1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
|
/* Copyright 2016 IBM Corp.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or
* implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include <stdint.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <fcntl.h>
#include <unistd.h>
#include <sys/stat.h>
#include <sys/mman.h>
#include <time.h>
#include <assert.h>
#include "bitutils.h"
#include "operations.h"
#include "target.h"
#define GPIO_BASE 0x1e780000
#define GPIO_DATA 0x0
#define GPIO_DIR 0x4
#define CRC_LEN 4
/* Defines a GPIO. The Aspeed devices dont have consistent stride
* between registers so we need to encode register bit number and base
* address offset */
struct gpio_pin {
uint32_t offset;
int bit;
};
enum gpio {
GPIO_FSI_CLK = 0,
GPIO_FSI_DAT = 1,
GPIO_FSI_DAT_EN = 2,
GPIO_FSI_ENABLE = 3,
GPIO_CRONUS_SEL = 4,
};
/* POWER8 GPIO mappings */
struct gpio_pin p8_gpio_pins[] = {
{0, 4}, /* FSI_CLK = A4*/
{0, 5}, /* FSI_DAT = A5 */
{0x20, 30}, /* FSI_DAT_EN = H6 */
{0, 24}, /* FSI_ENABLE = D0 */
{0, 6}, /* CRONUS_SEL = A6 */
};
/* Clock delay in a for loop, determined by trial and error with
* -O2 */
#define P8_CLOCK_DELAY 3
/* POWER9 Witherspoon mappings */
struct gpio_pin p9w_gpio_pins[] = {
{0x1e0, 16}, /* FSI_CLK = AA0 */
{0x20, 0}, /* FSI_DAT = E0 */
{0x80, 10}, /* FSI_DAT_EN = R2 */
{0, 24}, /* FSI_ENABLE = D0 */
{0, 6}, /* CRONUS_SEL = A6 */
};
#define P9W_CLOCK_DELAY 20
/* Pointer to the GPIO pins to use for this system */
static struct gpio_pin *gpio_pins;
#define FSI_CLK &gpio_pins[GPIO_FSI_CLK]
#define FSI_DAT &gpio_pins[GPIO_FSI_DAT]
#define FSI_DAT_EN &gpio_pins[GPIO_FSI_DAT_EN]
#define FSI_ENABLE &gpio_pins[GPIO_FSI_ENABLE]
#define CRONUS_SEL &gpio_pins[GPIO_CRONUS_SEL]
/* FSI result symbols */
enum fsi_result {
FSI_MERR_TIMEOUT = -2,
FSI_MERR_C = -1,
FSI_ACK = 0x0,
FSI_BUSY = 0x1,
FSI_ERR_A = 0x2,
FSI_ERR_C = 0x3,
};
static int clock_delay = 0;
#define FSI_DATA0_REG 0x1000
#define FSI_DATA1_REG 0x1001
#define FSI_CMD_REG 0x1002
#define FSI_CMD_REG_WRITE PPC_BIT32(0)
#define FSI_RESET_REG 0x1006
#define FSI_RESET_CMD PPC_BIT32(0)
#define FSI_SET_PIB_RESET_REG 0x1007
#define FSI_SET_PIB_RESET PPC_BIT32(0)
/* For some reason the FSI2PIB engine dies with frequent
* access. Letting it have a bit of a rest seems to stop the
* problem. This sets the number of usecs to sleep between SCOM
* accesses. */
#define FSI2PIB_RELAX 50
/* FSI private data */
static void *gpio_reg = NULL;
static int mem_fd = 0;
static void fsi_reset(struct target *target);
static uint32_t readl(void *addr)
{
asm volatile("" : : : "memory");
return *(volatile uint32_t *) addr;
}
static void writel(uint32_t val, void *addr)
{
asm volatile("" : : : "memory");
*(volatile uint32_t *) addr = val;
}
static int __attribute__((unused)) get_direction(struct gpio_pin *pin)
{
void *offset = gpio_reg + pin->offset + GPIO_DIR;
return !!(readl(offset) & (1ULL << pin->bit));
}
static void set_direction_out(struct gpio_pin *pin)
{
uint32_t x;
void *offset = gpio_reg + pin->offset + GPIO_DIR;
x = readl(offset);
x |= 1ULL << pin->bit;
writel(x, offset);
}
static void set_direction_in(struct gpio_pin *pin)
{
uint32_t x;
void *offset = gpio_reg + pin->offset + GPIO_DIR;
x = readl(offset);
x &= ~(1ULL << pin->bit);
writel(x, offset);
}
static int read_gpio(struct gpio_pin *pin)
{
void *offset = gpio_reg + pin->offset + GPIO_DATA;
return (readl(offset) >> pin->bit) & 0x1;
}
static void write_gpio(struct gpio_pin *pin, int val)
{
uint32_t x;
void *offset = gpio_reg + pin->offset + GPIO_DATA;
x = readl(offset);
