#include "writefrudata.hpp" #include "fru-area.hpp" #include "frup.hpp" #include "types.hpp" #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include using namespace ipmi::vpd; using namespace phosphor::logging; extern const FruMap frus; extern const std::map extras; namespace { //------------------------------------------------------------ // Cleanup routine // Must always be called as last reference to fru_fp. //------------------------------------------------------------ int cleanupError(FILE* fru_fp, fru_area_vec_t& fru_area_vec) { if (fru_fp != NULL) { std::fclose(fru_fp); } if (!(fru_area_vec.empty())) { fru_area_vec.clear(); } return -1; } //------------------------------------------------------------------------ // Gets the value of the key from the fru dictionary of the given section. // FRU dictionary is parsed fru data for all the sections. //------------------------------------------------------------------------ std::string getFRUValue(const std::string& section, const std::string& key, const std::string& delimiter, IPMIFruInfo& fruData) { auto minIndexValue = 0; auto maxIndexValue = 0; std::string fruValue = ""; if (section == "Board") { minIndexValue = OPENBMC_VPD_KEY_BOARD_MFG_DATE; maxIndexValue = OPENBMC_VPD_KEY_BOARD_MAX; } else if (section == "Product") { minIndexValue = OPENBMC_VPD_KEY_PRODUCT_MFR; maxIndexValue = OPENBMC_VPD_KEY_PRODUCT_MAX; } else if (section == "Chassis") { minIndexValue = OPENBMC_VPD_KEY_CHASSIS_TYPE; maxIndexValue = OPENBMC_VPD_KEY_CHASSIS_MAX; } auto first = fruData.cbegin() + minIndexValue; auto last = first + (maxIndexValue - minIndexValue) + 1; auto itr = std::find_if(first, last, [&key](auto& e) { return key == e.first; }); if (itr != last) { fruValue = itr->second; } // if the key is custom property then the value could be in two formats. // 1) custom field 2 = "value". // 2) custom field 2 = "key:value". // if delimiter length = 0 i.e custom field 2 = "value" constexpr auto customProp = "Custom Field"; if (key.find(customProp) != std::string::npos) { if (delimiter.length() > 0) { size_t delimiterpos = fruValue.find(delimiter); if (delimiterpos != std::string::npos) fruValue = fruValue.substr(delimiterpos + 1); } } return fruValue; } // Get the inventory service from the mapper. auto getService(sdbusplus::bus::bus& bus, const std::string& intf, const std::string& path) { auto mapperCall = bus.new_method_call("xyz.openbmc_project.ObjectMapper", "/xyz/openbmc_project/object_mapper", "xyz.openbmc_project.ObjectMapper", "GetObject"); mapperCall.append(path); mapperCall.append(std::vector({intf})); std::map> mapperResponse; try { auto mapperResponseMsg = bus.call(mapperCall); mapperResponseMsg.read(mapperResponse); } catch (const sdbusplus::exception::SdBusError& ex) { log("Exception from sdbus call", entry("WHAT=%s", ex.what())); throw; } if (mapperResponse.begin() == mapperResponse.end()) { throw std::runtime_error("ERROR in reading the mapper response"); } return mapperResponse.begin()->first; } // Takes FRU data, invokes Parser for each fru record area and updates // Inventory //------------------------------------------------------------------------ int updateInventory(fru_area_vec_t& area_vec, sd_bus* bus_sd) { // Generic error reporter int rc = 0; uint8_t fruid = 0; IPMIFruInfo fruData; // For each FRU area, extract the needed data , get it parsed and update // the Inventory. for (const auto& fruArea : area_vec) { fruid = fruArea->get_fruid(); // Fill the container with information rc = parse_fru_area((fruArea)->get_type(), (void*)(fruArea)->get_data(), (fruArea)->get_len(), fruData); if (rc < 0) { log("Error parsing FRU records"); return rc; } } // END walking the vector of areas and updating // For each Fru we have the list of instances which needs to be updated. // Each instance object implements certain interfaces. // Each Interface is having Dbus properties. // Each Dbus Property would be having metaData(eg section,VpdPropertyName). // Here we are just printing the object,interface and the properties. // which needs to be called with the new inventory manager implementation. sdbusplus::bus::bus bus{bus_sd}; using namespace std::string_literals; static const auto intf = "xyz.openbmc_project.Inventory.Manager"s; static const auto path = "/xyz/openbmc_project/inventory"s; std::string service; try { service = getService(bus, intf, path); } catch (const std::exception& e) { std::cerr << e.what() << "\n"; return -1; } auto iter = frus.find(fruid); if (iter == frus.end()) { log("Unable to get the fru info", entry("FRU=%d", static_cast(fruid))); return -1; } auto& instanceList = iter->second; if (instanceList.size() <= 0) { log("Object list empty for this FRU", entry("FRU=%d", static_cast(fruid))); } ObjectMap objects; for (auto& instance : instanceList) { InterfaceMap interfaces; const auto& extrasIter = extras.find(instance.path); for (auto& interfaceList : instance.interfaces) { PropertyMap props; // store all the properties for (auto& properties : interfaceList.second) { std::string value; decltype(auto) pdata = properties.second; if (!pdata.section.empty() && !pdata.property.empty()) { value = getFRUValue(pdata.section, pdata.property, pdata.delimiter, fruData); } props.emplace(std::move(properties.first), std::move(value)); } // Check and update extra properties if (extras.end() != extrasIter) { const auto& propsIter = (extrasIter->second).find(interfaceList.first); if ((extrasIter->second).end() != propsIter) { for (const auto& map : propsIter->second) { props.emplace(map.first, map.second); } } } interfaces.emplace(std::move(interfaceList.first), std::move(props)); } // Call the inventory manager sdbusplus::message::object_path objectPath = instance.path; // Check and update extra properties if (extras.end() != extrasIter) { for (const auto& entry : extrasIter->second) { if (interfaces.end() == interfaces.find(entry.first)) { interfaces.emplace(entry.first, entry.second); } } } objects.emplace(objectPath, interfaces); } auto pimMsg = bus.new_method_call(service.c_str(), path.c_str(), intf.c_str(), "Notify"); pimMsg.append(std::move(objects)); try { auto inventoryMgrResponseMsg = bus.call(pimMsg); } catch (const sdbusplus::exception::SdBusError& ex) { log("Error in notify call", entry("WHAT=%s", ex.what())); return -1; } return rc; } } // namespace //---------------------------------------------------------------- // Constructor //---------------------------------------------------------------- IPMIFruArea::IPMIFruArea(const uint8_t fruid, const ipmi_fru_area_type type, bool bmc_fru) { iv_fruid = fruid; iv_type = type; iv_bmc_fru = bmc_fru; iv_valid = false; iv_data = NULL; iv_present = false; if (iv_type == IPMI_FRU_AREA_INTERNAL_USE) { iv_name = "INTERNAL_"; } else if (iv_type == IPMI_FRU_AREA_CHASSIS_INFO) { iv_name = "CHASSIS_"; } else if (iv_type == IPMI_FRU_AREA_BOARD_INFO) { iv_name = "BOARD_"; } else if (iv_type == IPMI_FRU_AREA_PRODUCT_INFO) { iv_name = "PRODUCT_"; } else if (iv_type == IPMI_FRU_AREA_MULTI_RECORD) { iv_name = "MULTI_"; } else { iv_name = IPMI_FRU_AREA_TYPE_MAX; log("Invalid Area", entry("TYPE=%d", iv_type)); } } //----------------------------------------------------- // For a FRU area type, accepts the data and updates // area specific data. //----------------------------------------------------- void IPMIFruArea::set_data(const uint8_t* data, const size_t len) { iv_len = len; iv_data = new uint8_t[len]; std::memcpy(iv_data, data, len); } //----------------------------------------------------- // Sets the dbus parameters //----------------------------------------------------- void IPMIFruArea::update_dbus_paths(const char* bus_name, const char* obj_path, const char* intf_name) { iv_bus_name = bus_name; iv_obj_path = obj_path; iv_intf_name = intf_name; } //------------------- // Destructor //------------------- IPMIFruArea::~IPMIFruArea() { if (iv_data != NULL) { delete[] iv_data; iv_data = NULL; } } //------------------------------------------------ // Takes the pointer to stream of bytes and length // and returns the 8 bit checksum // This algo is per IPMI V2.0 spec //------------------------------------------------- unsigned char calculate_crc(const unsigned char* data, size_t len) { char crc = 0; size_t byte = 0; for (byte = 0; byte < len; byte++) { crc += *data++; } return (-crc); } //--------------------------------------------------------------------- // Accepts a fru area offset in commom hdr and tells which area it is. //--------------------------------------------------------------------- ipmi_fru_area_type