summaryrefslogtreecommitdiffstats
path: root/package/xbmc/xbmc-0002-mathutil.patch
blob: 33f91eb38aa916f92de11734f7b8db4e8982db9b (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
Taken from upstream PR: https://github.com/xbmc/xbmc/pull/3760

Signed-off-by: Bernd Kuhls <bernd.kuhls@t-online.de>


From 7388e8be7cd5e78100532ebf0dba15dccb7b03f8 Mon Sep 17 00:00:00 2001
From: Ben Avison <bavison@riscosopen.org>
Date: Tue, 3 Dec 2013 15:51:39 +0000
Subject: [PATCH] Faster and simpler portable implementation of
 MathUtils::round_int().

Much as I like a bit of inline assembler, I have also removed the ARM versions
of MathUtils::truncate_int() and MathUtils::round_int(). The former was just
how any sane compiler should have assembled a cast from double to signed int
anyway. The latter was a much too complicated way to achieve the desired
effect, and was switched out in most ARM builds anyway in favour of the old
portable implementation that used floor().

Verified that MathUtils::test() still passes, and that GCC is now able to
inline MathUtils::round_int(), where it didn't previously.

I tested on a Raspberry Pi with the default theme, displaying the front page
with the RSS ticker enabled. This saturates the CPU, so I'm measuring the
improvement using the debug window's FPS figure. This patch improves this from
~50.8 FPS to ~52.6 FPS.
---
 xbmc/utils/MathUtils.h | 129 +++++++++++++++++++++++--------------------------
 1 file changed, 61 insertions(+), 68 deletions(-)

diff --git a/xbmc/utils/MathUtils.h b/xbmc/utils/MathUtils.h
index 96af9f4..0dae77d 100644
--- a/xbmc/utils/MathUtils.h
+++ b/xbmc/utils/MathUtils.h
@@ -34,17 +34,13 @@
 
 #if defined(__ppc__) || \
     defined(__powerpc__) || \
-   (defined(TARGET_DARWIN_IOS) && defined(__llvm__)) || \
-   (defined(TARGET_ANDROID) && defined(__arm__)) || \
-    defined(TARGET_RASPBERRY_PI)
+    defined(__arm__)
   #define DISABLE_MATHUTILS_ASM_ROUND_INT
 #endif
 
 #if defined(__ppc__) || \
     defined(__powerpc__) || \
-   (defined(TARGET_DARWIN) && defined(__llvm__)) || \
-   (defined(TARGET_ANDROID) && defined(__arm__)) || \
-    defined(TARGET_RASPBERRY_PI)
+    defined(__arm__)
   #define DISABLE_MATHUTILS_ASM_TRUNCATE_INT
 #endif
 
@@ -73,60 +69,63 @@
   {
     assert(x > static_cast<double>(INT_MIN / 2) - 1.0);
     assert(x < static_cast<double>(INT_MAX / 2) + 1.0);
-    const float round_to_nearest = 0.5f;
-    int i;
 
 #if defined(DISABLE_MATHUTILS_ASM_ROUND_INT)
-    i = floor(x + round_to_nearest);
-
-#elif defined(__arm__)
-    // From 'ARM-v7-M Architecture Reference Manual' page A7-569:
-    //  "The floating-point to integer operation (vcvt) [normally] uses the Round towards Zero rounding mode"
-    // Because of this...we must use some less-than-straightforward logic to perform this operation without
-    //  changing the rounding mode flags
-
-    /* The assembly below implements the following logic:
-     if (x < 0)
-       inc = -0.5f
-     else
-       inc = 0.5f
-     int_val = trunc(x+inc);
-     err = x - int_val;
-     if (err == 0.5f)
-       int_val++;
-     return int_val;
-    */
+    /* This implementation warrants some further explanation.
+     *
+     * First, a couple of notes on rounding:
+     * 1) C casts from float/double to integer round towards zero.
+     * 2) Float/double additions are rounded according to the normal rules,
+     *    in other words: on some architectures, it's fixed at compile-time,
+     *    and on others it can be set using fesetround()). The following
+     *    analysis assumes round-to-nearest with ties rounding to even. This
+     *    is a fairly sensible choice, and is the default with ARM VFP.
+     *
+     * What this function wants is round-to-nearest with ties rounding to
+     * +infinity. This isn't an IEEE rounding mode, even if we could guarantee
+     * that all architectures supported fesetround(), which they don't. Instead,
+     * this adds an offset of 2147483648.5 (= 0x80000000.8p0), then casts to
+     * an unsigned int (crucially, all possible inputs are now in a range where
+     * round to zero acts the same as round to -infinity) and then subtracts
+     * 0x80000000 in the integer domain. The 0.5 component of the offset
+     * converts what is effectively a round down into a round to nearest, with
+     * ties rounding up, as desired.
+     *
+     * There is a catch, that because there is a double rounding, there is a
+     * small region where the input falls just *below* a tie, where the addition
+     * of the offset causes a round *up* to an exact integer, due to the finite
+     * level of precision available in floating point. You need to be aware of
+     * this when calling this function, although at present it is not believed
+     * that XBMC ever attempts to round numbers in this window.
+     *
+     * It is worth proving the size of the affected window. Recall that double
+     * precision employs a mantissa of 52 bits.
+     * 1) For all inputs -0.5 <= x <= INT_MAX
+     *    Once the offset is applied, the most significant binary digit in the
+     *    floating-point representation is +2^31.
+     *    At this magnitude, the smallest step representable in double precision
+     *    is 2^31 / 2^52 = 0.000000476837158203125
+     *    So the size of the range which is rounded up due to the addition is
+     *    half the size of this step, or 0.0000002384185791015625
+     *
+     * 2) For all inputs INT_MIN/2 < x < -0.5
+     *    Once the offset is applied, the most significant binary digit in the
+     *    floating-point representation is +2^30.
+     *    At this magnitude, the smallest step representable in double precision
+     *    is 2^30 / 2^52 = 0.0000002384185791015625
+     *    So the size of the range which is rounded up due to the addition is
+     *    half the size of this step, or 0.00000011920928955078125
+     *
+     * 3) For all inputs INT_MIN <= x <= INT_MIN/2
+     *    The representation once the offset is applied has equal or greater
+     *    precision than the input, so the addition does not cause rounding.
+     */
+    return ((unsigned int) (x + 0x80000000.8p0)) - 0x80000000;
 
