1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
|
// Copyright © 2014-2016 Peter Samarin
// Copyright © 2017-2018 Raptor Engineering, LLC
// All Rights Reserved
//
// See I2C_SLAVE_LICENSE file for licensing details
module i2c_slave(
input wire scl_in,
output wire scl_out,
output wire scl_direction,
input wire sda_in,
output wire sda_out,
output wire sda_direction,
input wire clk,
input wire rst,
// User interface
output wire read_req,
input wire [7:0] data_to_master,
output wire data_valid,
output wire [7:0] data_from_master,
output wire [7:0] write_cycle_count
);
parameter [6:0] SLAVE_ADDR = 0;
//----------------------------------------------------------
parameter [2:0]
i2c_idle = 0,
i2c_get_address_and_cmd = 1,
i2c_answer_ack_start = 2,
i2c_write = 3,
i2c_read = 4,
i2c_read_ack_start = 5,
i2c_read_ack_got_rising = 6,
i2c_read_stop = 7;
// I2C state management
reg [2:0] state_reg = i2c_idle;
reg cmd_reg = 1'b0;
reg [31:0] bits_processed_reg = 0;
reg continue_reg = 1'b0; // Helpers to figure out next state
reg start_reg = 1'b0;
reg stop_reg = 1'b0;
reg scl_rising_reg = 1'b0;
reg scl_falling_reg = 1'b0; // Address and data received from master
reg [6:0] addr_reg = 0;
reg [7:0] data_reg = 0; // Delayed SCL (by 1 clock cycle, and by 2 clock cycles)
reg [7:0] wr_cyc_count_reg = 8'b00000000;
reg scl_reg = 1'b1;
reg scl_prev_reg = 1'b1; // Slave writes on scl
wire scl_wen_reg = 1'b0;
wire scl_o_reg = 1'b0; // Delayed SDA (1 clock cycle, and 2 clock cycles)
reg sda_reg = 1'b1;
reg sda_prev_reg = 1'b1; // Slave writes on sda
reg sda_wen_reg = 1'b0;
reg sda_o_reg = 1'b0; // User interface
reg data_valid_reg = 1'b0;
reg read_req_reg = 1'b0;
reg [7:0] data_to_master_reg = 0;
always @(posedge clk) begin
// Delay SCL by 1 and 2 clock cycles
scl_reg <= scl_in;
scl_prev_reg <= scl_reg;
// Delay SDA by 1 and 2 clock cycles
sda_reg <= sda_in;
sda_prev_reg <= sda_reg;
// Detect rising and falling SCL
scl_rising_reg <= 1'b0;
if (scl_prev_reg == 1'b0 && scl_reg == 1'b1) begin
scl_rising_reg <= 1'b1;
end
scl_falling_reg <= 1'b0;
if (scl_prev_reg == 1'b1 && scl_reg == 1'b0) begin
scl_falling_reg <= 1'b1;
end
// Detect I2C START condition
start_reg <= 1'b0;
stop_reg <= 1'b0;
if (scl_reg == 1'b1 && scl_prev_reg == 1'b1 && sda_prev_reg == 1'b1 && sda_reg == 1'b0) begin
start_reg <= 1'b1;
stop_reg <= 1'b0;
end
// Detect I2C STOP condition
if (scl_prev_reg == 1'b1 && scl_reg == 1'b1 && sda_prev_reg == 1'b0 && sda_reg == 1'b1) begin
start_reg <= 1'b0;
stop_reg <= 1'b1;
end
end
//--------------------------------------------------------
// I2C state machine
//--------------------------------------------------------
always @(posedge clk) begin
// Default assignments
sda_o_reg <= 1'b0;
sda_wen_reg <= 1'b0;
// User interface
data_valid_reg <= 1'b0;
read_req_reg <= 1'b0;
case(state_reg)
i2c_idle : begin
if (start_reg == 1'b1) begin
state_reg <= i2c_get_address_and_cmd;
bits_processed_reg <= 0;
wr_cyc_count_reg <= 0;
end
end
i2c_get_address_and_cmd : begin
if (scl_rising_reg == 1'b1) begin
if (bits_processed_reg < 7) begin
bits_processed_reg <= bits_processed_reg + 1;
addr_reg[6 - bits_processed_reg] <= sda_reg;
end
else if (bits_processed_reg == 7) begin
bits_processed_reg <= bits_processed_reg + 1;
cmd_reg <= sda_reg;
end
end
if (bits_processed_reg == 8 && scl_falling_reg == 1'b1) begin
bits_processed_reg <= 0;
if (addr_reg == SLAVE_ADDR) begin
// check req address
state_reg <= i2c_answer_ack_start;
