summaryrefslogtreecommitdiffstats
path: root/include/linux/memcontrol.h
blob: 0108a56f814ed7559b2f1fcee41a903890ed919d (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
/* memcontrol.h - Memory Controller
 *
 * Copyright IBM Corporation, 2007
 * Author Balbir Singh <balbir@linux.vnet.ibm.com>
 *
 * Copyright 2007 OpenVZ SWsoft Inc
 * Author: Pavel Emelianov <xemul@openvz.org>
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; either version 2 of the License, or
 * (at your option) any later version.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 */

#ifndef _LINUX_MEMCONTROL_H
#define _LINUX_MEMCONTROL_H
#include <linux/cgroup.h>
#include <linux/vm_event_item.h>
#include <linux/hardirq.h>
#include <linux/jump_label.h>

struct mem_cgroup;
struct page_cgroup;
struct page;
struct mm_struct;
struct kmem_cache;

/* Stats that can be updated by kernel. */
enum mem_cgroup_page_stat_item {
	MEMCG_NR_FILE_MAPPED, /* # of pages charged as file rss */
};

struct mem_cgroup_reclaim_cookie {
	struct zone *zone;
	int priority;
	unsigned int generation;
};

#ifdef CONFIG_MEMCG
/*
 * All "charge" functions with gfp_mask should use GFP_KERNEL or
 * (gfp_mask & GFP_RECLAIM_MASK). In current implementatin, memcg doesn't
 * alloc memory but reclaims memory from all available zones. So, "where I want
 * memory from" bits of gfp_mask has no meaning. So any bits of that field is
 * available but adding a rule is better. charge functions' gfp_mask should
 * be set to GFP_KERNEL or gfp_mask & GFP_RECLAIM_MASK for avoiding ambiguous
 * codes.
 * (Of course, if memcg does memory allocation in future, GFP_KERNEL is sane.)
 */

extern int mem_cgroup_newpage_charge(struct page *page, struct mm_struct *mm,
				gfp_t gfp_mask);
/* for swap handling */
extern int mem_cgroup_try_charge_swapin(struct mm_struct *mm,
		struct page *page, gfp_t mask, struct mem_cgroup **memcgp);
extern void mem_cgroup_commit_charge_swapin(struct page *page,
					struct mem_cgroup *memcg);
extern void mem_cgroup_cancel_charge_swapin(struct mem_cgroup *memcg);

extern int mem_cgroup_cache_charge(struct page *page, struct mm_struct *mm,
					gfp_t gfp_mask);

struct lruvec *mem_cgroup_zone_lruvec(struct zone *, struct mem_cgroup *);
struct lruvec *mem_cgroup_page_lruvec(struct page *, struct zone *);

/* For coalescing uncharge for reducing memcg' overhead*/
extern void mem_cgroup_uncharge_start(void);
extern void mem_cgroup_uncharge_end(void);

extern void mem_cgroup_uncharge_page(struct page *page);
extern void mem_cgroup_uncharge_cache_page(struct page *page);

bool __mem_cgroup_same_or_subtree(const struct mem_cgroup *root_memcg,
				  struct mem_cgroup *memcg);
int task_in_mem_cgroup(struct task_struct *task, const struct mem_cgroup *memcg);

extern struct mem_cgroup *try_get_mem_cgroup_from_page(struct page *page);
extern struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p);
extern struct mem_cgroup *try_get_mem_cgroup_from_mm(struct mm_struct *mm);

extern struct mem_cgroup *parent_mem_cgroup(struct mem_cgroup *memcg);
extern struct mem_cgroup *mem_cgroup_from_cont(struct cgroup *cont);

static inline
bool mm_match_cgroup(const struct mm_struct *mm, const struct mem_cgroup *memcg)
{
	struct mem_cgroup *task_memcg;
	bool match;

	rcu_read_lock();
	task_memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
	match = __mem_cgroup_same_or_subtree(memcg, task_memcg);
	rcu_read_unlock();
	return match;
}

