; extern const FruMap frus; using namespace phosphor::logging; using InternalFailure = sdbusplus::xyz::openbmc_project::Common::Error::InternalFailure; void register_netfn_sen_functions() __attribute__((constructor)); struct sensorTypemap_t { uint8_t number; uint8_t typecode; char dbusname[32]; }; sensorTypemap_t g_SensorTypeMap[] = { {0x01, 0x6F, "Temp"}, {0x0C, 0x6F, "DIMM"}, {0x0C, 0x6F, "MEMORY_BUFFER"}, {0x07, 0x6F, "PROC"}, {0x07, 0x6F, "CORE"}, {0x07, 0x6F, "CPU"}, {0x0F, 0x6F, "BootProgress"}, {0xe9, 0x09, "OccStatus"}, // E9 is an internal mapping to handle sensor // type code os 0x09 {0xC3, 0x6F, "BootCount"}, {0x1F, 0x6F, "OperatingSystemStatus"}, {0x12, 0x6F, "SYSTEM_EVENT"}, {0xC7, 0x03, "SYSTEM"}, {0xC7, 0x03, "MAIN_PLANAR"}, {0xC2, 0x6F, "PowerCap"}, {0x0b, 0xCA, "PowerSupplyRedundancy"}, {0xDA, 0x03, "TurboAllowed"}, {0xD8, 0xC8, "PowerSupplyDerating"}, {0xFF, 0x00, ""}, }; struct sensor_data_t { uint8_t sennum; } __attribute__((packed)); struct sensorreadingresp_t { uint8_t value; uint8_t operation; uint8_t indication[2]; } __attribute__((packed)); int get_bus_for_path(const char* path, char** busname) { return mapper_get_service(bus, path, busname); } int legacy_dbus_openbmc_path(const char* type, const uint8_t num, dbus_interface_t* interface) { char* busname = NULL; const char* iface = "org.openbmc.managers.System"; const char* objname = "/org/openbmc/managers/System"; char *str1 = NULL, *str2, *str3; sd_bus_error error = SD_BUS_ERROR_NULL; sd_bus_message* reply = NULL; int r; r = get_bus_for_path(objname, &busname); if (r < 0) { fprintf(stderr, "Failed to get %s busname: %s\n", objname, strerror(-r)); goto final; } r = sd_bus_call_method(bus, busname, objname, iface, "getObjectFromByteId", &error, &reply, "sy", type, num); if (r < 0) { fprintf(stderr, "Failed to create a method call: %s", strerror(-r)); goto final; } r = sd_bus_message_read(reply, "(ss)", &str2, &str3); if (r < 0) { fprintf(stderr, "Failed to get a response: %s", strerror(-r)); goto final; } if (strlen(str2) == 0) { // Path being empty occurs when the sensor id is not in SystemManager r = -EINVAL; goto final; } r = get_bus_for_path(str2, &str1); if (r < 0) { fprintf(stderr, "Failed to get %s busname: %s\n", str2, strerror(-r)); goto final; } strncpy(interface->bus, str1, MAX_DBUS_PATH); strncpy(interface->path, str2, MAX_DBUS_PATH); strncpy(interface->interface, str3, MAX_DBUS_PATH); interface->sensornumber = num; // Make sure we know that the type hasn't been set, as newer codebase will // set it automatically from the YAML at this step. interface->sensortype = 0; final: sd_bus_error_free(&error); reply = sd_bus_message_unref(reply); free(busname); free(str1); return r; } // Use a lookup table to find the interface name of a specific sensor // This will be used until an alternative is found. this is the first // step for mapping IPMI int find_openbmc_path(uint8_t num, dbus_interface_t* interface) { int rc; // When the sensor map does not contain the sensor requested, // fall back to the legacy DBus lookup (deprecated) const auto& sensor_it = sensors.find(num); if (sensor_it == sensors.end()) { return legacy_dbus_openbmc_path("SENSOR", num, interface); } const