summaryrefslogtreecommitdiffstats
path: root/monitor/fan.cpp
blob: 96db76c975bec808448e2aa39e71080e0d4c4cde (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
/**
 * Copyright © 2017 IBM Corporation
 *
 * Licensed under the Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 *
 *     http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */
#include <algorithm>
#include <phosphor-logging/log.hpp>
#include "fan.hpp"
#include "types.hpp"
#include "utility.hpp"
#include "sdbusplus.hpp"

namespace phosphor
{
namespace fan
{
namespace monitor
{

using namespace phosphor::logging;

Fan::Fan(Mode mode,
         sdbusplus::bus::bus& bus,
         phosphor::fan::event::EventPtr&  events,
         std::unique_ptr<trust::Manager>& trust,
         const FanDefinition& def) :
    _bus(bus),
    _name(std::get<fanNameField>(def)),
    _deviation(std::get<fanDeviationField>(def)),
    _numSensorFailsForNonFunc(std::get<numSensorFailsForNonfuncField>(def)),
    _trustManager(trust)
{
    // Setup tach sensors for monitoring
    auto& sensors = std::get<sensorListField>(def);
    for (auto& s : sensors)
    {
        try
        {
            _sensors.emplace_back(
                    std::make_shared<TachSensor>(
                            mode,
                            bus,
                            *this,
                            std::get<sensorNameField>(s),
                            std::get<hasTargetField>(s),
                            std::get<funcDelay>(def),
                            std::get<targetInterfaceField>(s),
                            std::get<factorField>(s),
                            std::get<offsetField>(s),
                            std::get<timeoutField>(def),
                            events));

            _trustManager->registerSensor(_sensors.back());
        }
        catch (InvalidSensorError& e)
        {

        }
    }

    //Start from a known state of functional
    updateInventory(true);

    // Check current tach state when entering monitor mode
    if (mode != Mode::init)
    {
        //The TachSensors will now have already read the input
        //and target values, so check them.
        tachChanged();
    }
}


void Fan::tachChanged()
{
    for (auto& s : _sensors)
    {
        tachChanged(*s);
    }
}


void Fan::tachChanged(TachSensor& sensor)
{
    if (_trustManager->active())
    {
        if (!_trustManager->checkTrust(sensor))
        {
            return;
        }
    }

    auto running = sensor.timerRunning();

    //If this sensor is out of range at this moment, start
    //its timer, at the end of which the inventory
    //for the fan may get updated to not functional.

    //If this sensor is OK, put everything back into a good state.

    if (outOfRange(sensor))
    {
        if (sensor.functional() && !running)
        {
            sensor.startTimer(TimerMode::nonfunc);
        }
    }
    else
    {
        if (!sensor.functional())
        {
            sensor.setFunctional(true);
        }

        if (running)
        {
            sensor.stopTimer();
        }

        //If the fan was nonfunctional and enough sensors are now OK,
        //the fan can go back to functional
        if (!_functional && !tooManySensorsNonfunctional())
        {
            log<level::INFO>("Setting a fan back to functional",
                             entry("FAN=%s", _name.c_str()));

            updateInventory(true);
        }
    }
}


uint64_t Fan::findTargetSpeed()
{
    uint64_t target = 0;
    //The sensor doesn't support a target,
    //so get it from another sensor.
    auto s = std::find_if(_sensors.begin(), _sensors.end(),
                          [](const auto& s)
                          {
                              return s->hasTarget();
                          });

    if (s != _sensors.end())
    {
        target = (*s)->getTarget();
    }

    return target;
}


bool Fan::tooManySensorsNonfunctional()
{
    size_t numFailed =  std::count_if(_sensors.begin(), _sensors.end(),
                                      [](const auto& s)
                                      {
                                          return !s->functional();
                                      });

    return (numFailed >= _numSensorFailsForNonFunc);
}


bool Fan::outOfRange(const TachSensor& sensor)
{
    auto actual = static_cast<uint64_t>(sensor.getInput());
    auto target = sensor.getTarget();
    auto factor = sensor.getFactor();
    auto offset = sensor.getOffset();

    uint64_t min = target * (100 - _deviation) / 100;
    uint64_t max = target * (100 + _deviation) / 100;

    // TODO: openbmc/openbmc#2937 enhance this function
    // either by making it virtual, or by predefining different
    // outOfRange ops and selecting by yaml config
    min = min * factor + offset;
    max = max * factor + offset;
    if ((actual < min) || (actual > max))
    {
        return true;
    }

    return false;
}


void Fan::timerExpired(TachSensor& sensor)
{
    sensor.setFunctional(false);

    //If the fan is currently functional, but too many
    //contained sensors are now nonfunctional, update
    //the whole fan nonfunctional.

    if (_functional && tooManySensorsNonfunctional())
    {
        log<level::ERR>("Setting a fan to nonfunctional",
                entry("FAN=%s", _name.c_str()),
                entry("TACH_SENSOR=%s", sensor.name().c_str()),
                entry("ACTUAL_SPEED=%lld", sensor.getInput()),
                entry("TARGET_SPEED=%lld", sensor.getTarget()));

        updateInventory(false);
    }
}


void Fan::updateInventory(bool functional)
{
    auto objectMap = util::getObjMap<bool>(
            _name,
            util::OPERATIONAL_STATUS_INTF,
            util::FUNCTIONAL_PROPERTY,
            functional);
    auto response = util::SDBusPlus::lookupAndCallMethod(
            _bus,
            util::INVENTORY_PATH,
            util::INVENTORY_INTF,
            "Notify",
            objectMap);
    if (response.is_method_error())
    {
        log<level::ERR>("Error in Notify call to update inventory");
        return;
    }

    //This will always track the current state of the inventory.
    _functional = functional;
}

}
}
}
OpenPOWER on IntegriCloud