extern struct cgroup_subsys_state *mem_cgroup_css(struct mem_cgroup *memcg);

extern void
mem_cgroup_prepare_migration(struct page *page, struct page *newpage,
			     struct mem_cgroup **memcgp);
extern void mem_cgroup_end_migration(struct mem_cgroup *memcg,
	struct page *oldpage, struct page *newpage, bool migration_ok);

struct mem_cgroup *mem_cgroup_iter(struct mem_cgroup *,
				   struct mem_cgroup *,
				   struct mem_cgroup_reclaim_cookie *);
void mem_cgroup_iter_break(struct mem_cgroup *, struct mem_cgroup *);

/*
 * For memory reclaim.
 */
int mem_cgroup_inactive_anon_is_low(struct lruvec *lruvec);
int mem_cgroup_inactive_file_is_low(struct lruvec *lruvec);
int mem_cgroup_select_victim_node(struct mem_cgroup *memcg);
unsigned long mem_cgroup_get_lru_size(struct lruvec *lruvec, enum lru_list);
void mem_cgroup_update_lru_size(struct lruvec *, enum lru_list, int);
extern void mem_cgroup_print_oom_info(struct mem_cgroup *memcg,
					struct task_struct *p);
extern void mem_cgroup_replace_page_cache(struct page *oldpage,
					struct page *newpage);

#ifdef CONFIG_MEMCG_SWAP
extern int do_swap_account;
#endif

static inline bool mem_cgroup_disabled(void)
{
	if (mem_cgroup_subsys.disabled)
		return true;
	return false;
}

void __mem_cgroup_begin_update_page_stat(struct page *page, bool *locked,
					 unsigned long *flags);

extern atomic_t memcg_moving;

static inline void mem_cgroup_begin_update_page_stat(struct page *page,
					bool *locked, unsigned long *flags)
{
	if (mem_cgroup_disabled())
		return;
	rcu_read_lock();
	*locked = false;
	if (atomic_read(&memcg_moving))
		__mem_cgroup_begin_update_page_stat(page, locked, flags);
}

void __mem_cgroup_end_update_page_stat(struct page *page,
				unsigned long *flags);
static inline void mem_cgroup_end_update_page_stat(struct page *page,
					bool *locked, unsigned long *flags)
{
	if (mem_cgroup_disabled())
		return;
	if (*locked)
		__mem_cgroup_end_update_page_stat(page, flags);
	rcu_read_unlock();
}

void mem_cgroup_update_page_stat(struct page *page,
				 enum mem_cgroup_page_stat_item idx,
				 int val);

static inline void mem_cgroup_inc_page_stat(struct page *page,
					    enum mem_cgroup_page_stat_item idx)
{
	mem_cgroup_update_page_stat(page, idx, 1);
}

static inline void mem_cgroup_dec_page_stat(struct page *page,
					    enum mem_cgroup_page_stat_item idx)
{
	mem_cgroup_update_page_stat(page, idx, -1);
}

unsigned long mem_cgroup_soft_limit_reclaim(struct zone *zone, int order,
						gfp_t gfp_mask,
						unsigned long *total_scanned);

void __mem_cgroup_count_vm_event(struct mm_struct *mm, enum vm_event_item idx);
static inline void mem_cgroup_count_vm_event(struct mm_struct *mm,
					     enum vm_event_item idx)
{
	if (mem_cgroup_disabled())
		return;
	__mem_cgroup_count_vm_event(mm, idx);
}
#ifdef CONFIG_TRANSPARENT_HUGEPAGE
void mem_cgroup_split_huge_fixup(struct page *head);
#endif