auto& info = sensor_it->second; char* busname = nullptr; rc = get_bus_for_path(info.sensorPath.c_str(), &busname); if (rc < 0) { fprintf(stderr, "Failed to get %s busname: %s\n", info.sensorPath.c_str(), busname); goto final; } interface->sensortype = info.sensorType; strcpy(interface->bus, busname); strcpy(interface->path, info.sensorPath.c_str()); // Take the interface name from the beginning of the DbusInterfaceMap. This // works for the Value interface but may not suffice for more complex // sensors. // tracked https://github.com/openbmc/phosphor-host-ipmid/issues/103 strcpy(interface->interface, info.propertyInterfaces.begin()->first.c_str()); interface->sensornumber = num; final: free(busname); return rc; } ///////////////////////////////////////////////////////////////////// // // Routines used by ipmi commands wanting to interact on the dbus // ///////////////////////////////////////////////////////////////////// int set_sensor_dbus_state_s(uint8_t number, const char* method, const char* value) { dbus_interface_t a; int r; sd_bus_error error = SD_BUS_ERROR_NULL; sd_bus_message* m = NULL; fprintf(ipmidbus, "Attempting to set a dbus Variant Sensor 0x%02x via %s with a " "value of %s\n", number, method, value); r = find_openbmc_path(number, &a); if (r < 0) { fprintf(stderr, "Failed to find Sensor 0x%02x\n", number); return 0; } r = sd_bus_message_new_method_call(bus, &m, a.bus, a.path, a.interface, method); if (r < 0) { fprintf(stderr, "Failed to create a method call: %s", strerror(-r)); goto final; } r = sd_bus_message_append(m, "v", "s", value); if (r < 0) { fprintf(stderr, "Failed to create a input parameter: %s", strerror(-r)); goto final; } r = sd_bus_call(bus, m, 0, &error, NULL); if (r < 0) { fprintf(stderr, "Failed to call the method: %s", strerror(-r)); } final: sd_bus_error_free(&error); m = sd_bus_message_unref(m); return 0; } int set_sensor_dbus_state_y(uint8_t number, const char* method, const uint8_t value) { dbus_interface_t a; int r; sd_bus_error error = SD_BUS_ERROR_NULL; sd_bus_message* m = NULL; fprintf(ipmidbus, "Attempting to set a dbus Variant Sensor 0x%02x via %s with a " "value of 0x%02x\n", number, method, value); r = find_openbmc_path(number, &a); if (r < 0) { fprintf(stderr, "Failed to find Sensor 0x%02x\n", number); return 0; } r = sd_bus_message_new_method_call(bus, &m, a.bus, a.path, a.interface, method); if (r < 0) { fprintf(stderr, "Failed to create a method call: %s", strerror(-r)); goto final; } r = sd_bus_message_append(m, "v", "i", value); if (r < 0) { fprintf(stderr, "Failed to create a input parameter: %s", strerror(-r)); goto final; } r = sd_bus_call(bus, m, 0, &error, NULL); if (r < 0) { fprintf(stderr, "12 Failed to call the method: %s", strerror(-r)); } final: sd_bus_error_free(&error); m = sd_bus_message_unref(m); return 0; } uint8_t dbus_to_sensor_type(char* p) { sensorTypemap_t* s = g_SensorTypeMap; char r = 0; while (s->number != 0xFF) { if (!strcmp(s->dbusname, p)) { r = s->typecode; break; } s++; } if (s->number == 0xFF) printf("Failed to find Sensor Type %s\n", p); return r; } uint8_t get_type_from_interface(dbus_interface_t dbus_if) { char* p; uint8_t type; // This is where sensors