get_fru_area_type(uint8_t area_offset) { ipmi_fru_area_type type = IPMI_FRU_AREA_TYPE_MAX; switch (area_offset) { case IPMI_FRU_INTERNAL_OFFSET: type = IPMI_FRU_AREA_INTERNAL_USE; break; case IPMI_FRU_CHASSIS_OFFSET: type = IPMI_FRU_AREA_CHASSIS_INFO; break; case IPMI_FRU_BOARD_OFFSET: type = IPMI_FRU_AREA_BOARD_INFO; break; case IPMI_FRU_PRODUCT_OFFSET: type = IPMI_FRU_AREA_PRODUCT_INFO; break; case IPMI_FRU_MULTI_OFFSET: type = IPMI_FRU_AREA_MULTI_RECORD; break; default: type = IPMI_FRU_AREA_TYPE_MAX; } return type; } ///----------------------------------------------- // Validates the data for crc and mandatory fields ///----------------------------------------------- int verify_fru_data(const uint8_t* data, const size_t len) { uint8_t checksum = 0; int rc = -1; // Validate for first byte to always have a value of [1] if (data[0] != IPMI_FRU_HDR_BYTE_ZERO) { log("Invalid entry in byte-0", entry("ENTRY=0x%X", static_cast(data[0]))); return rc; } #ifdef __IPMI_DEBUG__ else { log("Validated in entry_1 of fru_data", entry("ENTRY=0x%X", static_cast(data[0]))); } #endif // See if the calculated CRC matches with the embedded one. // CRC to be calculated on all except the last one that is CRC itself. checksum = calculate_crc(data, len - 1); if (checksum != data[len - 1]) { #ifdef __IPMI_DEBUG__ log( "Checksum mismatch", entry("Calculated=0x%X", static_cast(checksum)), entry("Embedded=0x%X", static_cast(data[len]))); #endif return rc; } #ifdef __IPMI_DEBUG__ else { log("Checksum matches"); } #endif return EXIT_SUCCESS; } ///---------------------------------------------------- // Checks if a particular fru area is populated or not ///---------------------------------------------------- bool remove_invalid_area(const std::unique_ptr& fru_area) { // Filter the ones that are empty if (!(fru_area->get_len())) { return true; } return false; } ///---------------------------------------------------------------------------------- // Populates various FRU areas // @prereq : This must be called only after validating common header. ///---------------------------------------------------------------------------------- int ipmi_populate_fru_areas(uint8_t* fru_data, const size_t data_len, fru_area_vec_t& fru_area_vec) { int rc = -1; // Now walk the common header and see if the file size has atleast the last // offset mentioned by the common_hdr. If the file size is less than the // offset of any if the fru areas mentioned in the common header, then we do // not have a complete file. for (uint8_t fru_entry = IPMI_FRU_INTERNAL_OFFSET; fru_entry < (sizeof(struct common_header) - 2); fru_entry++) { rc = -1; // Actual offset in the payload is the offset mentioned in common header // multiplied by 8. Common header is always the first 8 bytes. size_t area_offset = fru_data[fru_entry] * IPMI_EIGHT_BYTES; if (area_offset && (data_len < (area_offset + 2))) { // Our file size is less than what it needs to be. +2 because we are // using area len that is at 2 byte off area_offset log("fru file is incomplete", entry("SIZE=%d", data_len)); return rc; } else if (area_offset) { // Read 2 bytes to know the actual size of area. uint8_t area_hdr[2] = {0}; std::memcpy(area_hdr, &((uint8_t*)fru_data)[area_offset], sizeof(area_hdr)); // Size of this area will be the 2nd byte in the fru area header. size_t area_len = area_hdr[1] * IPMI_EIGHT_BYTES; uint8_t area_data[area_len] = {0}; log("Fru Data", entry("SIZE=%d", data_len), entry("AREA OFFSET=%d", area_offset), entry("AREA_SIZE=%d", area_len)); // See if we really have that much buffer. We have area offset amd // from there, the actual len. if (data_len < (area_len + area_offset)) { log("Incomplete Fru file", entry("SIZE=%d", data_len)); return rc; } // Save off the data. std::memcpy(area_data, &((uint8_t*)fru_data)[area_offset], area_len); // Validate the crc rc = verify_fru_data(area_data, area_len); if (rc < 0) { log("Err validating fru area", entry("OFFSET=%d", area_offset)); return rc; } else { log("Successfully verified area checksum.", entry("OFFSET=%d", area_offset)); } // We already have a vector that is passed to us containing all // of the fields populated. Update the data portion now. for (auto& iter : fru_area_vec) { if ((iter)->get_type() == get_fru_area_type(fru_entry)) { (iter)->set_data(area_data, area_len); } } } // If we have fru data present } // Walk common_hdr // Not all the fields will be populated in a fru data. Mostly all cases will // not have more than 2 or 3. fru_area_vec.erase(std::remove_if(fru_area_vec.begin(), fru_area_vec.end(), remove_invalid_area), fru_area_vec.end()); return EXIT_SUCCESS; } ///--------------------------------------------------------- // Validates the fru data per ipmi common header constructs. // Returns with updated common_hdr and also file_size //---------------------------------------------------------- int ipmi_validate_common_hdr(const uint8_t* fru_data, const size_t data_len) { int rc = -1; uint8_t common_hdr[sizeof(struct common_header)] = {0}; if (data_len >= sizeof(common_hdr)) { std::memcpy(common_hdr, fru_data, sizeof(common_hdr)); } else { log("Incomplete fru data file", entry("SIZE=%d", data_len)); return rc; } // Verify the crc and size rc = verify_fru_data(common_hdr, sizeof(common_hdr)); if (rc < 0) { log("Failed to validate common header"); return rc; } return EXIT_SUCCESS; } ///----------------------------------------------------- // Accepts the filename and validates per IPMI FRU spec //---------------------------------------------------- int validateFRUArea(const uint8_t fruid, const char* fru_file_name, sd_bus* bus_type, const bool bmc_fru) { size_t data_len = 0; size_t bytes_read = 0; int rc = -1; // Vector that holds individual IPMI FRU AREAs. Although MULTI and INTERNAL // are not used, keeping it here for completeness. fru_area_vec_t fru_area_vec; for (uint8_t fru_entry = IPMI_FRU_INTERNAL_OFFSET; fru_entry < (sizeof(struct common_header) - 2); fru_entry++) { // Create an object and push onto a vector. std::unique_ptr fru_area = std::make_unique( fruid, get_fru_area_type(fru_entry), bmc_fru); // Physically being present bool present = access(fru_file_name, F_OK) == 0; fru_area->set_present(present); fru_area_vec.emplace_back(std::move(fru_area)); } FILE* fru_fp = std::fopen(fru_file_name, "rb"); if (fru_fp == NULL) { log("Unable to open fru file", entry("FILE=%s", fru_file_name), entry("ERRNO=%s", std::strerror(errno))); return cleanupError(fru_fp, fru_area_vec); } // Get the size of the file to see if it meets minimum requirement if (std::fseek(fru_fp, 0, SEEK_END)) { log("Unable to seek fru file", entry("FILE=%s", fru_file_name), entry("ERRNO=%s", std::strerror(errno))); return cleanupError(fru_fp, fru_area_vec); } // Allocate a buffer to hold entire file content data_len = std::ftell(fru_fp); uint8_t fru_data[data_len] = {0}; std::rewind(fru_fp); bytes_read = std::fread(fru_data, data_len, 1, fru_fp); if (bytes_read != 1) { log("Failed reading fru data.", entry("BYTESREAD=%d", bytes_read), entry("ERRNO=%s", std::strerror(errno))); return cleanupError(fru_fp, fru_area_vec); } // We are done reading. std::fclose(fru_fp); fru_fp = NULL; rc = ipmi_validate_common_hdr(fru_data, data_len); if (rc < 0) { return cleanupError(fru_fp, fru_area_vec); } // Now that we validated the common header, populate various fru sections if // we have them here. rc = ipmi_populate_fru_areas(fru_data, data_len, fru_area_vec); if (rc < 0) { log("Populating FRU areas failed", entry("FRU=%d", fruid)); return cleanupError(fru_fp, fru_area_vec); } else { log("Populated FRU areas", entry("FILE=%s", fru_file_name)); } #ifdef __IPMI_DEBUG__ for (auto& iter : fru_area_vec) { std::printf("FRU ID : [%d]\n", (iter)->get_fruid()); std::printf("AREA NAME : [%s]\n", (iter)->get_name()); std::printf("TYPE : [%d]\n", (iter)->get_type()); std::printf("LEN : [%d]\n", (iter)->get_len()); std::printf("BUS NAME : [%s]\n", (iter)->get_bus_name()); std::printf("OBJ PATH : [%s]\n", (iter)->get_obj_path()); std::printf("INTF NAME :[%s]\n", (iter)->get_intf_name()); } #endif // If the vector is populated with everything, then go ahead and update the // inventory. if (!(fru_area_vec.empty())) { #ifdef __IPMI_DEBUG__ std::printf("\n SIZE of vector is : [%d] \n", fru_area_vec.size()); #endif rc = updateInventory(fru_area_vec, bus_type); if (rc < 0) { log("Error updating inventory."); } } // we are done with all that we wanted to do. This will do the job of // calling any destructors too. fru_area_vec.clear(); return rc; }