#ifdef CONFIG_DEBUG_VM
bool mem_cgroup_bad_page_check(struct page *page);
void mem_cgroup_print_bad_page(struct page *page);
#endif
#else /* CONFIG_MEMCG */
struct mem_cgroup;

static inline int mem_cgroup_newpage_charge(struct page *page,
					struct mm_struct *mm, gfp_t gfp_mask)
{
	return 0;
}

static inline int mem_cgroup_cache_charge(struct page *page,
					struct mm_struct *mm, gfp_t gfp_mask)
{
	return 0;
}

static inline int mem_cgroup_try_charge_swapin(struct mm_struct *mm,
		struct page *page, gfp_t gfp_mask, struct mem_cgroup **memcgp)
{
	return 0;
}

static inline void mem_cgroup_commit_charge_swapin(struct page *page,
					  struct mem_cgroup *memcg)
{
}

static inline void mem_cgroup_cancel_charge_swapin(struct mem_cgroup *memcg)
{
}

static inline void mem_cgroup_uncharge_start(void)
{
}

static inline void mem_cgroup_uncharge_end(void)
{
}

static inline void mem_cgroup_uncharge_page(struct page *page)
{
}

static inline void mem_cgroup_uncharge_cache_page(struct page *page)
{
}

static inline struct lruvec *mem_cgroup_zone_lruvec(struct zone *zone,
						    struct mem_cgroup *memcg)
{
	return &zone->lruvec;
}

static inline struct lruvec *mem_cgroup_page_lruvec(struct page *page,
						    struct zone *zone)
{
	return &zone->lruvec;
}

static inline struct mem_cgroup *try_get_mem_cgroup_from_page(struct page *page)
{
	return NULL;
}

static inline struct mem_cgroup *try_get_mem_cgroup_from_mm(struct mm_struct *mm)
{
	return NULL;
}

static inline bool mm_match_cgroup(struct mm_struct *mm,
		struct mem_cgroup *memcg)
{
	return true;
}

static inline int task_in_mem_cgroup(struct task_struct *task,
				     const struct mem_cgroup *memcg)
{
	return 1;
}

static inline struct cgroup_subsys_state
		*mem_cgroup_css(struct mem_cgroup *memcg)
{
	return NULL;
}

static inline void
mem_cgroup_prepare_migration(struct page *page, struct page *newpage,
			     struct mem_cgroup **memcgp)
{
}

static inline void mem_cgroup_end_migration(struct mem_cgroup *memcg,
		struct page *oldpage, struct page *newpage, bool migration_ok)
{
}

static inline struct mem_cgroup *
mem_cgroup_iter(struct mem_cgroup *root,
		struct mem_cgroup *prev,
		struct mem_cgroup_reclaim_cookie *reclaim)
{
	return NULL;
}

static inline void mem_cgroup_iter_break(struct mem_cgroup *root,
					 struct mem_cgroup *prev)
{
}

static inline bool mem_cgroup_disabled(void)
{
	return true;
}

static inline int
mem_cgroup_inactive_anon_is_low(struct lruvec *lruvec)
{
	return 1;
}

static inline int
mem_cgroup_inactive_file_is_low(struct lruvec *lruvec)
{
	return 1;
}

static inline unsigned long
mem_cgroup_get_lru_size(struct lruvec *lruvec, enum lru_list lru)
{
	return 0;
}

static inline void
mem_cgroup_update_lru_size(struct lruvec *lruvec, enum lru_list lru,
			      int increment)
{
}

static inline void
mem_cgroup_print_oom_info(struct mem_cgroup *memcg, struct task_struct *p)
{
}

static inline void mem_cgroup_begin_update_page_stat(struct page *page,
					bool *locked, unsigned long *flags)
{
}

static inline void mem_cgroup_end_update_page_stat(struct page *page,
					bool *locked, unsigned long *flags)
{
}

static inline void mem_cgroup_inc_page_stat(struct page *page,
					    enum mem_cgroup_page_stat_item idx)
{
}

static inline void mem_cgroup_dec_page_stat(struct page *page,
					    enum mem_cgroup_page_stat_item idx)
{
}

static inline
unsigned long mem_cgroup_soft_limit_reclaim(struct zone *zone, int order,
					    gfp_t gfp_mask,
					    unsigned long *total_scanned)
{
	return 0;
}

static inline void mem_cgroup_split_huge_fixup(struct page *head)
{
}

static inline
void mem_cgroup_count_vm_event(struct mm_struct *mm, enum vm_event_item idx)
{
}
static inline void mem_cgroup_replace_page_cache(struct page *oldpage,
				struct page *newpage)
{
}
#endif /* CONFIG_MEMCG */