that do not exist in dbus but do // exist in the host code stop. This should indicate it // is not a supported sensor if (dbus_if.interface[0] == 0) { return 0; } // Fetch type from interface itself. if (dbus_if.sensortype != 0) { type = dbus_if.sensortype; } else { // Non InventoryItems p = strrchr(dbus_if.path, '/'); type = dbus_to_sensor_type(p + 1); } return type; } // Replaces find_sensor uint8_t find_type_for_sensor_number(uint8_t num) { int r; dbus_interface_t dbus_if; r = find_openbmc_path(num, &dbus_if); if (r < 0) { fprintf(stderr, "Could not find sensor %d\n", num); return 0; } return get_type_from_interface(dbus_if); } ipmi_ret_t ipmi_sen_get_sensor_type(ipmi_netfn_t netfn, ipmi_cmd_t cmd, ipmi_request_t request, ipmi_response_t response, ipmi_data_len_t data_len, ipmi_context_t context) { sensor_data_t* reqptr = (sensor_data_t*)request; ipmi_ret_t rc = IPMI_CC_OK; printf("IPMI GET_SENSOR_TYPE [0x%02X]\n", reqptr->sennum); // TODO Not sure what the System-event-sensor is suppose to return // need to ask Hostboot team unsigned char buf[] = {0x00, 0x6F}; buf[0] = find_type_for_sensor_number(reqptr->sennum); // HACK UNTIL Dbus gets updated or we find a better way if (buf[0] == 0) { rc = IPMI_CC_SENSOR_INVALID; } *data_len = sizeof(buf); memcpy(response, &buf, *data_len); return rc; } const std::set analogSensorInterfaces = { "xyz.openbmc_project.Sensor.Value", "xyz.openbmc_project.Control.FanPwm", }; bool isAnalogSensor(const std::string& interface) { return (analogSensorInterfaces.count(interface)); } ipmi_ret_t setSensorReading(void* request) { ipmi::sensor::SetSensorReadingReq cmdData = *(static_cast(request)); // Check if the Sensor Number is present const auto iter = sensors.find(cmdData.number); if (iter == sensors.end()) { return IPMI_CC_SENSOR_INVALID; } try { if (ipmi::sensor::Mutability::Write != (iter->second.mutability & ipmi::sensor::Mutability::Write)) { log("Sensor Set operation is not allowed", entry("SENSOR_NUM=%d", cmdData.number)); return IPMI_CC_ILLEGAL_COMMAND; } return iter->second.updateFunc(cmdData, iter->second); } catch (InternalFailure& e) { log("Set sensor failed", entry("SENSOR_NUM=%d", cmdData.number)); commit(); } catch (const std::runtime_error& e) { log(e.what()); } return IPMI_CC_UNSPECIFIED_ERROR; } ipmi_ret_t ipmi_sen_set_sensor(ipmi_netfn_t netfn, ipmi_cmd_t cmd, ipmi_request_t request, ipmi_response_t response, ipmi_data_len_t data_len, ipmi_context_t context) { sensor_data_t* reqptr = (sensor_data_t*)request; log("IPMI SET_SENSOR", entry("SENSOR_NUM=0x%02x", reqptr->sennum)); /* * This would support the Set Sensor Reading command for the presence * and functional state of Processor, Core & DIMM. For the remaining * sensors the existing support is invoked. */ auto ipmiRC = setSensorReading(request); if (ipmiRC == IPMI_CC_SENSOR_INVALID) { updateSensorRecordFromSSRAESC(reqptr); ipmiRC = IPMI_CC_OK; } *data_len = 0; return ipmiRC; } ipmi_ret_t legacyGetSensorReading(uint8_t sensorNum, ipmi_response_t response, ipmi_data_len_t data_len) { int r; dbus_interface_t a; sd_bus* bus = ipmid_get_sd_bus_connection(); ipmi_ret_t rc = IPMI_CC_SENSOR_INVALID; uint8_t type = 0; sd_bus_message* reply = NULL; int