if (val)
x |= 1ULL << pin->bit;
else
x &= ~(1ULL << pin->bit);
writel(x, offset);
}
static inline void clock_cycle(struct gpio_pin *pin, int num_clks)
{
int i;
volatile int j;
/* Need to introduce delays when inlining this function */
for (j = 0; j < clock_delay; j++);
for (i = 0; i < num_clks; i++) {
write_gpio(pin, 0);
write_gpio(pin, 1);
}
for (j = 0; j < clock_delay; j++);
}
static uint8_t crc4(uint8_t c, int b)
{
uint8_t m = 0;
c &= 0xf;
m = b ^ ((c >> 3) & 0x1);
m = (m << 2) | (m << 1) | (m);
c <<= 1;
c ^= m;
return c & 0xf;
}
/* FSI bits should be reading on the falling edge. Read a bit and
* clock the next one out. */
static inline unsigned int fsi_read_bit(void)
{
int x;
x = read_gpio(FSI_DAT);
clock_cycle(FSI_CLK, 1);
/* The FSI hardware is active low (ie. inverted) */
return !(x & 1);
}
static inline void fsi_send_bit(uint64_t bit)
{
write_gpio(FSI_DAT, !bit);
clock_cycle(FSI_CLK, 1);
}
/* Format a CFAM address into an FSI slaveId, command and address. */
static uint64_t fsi_abs_ar(uint32_t addr, int read)
{
uint32_t slave_id = (addr >> 21) & 0x3;
/* Reformat the address. I'm not sure I fully understand this
* yet but we basically shift the bottom byte and add 0b01
* (for the write word?) */
addr = ((addr & 0x1fff00) | ((addr & 0xff) << 2)) << 1;
addr |= 0x3;
addr |= slave_id << 26;
addr |= (0x8ULL | !!(read)) << 22;
return addr;
}
static uint64_t fsi_d_poll(uint8_t slave_id)
{
return slave_id << 3 | 0x2;
}
static void fsi_break(void)
{
set_direction_out(FSI_CLK);
set_direction_out(FSI_DAT);
write_gpio(FSI_DAT_EN, 1);
/* Crank things - not sure if we need this yet */
write_gpio(FSI_CLK, 1);
write_gpio(FSI_DAT, 1); /* Data standby state */
/* Send break command */
write_gpio(FSI_DAT, 0);
clock_cycle(FSI_CLK, 256);
}
/* Send a sequence, including start bit and crc */
static void fsi_send_seq(uint64_t seq, int len)
{
int i;
uint8_t crc;
set_direction_out(FSI_CLK);
set_direction_out(FSI_DAT);
write_gpio(FSI_DAT_EN, 1);
write_gpio(FSI_DAT, 1);
clock_cycle(FSI_CLK, 50);
/* Send the start bit */
write_gpio(FSI_DAT, 0);
clock_cycle(FSI_CLK, 1);
/* crc includes start bit */
crc = crc4(0, 1);
for (i = 63; i >= 64 - len; i--) {
crc = crc4(crc, !!(seq & (1ULL << i)));
fsi_send_bit(seq & (1ULL << i));
}
/* Send the CRC */
for (i = 3; i >= 0; i--)
fsi_send_bit(crc & (1ULL << i));
write_gpio(FSI_CLK, 0);
}
/* Read a response. Only supports upto 60 bits at the moment. */
static enum fsi_result fsi_read_resp(uint64_t *result, int len)
{
int i, x;
uint8_t crc;
uint64_t resp = 0;
uint8_t ack = 0;
write_gpio(FSI_DAT_EN, 0);
set_direction_in(FSI_DAT);
/* Wait for start bit */
for (i = 0; i < 512; i++) {
x = fsi_read_bit();
if (x)
break;
}
if (i == 512) {
PR_DEBUG("Timeout waiting for start bit\n");
return FSI_MERR_TIMEOUT;
}
crc = crc4(0, 1);
/* Read the response code (ACK, ERR_A, etc.) */
for (i = 0; i < 4; i++) {
ack <<= 1;
ack |= fsi_read_bit();
crc = crc4(crc, ack & 0x1);
}
/* A non-ACK response has no data but should include a CRC */
if (ack != FSI_ACK)
len = 7;
for (; i < len + CRC_LEN; i++) {
resp <<= 1;
resp |= fsi_read_bit();
crc = crc4(crc, resp & 0x1);
}
if (crc != 0) {
printf("CRC error: 0x%llx\n", resp);
return FSI_MERR_C;
}
write_gpio(FSI_CLK, 0);
/* Strip the CRC off */
*result = resp >> 4;
return ack & 0x3;
}
static enum fsi_result fsi_d_poll_wait(uint8_t slave_id, uint64_t *resp, int len)
{
int i;
uint64_t seq;
enum fsi_result rc;
/* Poll for response if busy */
for (i = 0; i < 512; i++) {
seq = fsi_d_poll(slave_id) << 59;
fsi_send_seq(seq, 5);
if ((rc = fsi_read_resp(resp, len)) != FSI_BUSY)