#if !defined(CONFIG_MEMCG) || !defined(CONFIG_DEBUG_VM)
static inline bool
mem_cgroup_bad_page_check(struct page *page)
{
	return false;
}

static inline void
mem_cgroup_print_bad_page(struct page *page)
{
}
#endif

enum {
	UNDER_LIMIT,
	SOFT_LIMIT,
	OVER_LIMIT,
};

struct sock;
#if defined(CONFIG_INET) && defined(CONFIG_MEMCG_KMEM)
void sock_update_memcg(struct sock *sk);
void sock_release_memcg(struct sock *sk);
#else
static inline void sock_update_memcg(struct sock *sk)
{
}
static inline void sock_release_memcg(struct sock *sk)
{
}
#endif /* CONFIG_INET && CONFIG_MEMCG_KMEM */

#ifdef CONFIG_MEMCG_KMEM
extern struct static_key memcg_kmem_enabled_key;

extern int memcg_limited_groups_array_size;

/*
 * Helper macro to loop through all memcg-specific caches. Callers must still
 * check if the cache is valid (it is either valid or NULL).
 * the slab_mutex must be held when looping through those caches
 */
#define for_each_memcg_cache_index(_idx)	\
	for ((_idx) = 0; i < memcg_limited_groups_array_size; (_idx)++)

static inline bool memcg_kmem_enabled(void)
{
	return static_key_false(&memcg_kmem_enabled_key);
}

/*
 * In general, we'll do everything in our power to not incur in any overhead
 * for non-memcg users for the kmem functions. Not even a function call, if we
 * can avoid it.
 *
 * Therefore, we'll inline all those functions so that in the best case, we'll
 * see that kmemcg is off for everybody and proceed quickly.  If it is on,
 * we'll still do most of the flag checking inline. We check a lot of
 * conditions, but because they are pretty simple, they are expected to be
 * fast.
 */
bool __memcg_kmem_newpage_charge(gfp_t gfp, struct mem_cgroup **memcg,
					int order);
void __memcg_kmem_commit_charge(struct page *page,
				       struct mem_cgroup *memcg, int order);
void __memcg_kmem_uncharge_pages(struct page *page, int order);

int memcg_cache_id(struct mem_cgroup *memcg);
int memcg_register_cache(struct mem_cgroup *memcg, struct kmem_cache *s,
			 struct kmem_cache *root_cache);
void memcg_release_cache(struct kmem_cache *cachep);
void memcg_cache_list_add(struct mem_cgroup *memcg, struct kmem_cache *cachep);

int memcg_update_cache_size(struct kmem_cache *s, int num_groups);
void memcg_update_array_size(int num_groups);

struct kmem_cache *
__memcg_kmem_get_cache(struct kmem_cache *cachep, gfp_t gfp);

void mem_cgroup_destroy_cache(struct kmem_cache *cachep);
void kmem_cache_destroy_memcg_children(struct kmem_cache *s);

/**
 * memcg_kmem_newpage_charge: verify if a new kmem allocation is allowed.
 * @gfp: the gfp allocation flags.
 * @memcg: a pointer to the memcg this was charged against.
 * @order: allocation order.
 *
 * returns true if the memcg where the current task belongs can hold this
 * allocation.
 *
 * We return true automatically if this allocation is not to be accounted to
 * any memcg.
 */
static inline bool
memcg_kmem_newpage_charge(gfp_t gfp, struct mem_cgroup **memcg, int order)
{
	if (!memcg_kmem_enabled())
		return true;