reading = 0; char* assertion = NULL; sensorreadingresp_t* resp = (sensorreadingresp_t*)response; *data_len = 0; r = find_openbmc_path(sensorNum, &a); if (r < 0) { sd_journal_print(LOG_ERR, "Failed to find Sensor 0x%02x\n", sensorNum); return IPMI_CC_SENSOR_INVALID; } type = get_type_from_interface(a); if (type == 0) { sd_journal_print(LOG_ERR, "Failed to find Sensor 0x%02x\n", sensorNum); return IPMI_CC_SENSOR_INVALID; } switch (type) { case 0xC2: r = sd_bus_get_property(bus, a.bus, a.path, a.interface, "value", NULL, &reply, "i"); if (r < 0) { sd_journal_print(LOG_ERR, "Failed to call sd_bus_get_property:" " %d, %s\n", r, strerror(-r)); sd_journal_print(LOG_ERR, "Bus: %s, Path: %s, Interface: %s\n", a.bus, a.path, a.interface); break; } r = sd_bus_message_read(reply, "i", &reading); if (r < 0) { sd_journal_print(LOG_ERR, "Failed to read sensor: %s\n", strerror(-r)); break; } rc = IPMI_CC_OK; *data_len = sizeof(sensorreadingresp_t); resp->value = (uint8_t)reading; resp->operation = 0; resp->indication[0] = 0; resp->indication[1] = 0; break; case 0xC8: r = sd_bus_get_property(bus, a.bus, a.path, a.interface, "value", NULL, &reply, "i"); if (r < 0) { sd_journal_print(LOG_ERR, "Failed to call sd_bus_get_property:" " %d, %s\n", r, strerror(-r)); sd_journal_print(LOG_ERR, "Bus: %s, Path: %s, Interface: %s\n", a.bus, a.path, a.interface); break; } r = sd_bus_message_read(reply, "i", &reading); if (r < 0) { sd_journal_print(LOG_ERR, "Failed to read sensor: %s\n", strerror(-r)); break; } rc = IPMI_CC_OK; *data_len = sizeof(sensorreadingresp_t); resp->value = 0; resp->operation = 0; resp->indication[0] = (uint8_t)reading; resp->indication[1] = 0; break; // TODO openbmc/openbmc#2154 Move this sensor to right place. case 0xCA: r = sd_bus_get_property(bus, a.bus, a.path, a.interface, "value", NULL, &reply, "s"); if (r < 0) { sd_journal_print(LOG_ERR, "Failed to call sd_bus_get_property:" " %d, %s\n", r, strerror(-r)); sd_journal_print(LOG_ERR, "Bus: %s, Path: %s, Interface: %s\n", a.bus, a.path, a.interface); break; } r = sd_bus_message_read(reply, "s", &assertion); if (r < 0) { sd_journal_print(LOG_ERR, "Failed to read sensor: %s\n", strerror(-r)); break; } rc = IPMI_CC_OK; *data_len = sizeof(sensorreadingresp_t); resp->value = 0; resp->operation = 0; if (strcmp(assertion, "Enabled") == 0) { resp->indication[0] = 0x02; } else { resp->indication[0] = 0x1; } resp->indication[1] = 0; break; default: { return IPMI_CC_SENSOR_INVALID; } } reply = sd_bus_message_unref(reply); return rc; } ipmi_ret_t ipmi_sen_get_sensor_reading(ipmi_netfn_t netfn, ipmi_cmd_t cmd, ipmi_request_t request, ipmi_response_t response, ipmi_data_len_t data_len, ipmi_context_t context) { sensor_data_t* reqptr = (sensor_data_t*)request; sensorreadingresp_t* resp = (sensorreadingresp_t*)response; ipmi::sensor::GetSensorResponse getResponse{}; static constexpr auto scanningEnabledBit = 6; const auto iter = sensors.find(reqptr->sennum); if (iter == sensors.end()) { return legacyGetSensorReading(reqptr->sennum, response, data_len); } if (ipmi::sensor::Mutability::Read != (iter->second.mutability & ipmi::sensor::Mutability::Read)) { return IPMI_CC_ILLEGAL_COMMAND; } try { getResponse = iter->second.getFunc(iter->second); *data_len = getResponse.size(); memcpy(resp, getResponse.data(), *data_len); resp->operation = 1 << scanningEnabledBit; return IPMI_CC_OK; } catch (const std::exception& e) { *data_len = getResponse.size(); memcpy(resp, getResponse.data(), *data_len); return IPMI_CC_OK; } } void getSensorThresholds(uint8_t sensorNum, get_sdr::GetSensorThresholdsResponse* response) { constexpr auto warningThreshIntf = "xyz.openbmc_project.Sensor.Threshold.Warning"; constexpr auto criticalThreshIntf = "xyz.openbmc_project.Sensor.Threshold.Critical"; sdbusplus::bus::bus bus{ipmid_get_sd_bus_connection()}; const auto iter = sensors.find(sensorNum); const auto info = iter->second; auto service = ipmi::getService(bus, info.sensorInterface, info.sensorPath); auto warnThresholds = ipmi::getAllDbusProperties( bus, service, info.sensorPath, warningThreshIntf); double warnLow = mapbox::util::apply_visitor(ipmi::VariantToDoubleVisitor(), warnThresholds["WarningLow"]); double warnHigh = mapbox::util::apply_visitor( ipmi::VariantToDoubleVisitor(), warnThresholds["WarningHigh"]); if (warnLow != 0) { warnLow *= pow(10, info.scale - info.exponentR); response->lowerNonCritical = static_cast( (warnLow - info.scaledOffset) / info.coefficientM); response->validMask |= static_cast( ipmi::sensor::ThresholdMask::NON_CRITICAL_LOW_MASK); } if (warnHigh != 0) { warnHigh *= pow(10, info.scale - info.exponentR); response->upperNonCritical = static_cast( (warnHigh - info.scaledOffset) / info.coefficientM); response->validMask |= static_cast( ipmi::sensor::ThresholdMask::NON_CRITICAL_HIGH_MASK); } auto critThresholds = ipmi::getAllDbusProperties( bus, service, info.sensorPath, criticalThreshIntf); double critLow = mapbox::util::apply_visitor(ipmi::VariantToDoubleVisitor(), critThresholds["CriticalLow"]); double critHigh = mapbox::util::apply_visitor( ipmi::VariantToDoubleVisitor(), critThresholds["CriticalHigh"]); if (critLow != 0) { critLow *= pow(10, info.scale - info.exponentR); response->lowerCritical = static_cast( (critLow - info.scaledOffset) / info.coefficientM); response->validMask |= static_cast( ipmi::sensor::ThresholdMask::CRITICAL_LOW_MASK); } if (critHigh != 0) { critHigh *= pow(10, info.scale - info.exponentR); response->upperCritical = static_cast( (critHigh - info.scaledOffset) / info.coefficientM); response->validMask |= static_cast( ipmi::sensor::ThresholdMask::CRITICAL_HIGH_MASK); } } ipmi_ret_t ipmi_sen_get_sensor_thresholds(ipmi_netfn_t netfn, ipmi_cmd_t cmd, ipmi_request_t request, ipmi_response_t response, ipmi_data_len_t data_len, ipmi_context_t context) { constexpr auto valueInterface = "xyz.openbmc_project.Sensor.Value"; if (*data_len != sizeof(uint8_t)) { *data_len = 0; return IPMI_CC_REQ_DATA_LEN_INVALID; } auto sensorNum = *(reinterpret_cast(request)); *data_len = 0; const auto iter = sensors.find(sensorNum); if (iter == sensors.end()) { return IPMI_CC_SENSOR_INVALID; } const auto info = iter->second; // Proceed only if the sensor value interface is implemented. if (info.propertyInterfaces.find(valueInterface) == info.propertyInterfaces.end()) { // return with valid mask as 0 return IPMI_CC_OK; } auto responseData = reinterpret_cast(response); try { getSensorThresholds(sensorNum, responseData); } catch (std::exception& e) { // Mask if the property is not present responseData->validMask = 0; } *data_len = sizeof(get_sdr::GetSensorThresholdsResponse); return IPMI_CC_OK; } ipmi_ret_t ipmi_sen_wildcard(ipmi_netfn_t netfn, ipmi_cmd_t cmd, ipmi_request_t request, ipmi_response_t response, ipmi_data_len_t data_len, ipmi_context_t context) { ipmi_ret_t rc = IPMI_CC_INVALID; printf("IPMI S/E Wildcard Netfn:[0x%X], Cmd:[0x%X]\n", netfn, cmd); *data_len = 0; return rc; } ipmi_ret_t ipmi_sen_get_sdr_info(ipmi_netfn_t netfn, ipmi_cmd_t cmd, ipmi_request_t request, ipmi_response_t response, ipmi_data_len_t data_len, ipmi_context_t context) { auto resp = static_cast(response); if (request == nullptr || get_sdr_info::request::get_count(request) == false) { // Get Sensor Count resp->count = sensors.size() + frus.size(); } else { resp->count = 1; } // Multiple LUNs not supported. namespace response = get_sdr_info::response; response::set_lun_present(0, &(resp->luns_and_dynamic_population)); response::set_lun_not_present(1, &(resp->luns_and_dynamic_population)); response::set_lun_not_present(2, &(resp->luns_and_dynamic_population)); response::set_lun_not_present(3, &(resp->luns_and_dynamic_population)); response::set_static_population(&(resp->luns_and_dynamic_population)); *data_len = SDR_INFO_RESP_SIZE; return IPMI_CC_OK; } ipmi_ret_t ipmi_sen_reserve_sdr(ipmi_netfn_t netfn, ipmi_cmd_t cmd, ipmi_request_t request, ipmi_response_t response, ipmi_data_len_t data_len, ipmi_context_t context) { // A constant reservation ID is okay until we implement add/remove SDR. const uint16_t reservation_id = 1; *(uint16_t*)response = reservation_id; *data_len = sizeof(uint16_t); printf("Created new IPMI SDR reservation ID %d\n", *(uint16_t*)response); return IPMI_CC_OK; } void setUnitFieldsForObject(const ipmi::sensor::Info* info, get_sdr::SensorDataFullRecordBody* body) { namespace server = sdbusplus::xyz::openbmc_project::Sensor::server; try { auto unit = server::Value::convertUnitFromString(info->unit); // Unit strings defined in // phosphor-dbus-interfaces/xyz/openbmc_project/Sensor/Value.interface.yaml switch (unit) { case server::Value::Unit::DegreesC: body->sensor_units_2_base = get_sdr::SENSOR_UNIT_DEGREES_C; break; case server::Value::Unit::RPMS: body->sensor_units_2_base = get_sdr::SENSOR_UNIT_REVOLUTIONS; // revolutions get_sdr::body::set_rate_unit(0b100, body); // per minute break; case server::Value::Unit::Volts: body->sensor_units_2_base = get_sdr::SENSOR_UNIT_VOLTS; break; case server::Value::Unit::Meters: body->sensor_units_2_base = get_sdr::SENSOR_UNIT_METERS; break; case server::Value::Unit::Amperes: body->sensor_units_2_base = get_sdr::SENSOR_UNIT_AMPERES; break; case server::Value::Unit::Joules: body->sensor_units_2_base = get_sdr::SENSOR_UNIT_JOULES; break; case server::Value::Unit::Watts: body->sensor_units_2_base = get_sdr::SENSOR_UNIT_WATTS; break; default: // Cannot be hit. fprintf(stderr, "Unknown value unit type: = %s\n", info->unit.c_str()); } } catch (sdbusplus::exception::InvalidEnumString e) { log("Warning: no unit provided for sensor!"); } } ipmi_ret_t