-    __asm__ __volatile__ (
-#if defined(__ARM_PCS_VFP)
-      "fconstd d1,#%G[rnd_val]     \n\t" // Copy round_to_nearest into a working register (d1 = 0.5)
 #else
-      "vmov.F64 d1,%[rnd_val]      \n\t"
-#endif
-      "fcmpezd %P[value]           \n\t" // Check value against zero (value == 0?)
-      "fmstat                      \n\t" // Copy the floating-point status flags into the general-purpose status flags
-      "it mi                       \n\t"
-      "vnegmi.F64 d1, d1           \n\t" // if N-flag is set, negate round_to_nearest (if (value < 0) d1 = -1 * d1)
-      "vadd.F64 d1,%P[value],d1    \n\t" // Add round_to_nearest to value, store result in working register (d1 += value)
-      "vcvt.S32.F64 s3,d1          \n\t" // Truncate(round towards zero) (s3 = (int)d1)
-      "vmov %[result],s3           \n\t" // Store the integer result in a general-purpose register (result = s3)
-      "vcvt.F64.S32 d1,s3          \n\t" // Convert back to floating-point (d1 = (double)s3)
-      "vsub.F64 d1,%P[value],d1    \n\t" // Calculate the error (d1 = value - d1)
-#if defined(__ARM_PCS_VFP)
-      "fconstd d2,#%G[rnd_val]     \n\t" // d2 = 0.5;
-#else
-      "vmov.F64 d2,%[rnd_val]      \n\t"
-#endif
-      "fcmped d1, d2               \n\t" // (d1 == 0.5?)
-      "fmstat                      \n\t" // Copy the floating-point status flags into the general-purpose status flags
-      "it eq                       \n\t"
-      "addeq %[result],#1          \n\t" // (if (d1 == d2) result++;)
-      : [result] "=r"(i)                                  // Outputs
-      : [rnd_val] "Dv" (round_to_nearest), [value] "w"(x) // Inputs
-      : "d1", "d2", "s3"                                  // Clobbers
-    );
-
-#elif defined(__SSE2__)
+    const float round_to_nearest = 0.5f;
+    int i;
+#if defined(__SSE2__)
     const float round_dn_to_nearest = 0.4999999f;
     i = (x > 0) ? _mm_cvttsd_si32(_mm_set_sd(x + round_to_nearest)) : _mm_cvttsd_si32(_mm_set_sd(x - round_dn_to_nearest));
 
@@ -150,8 +149,8 @@
     );
 
 #endif
-
     return i;
+#endif
   }
 
   /*! \brief Truncate to nearest integer.
@@ -165,20 +164,13 @@
   {
     assert(x > static_cast<double>(INT_MIN / 2) - 1.0);
     assert(x < static_cast<double>(INT_MAX / 2) + 1.0);
-    int i;
 
 #if defined(DISABLE_MATHUTILS_ASM_TRUNCATE_INT)
-    return i = (int)x;
-
-#elif defined(__arm__)
-    __asm__ __volatile__ (
-      "vcvt.S32.F64 %[result],%P[value]   \n\t" // Truncate(round towards zero) and store the result
-      : [result] "=w"(i)                        // Outputs
-      : [value] "w"(x)                          // Inputs
-    );
-    return i;
+    return x;
 
-#elif defined(TARGET_WINDOWS)
+#else
+    int i;
+#if defined(TARGET_WINDOWS)
     const float round_towards_m_i = -0.5f;
     __asm
     {
@@ -204,6 +196,7 @@
     if (x < 0)
       i = -i;
     return (i);
+#endif
   }
 
   inline int64_t abs(int64_t a)
-- 
1.9.1

OpenPOWER on IntegriCloud