break;
}
return rc;
}
static int fsi_getcfam(struct target *target, uint64_t addr, uint64_t *value)
{
uint64_t seq;
uint64_t resp;
enum fsi_result rc;
/* This must be the last target in a chain */
assert(!target->next);
/* Format of the read sequence is:
* 6666555555555544444444443333333333222222222211111111110000000000
* 3210987654321098765432109876543210987654321098765432109876543210
*
* ii1001aaaaaaaaaaaaaaaaaaa011cccc
*
* Where:
* ii = slaveId
* a = address bit
* 011 = write word size
* d = data bit
* c = crc bit
*
* When applying the sequence it should be inverted (active
* low)
*/
seq = fsi_abs_ar(addr, 1) << 36;
fsi_send_seq(seq, 28);
if ((rc = fsi_read_resp(&resp, 36)) == FSI_BUSY)
rc = fsi_d_poll_wait(0, &resp, 36);
if (rc != FSI_ACK) {
PR_DEBUG("getcfam error. Response: 0x%01x\n", rc);
rc = -1;
}
*value = resp & 0xffffffff;
return rc;
}
static int fsi_putcfam(struct target *target, uint64_t addr, uint64_t data)
{
uint64_t seq;
uint64_t resp;
enum fsi_result rc;
/* This must be the last target in a chain */
assert(!target->next);
/* Format of the sequence is:
* 6666555555555544444444443333333333222222222211111111110000000000
* 3210987654321098765432109876543210987654321098765432109876543210
*
* ii1000aaaaaaaaaaaaaaaaaaa011ddddddddddddddddddddddddddddddddcccc
*
* Where:
* ii = slaveId
* a = address bit
* 011 = write word size
* d = data bit
* c = crc bit
*
* When applying the sequence it should be inverted (active
* low)
*/
seq = fsi_abs_ar(addr, 0) << 36;
seq |= ((uint64_t) data & 0xffffffff) << (4);
fsi_send_seq(seq, 60);
if ((rc = fsi_read_resp(&resp, 4)) == FSI_BUSY)
rc = fsi_d_poll_wait(0, &resp, 4);
if (rc != FSI_ACK)
PR_DEBUG("putcfam error. Response: 0x%01x\n", rc);
else
rc = 0;
return rc;
}
static void fsi_reset(struct target *target)
{
uint64_t val64, old_base = target->base;
target->base = 0;
fsi_break();
/* Clear own id on the master CFAM to access hMFSI ports */
fsi_getcfam(target, 0x800, &val64);
val64 &= ~(PPC_BIT32(6) | PPC_BIT32(7));
fsi_putcfam(target, 0x800, val64);
target->base = old_base;
}
static void fsi_destroy(struct target *target)
{
set_direction_out(FSI_CLK);
set_direction_out(FSI_DAT);
write_gpio(FSI_DAT_EN, 1);
/* Crank things - this is needed to use this tool for kicking off system boot */
write_gpio(FSI_CLK, 1);
write_gpio(FSI_DAT, 1); /* Data standby state */
clock_cycle(FSI_CLK, 5000);
write_gpio(FSI_DAT_EN, 0);
write_gpio(FSI_CLK, 0);
write_gpio(FSI_ENABLE, 0);
write_gpio(CRONUS_SEL, 0);
}
int fsi_target_init(struct target *target, const char *name, enum fsi_system_type type, struct target *next)
{
uint64_t value;
if (!mem_fd) {
mem_fd = open("/dev/mem", O_RDWR | O_SYNC);
if (mem_fd < 0) {
perror("Unable to open /dev/mem");
exit(1);
}
}
if (!gpio_reg) {
switch (type) {
case FSI_SYSTEM_P8:
gpio_pins = p8_gpio_pins;
clock_delay = P8_CLOCK_DELAY;
break;
case FSI_SYSTEM_P9W:
gpio_pins = p9w_gpio_pins;
clock_delay = P9W_CLOCK_DELAY;
break;
default:
PR_ERROR("Unrecognized system type specified\n");
exit(-1);
}
/* We only have to do this init once per backend */
gpio_reg = mmap(NULL, getpagesize(),
PROT_READ | PROT_WRITE, MAP_SHARED, mem_fd, GPIO_BASE);
if (gpio_reg == MAP_FAILED) {
perror("Unable to map GPIO register memory");
exit(-1);
}
set_direction_out(CRONUS_SEL);
set_direction_out(FSI_ENABLE);
set_direction_out(FSI_DAT_EN);
write_gpio(FSI_ENABLE, 1);
write_gpio(CRONUS_SEL, 1);
fsi_reset(target);
}
/* No cascaded devices after this one. */
assert(next == NULL);
target_init(target, name, 0, fsi_getcfam, fsi_putcfam, fsi_destroy,
next);
return 0;
}
|