populate_record_from_dbus(get_sdr::SensorDataFullRecordBody* body, const ipmi::sensor::Info* info, ipmi_data_len_t data_len) { /* Functional sensor case */ if (isAnalogSensor(info->propertyInterfaces.begin()->first)) { body->sensor_units_1 = 0; // unsigned, no rate, no modifier, not a % /* Unit info */ setUnitFieldsForObject(info, body); get_sdr::body::set_b(info->coefficientB, body); get_sdr::body::set_m(info->coefficientM, body); get_sdr::body::set_b_exp(info->exponentB, body); get_sdr::body::set_r_exp(info->exponentR, body); get_sdr::body::set_id_type(0b00, body); // 00 = unicode } /* ID string */ auto id_string = info->sensorNameFunc(*info); if (id_string.length() > FULL_RECORD_ID_STR_MAX_LENGTH) { get_sdr::body::set_id_strlen(FULL_RECORD_ID_STR_MAX_LENGTH, body); } else { get_sdr::body::set_id_strlen(id_string.length(), body); } strncpy(body->id_string, id_string.c_str(), get_sdr::body::get_id_strlen(body)); return IPMI_CC_OK; }; ipmi_ret_t ipmi_fru_get_sdr(ipmi_request_t request, ipmi_response_t response, ipmi_data_len_t data_len) { auto req = reinterpret_cast(request); auto resp = reinterpret_cast(response); get_sdr::SensorDataFruRecord record{}; auto dataLength = 0; auto fru = frus.begin(); uint8_t fruID{}; auto recordID = get_sdr::request::get_record_id(req); fruID = recordID - FRU_RECORD_ID_START; fru = frus.find(fruID); if (fru == frus.end()) { return IPMI_CC_SENSOR_INVALID; } /* Header */ get_sdr::header::set_record_id(recordID, &(record.header)); record.header.sdr_version = SDR_VERSION; // Based on IPMI Spec v2.0 rev 1.1 record.header.record_type = get_sdr::SENSOR_DATA_FRU_RECORD; record.header.record_length = sizeof(record.key) + sizeof(record.body); /* Key */ record.key.fruID = fruID; record.key.accessLun |= IPMI_LOGICAL_FRU; record.key.deviceAddress = BMCSlaveAddress; /* Body */ record.body.entityID = fru->second[0].entityID; record.body.entityInstance = fru->second[0].entityInstance; record.body.deviceType = fruInventoryDevice; record.body.deviceTypeModifier = IPMIFruInventory; /* Device ID string */ auto deviceID = fru->second[0].path.substr(fru->second[0].path.find_last_of('/') + 1, fru->second[0].path.length()); if (deviceID.length() > get_sdr::FRU_RECORD_DEVICE_ID_MAX_LENGTH) { get_sdr::body::set_device_id_strlen( get_sdr::FRU_RECORD_DEVICE_ID_MAX_LENGTH, &(record.body)); } else { get_sdr::body::set_device_id_strlen(deviceID.length(), &(record.body)); } strncpy(record.body.deviceID, deviceID.c_str(), get_sdr::body::get_device_id_strlen(&(record.body))); if (++fru == frus.end()) { get_sdr::response::set_next_record_id(END_OF_RECORD, resp); // last record } else { get_sdr::response::set_next_record_id( (FRU_RECORD_ID_START + fru->first), resp); } if (req->bytes_to_read > (sizeof(*resp) - req->offset)) { dataLength = (sizeof(*resp) - req->offset); } else { dataLength = req->bytes_to_read; } if (dataLength <= 0) { return IPMI_CC_REQ_DATA_LEN_INVALID; } memcpy(resp->record_data, reinterpret_cast(&record) + req->offset, (dataLength)); *data_len = dataLength; *data_len += 2; // additional 2 bytes for next record ID return IPMI_CC_OK; } ipmi_ret_t ipmi_sen_get_sdr(ipmi_netfn_t netfn, ipmi_cmd_t cmd, ipmi_request_t request, ipmi_response_t