if (cmd_reg == 1'b1) begin
// issue read request
read_req_reg <= 1'b1;
data_to_master_reg <= data_to_master;
end
end else begin
state_reg <= i2c_idle;
end
end
end
i2c_answer_ack_start : begin
//--------------------------------------------------
// I2C acknowledge to master
//--------------------------------------------------
sda_wen_reg <= 1'b1;
sda_o_reg <= 1'b0;
if (scl_falling_reg == 1'b1) begin
if (cmd_reg == 1'b0) begin
state_reg <= i2c_write;
end else begin
state_reg <= i2c_read;
end
end
end
i2c_write : begin
//--------------------------------------------------
// WRITE
//--------------------------------------------------
if (scl_rising_reg == 1'b1) begin
if (bits_processed_reg <= 7) begin
data_reg[7 - bits_processed_reg] <= sda_reg;
bits_processed_reg <= bits_processed_reg + 1;
end
if (bits_processed_reg == 7) begin
data_valid_reg <= 1'b1;
wr_cyc_count_reg <= wr_cyc_count_reg + 1;
end
end
if (scl_falling_reg == 1'b1 && bits_processed_reg == 8) begin
state_reg <= i2c_answer_ack_start;
bits_processed_reg <= 0;
end
end
i2c_read : begin
//--------------------------------------------------
// READ: send data to master
//--------------------------------------------------
sda_wen_reg <= 1'b1;
sda_o_reg <= data_to_master_reg[7 - bits_processed_reg];
if (scl_falling_reg == 1'b1) begin
if (bits_processed_reg < 7) begin
bits_processed_reg <= bits_processed_reg + 1;
end
else if (bits_processed_reg == 7) begin
state_reg <= i2c_read_ack_start;
bits_processed_reg <= 0;
end
end
end
i2c_read_ack_start : begin
//--------------------------------------------------
// I2C read master acknowledge
//--------------------------------------------------
if (scl_rising_reg == 1'b1) begin
state_reg <= i2c_read_ack_got_rising;
if (sda_reg == 1'b1) begin
// nack = stop read
continue_reg <= 1'b0;
end else begin
// ack = continue read
continue_reg <= 1'b1;
read_req_reg <= 1'b1;
// request reg byte
data_to_master_reg <= data_to_master;
end
end
end
i2c_read_ack_got_rising : begin
// Wait for START or STOP to get out of this state
if (scl_falling_reg == 1'b1) begin
if (continue_reg == 1'b1) begin
if (cmd_reg == 1'b0) begin
state_reg <= i2c_write;
end else begin
state_reg <= i2c_read;
end
end else begin
state_reg <= i2c_read_stop;
end
end
end
i2c_read_stop : begin
// Wait for START or STOP to get out of this state
end
default : begin
end
endcase
//------------------------------------------------------
// Reset counter and state on start/stop
//------------------------------------------------------
if (start_reg == 1'b1) begin
state_reg <= i2c_get_address_and_cmd;
bits_processed_reg <= 0;
wr_cyc_count_reg <= 0;
end
if (stop_reg == 1'b1) begin
state_reg <= i2c_idle;
bits_processed_reg <= 0;
wr_cyc_count_reg <= 0;
end
if (rst == 1'b1) begin
state_reg <= i2c_idle;
end
end
//--------------------------------------------------------
// I2C interface
//--------------------------------------------------------
assign sda_out = (sda_o_reg & sda_wen_reg);
assign sda_direction = sda_wen_reg;
assign scl_out = (scl_o_reg & scl_wen_reg);
assign scl_direction = scl_wen_reg;
//--------------------------------------------------------
// User interface
//--------------------------------------------------------
// Master writes
assign data_valid = data_valid_reg;
assign data_from_master = data_reg;
assign write_cycle_count = wr_cyc_count_reg;
// Master reads
assign read_req = read_req_reg;
endmodule
|