response, ipmi_data_len_t data_len, ipmi_context_t context) { ipmi_ret_t ret = IPMI_CC_OK; get_sdr::GetSdrReq* req = (get_sdr::GetSdrReq*)request; get_sdr::GetSdrResp* resp = (get_sdr::GetSdrResp*)response; get_sdr::SensorDataFullRecord record = {0}; if (req != NULL) { // Note: we use an iterator so we can provide the next ID at the end of // the call. auto sensor = sensors.begin(); auto recordID = get_sdr::request::get_record_id(req); // At the beginning of a scan, the host side will send us id=0. if (recordID != 0) { // recordID greater then 255,it means it is a FRU record. // Currently we are supporting two record types either FULL record // or FRU record. if (recordID >= FRU_RECORD_ID_START) { return ipmi_fru_get_sdr(request, response, data_len); } else { sensor = sensors.find(recordID); if (sensor == sensors.end()) { return IPMI_CC_SENSOR_INVALID; } } } uint8_t sensor_id = sensor->first; /* Header */ get_sdr::header::set_record_id(sensor_id, &(record.header)); record.header.sdr_version = 0x51; // Based on IPMI Spec v2.0 rev 1.1 record.header.record_type = get_sdr::SENSOR_DATA_FULL_RECORD; record.header.record_length = sizeof(get_sdr::SensorDataFullRecord); /* Key */ get_sdr::key::set_owner_id_bmc(&(record.key)); record.key.sensor_number = sensor_id; /* Body */ record.body.entity_id = sensor->second.entityType; record.body.sensor_type = sensor->second.sensorType; record.body.event_reading_type = sensor->second.sensorReadingType; record.body.entity_instance = sensor->second.instance; // Set the type-specific details given the DBus interface ret = populate_record_from_dbus(&(record.body), &(sensor->second), data_len); if (++sensor == sensors.end()) { // we have reached till end of sensor, so assign the next record id // to 256(Max Sensor ID = 255) + FRU ID(may start with 0). auto next_record_id = (frus.size()) ? frus.begin()->first + FRU_RECORD_ID_START : END_OF_RECORD; get_sdr::response::set_next_record_id(next_record_id, resp); } else { get_sdr::response::set_next_record_id(sensor->first, resp); } *data_len = sizeof(get_sdr::GetSdrResp) - req->offset; memcpy(resp->record_data, (char*)&record + req->offset, sizeof(get_sdr::SensorDataFullRecord) - req->offset); } return ret; } void register_netfn_sen_functions() { // ipmi_register_callback(NETFUN_SENSOR, IPMI_CMD_WILDCARD, nullptr, ipmi_sen_wildcard, PRIVILEGE_USER); // ipmi_register_callback(NETFUN_SENSOR, IPMI_CMD_GET_SENSOR_TYPE, nullptr, ipmi_sen_get_sensor_type, PRIVILEGE_USER); // ipmi_register_callback(NETFUN_SENSOR, IPMI_CMD_SET_SENSOR, nullptr, ipmi_sen_set_sensor, PRIVILEGE_OPERATOR); // ipmi_register_callback(NETFUN_SENSOR, IPMI_CMD_GET_SENSOR_READING, nullptr, ipmi_sen_get_sensor_reading, PRIVILEGE_USER); // ipmi_register_callback(NETFUN_SENSOR, IPMI_CMD_RESERVE_DEVICE_SDR_REPO, nullptr, ipmi_sen_reserve_sdr, PRIVILEGE_USER); // ipmi_register_callback(NETFUN_SENSOR, IPMI_CMD_GET_DEVICE_SDR_INFO, nullptr, ipmi_sen_get_sdr_info, PRIVILEGE_USER); // ipmi_register_callback(NETFUN_SENSOR, IPMI_CMD_GET_DEVICE_SDR, nullptr, ipmi_sen_get_sdr, PRIVILEGE_USER); // ipmi_register_callback(NETFUN_SENSOR, IPMI_CMD_GET_SENSOR_THRESHOLDS, nullptr, ipmi_sen_get_sensor_thresholds, PRIVILEGE_USER); return; }