	/*
	 * __GFP_NOFAIL allocations will move on even if charging is not
	 * possible. Therefore we don't even try, and have this allocation
	 * unaccounted. We could in theory charge it with
	 * res_counter_charge_nofail, but we hope those allocations are rare,
	 * and won't be worth the trouble.
	 */
	if (!(gfp & __GFP_KMEMCG) || (gfp & __GFP_NOFAIL))
		return true;
	if (in_interrupt() || (!current->mm) || (current->flags & PF_KTHREAD))
		return true;

	/* If the test is dying, just let it go. */
	if (unlikely(fatal_signal_pending(current)))
		return true;

	return __memcg_kmem_newpage_charge(gfp, memcg, order);
}

/**
 * memcg_kmem_uncharge_pages: uncharge pages from memcg
 * @page: pointer to struct page being freed
 * @order: allocation order.
 *
 * there is no need to specify memcg here, since it is embedded in page_cgroup
 */
static inline void
memcg_kmem_uncharge_pages(struct page *page, int order)
{
	if (memcg_kmem_enabled())
		__memcg_kmem_uncharge_pages(page, order);
}

/**
 * memcg_kmem_commit_charge: embeds correct memcg in a page
 * @page: pointer to struct page recently allocated
 * @memcg: the memcg structure we charged against
 * @order: allocation order.
 *
 * Needs to be called after memcg_kmem_newpage_charge, regardless of success or
 * failure of the allocation. if @page is NULL, this function will revert the
 * charges. Otherwise, it will commit the memcg given by @memcg to the
 * corresponding page_cgroup.
 */
static inline void
memcg_kmem_commit_charge(struct page *page, struct mem_cgroup *memcg, int order)
{
	if (memcg_kmem_enabled() && memcg)
		__memcg_kmem_commit_charge(page, memcg, order);
}

/**
 * memcg_kmem_get_cache: selects the correct per-memcg cache for allocation
 * @cachep: the original global kmem cache
 * @gfp: allocation flags.
 *
 * This function assumes that the task allocating, which determines the memcg
 * in the page allocator, belongs to the same cgroup throughout the whole
 * process.  Misacounting can happen if the task calls memcg_kmem_get_cache()
 * while belonging to a cgroup, and later on changes. This is considered
 * acceptable, and should only happen upon task migration.
 *
 * Before the cache is created by the memcg core, there is also a possible
 * imbalance: the task belongs to a memcg, but the cache being allocated from
 * is the global cache, since the child cache is not yet guaranteed to be
 * ready. This case is also fine, since in this case the GFP_KMEMCG will not be
 * passed and the page allocator will not attempt any cgroup accounting.
 */
static __always_inline struct kmem_cache *
memcg_kmem_get_cache(struct kmem_cache *cachep, gfp_t gfp)
{
	if (!memcg_kmem_enabled())
		return cachep;
	if (gfp & __GFP_NOFAIL)
		return cachep;
	if (in_interrupt() || (!current->mm) || (current->flags & PF_KTHREAD))
		return cachep;
	if (unlikely(fatal_signal_pending(current)))
		return cachep;

	return __memcg_kmem_get_cache(cachep, gfp);
}
#else
#define for_each_memcg_cache_index(_idx)	\
	for (; NULL; )

static inline bool memcg_kmem_enabled(void)
{
	return false;
}

static inline bool
memcg_kmem_newpage_charge(gfp_t gfp, struct mem_cgroup **memcg, int order)
{
	return true;
}

static inline void memcg_kmem_uncharge_pages(struct page *page, int order)
{
}

static inline void
memcg_kmem_commit_charge(struct page *page, struct mem_cgroup *memcg, int order)
{
}

static inline int memcg_cache_id(struct mem_cgroup *memcg)
{
	return -1;
}

static inline int
memcg_register_cache(struct mem_cgroup *memcg, struct kmem_cache *s,
		     struct kmem_cache *root_cache)
{
	return 0;
}

static inline void memcg_release_cache(struct kmem_cache *cachep)
{
}

static inline void memcg_cache_list_add(struct mem_cgroup *memcg,
					struct kmem_cache *s)
{
}

static inline struct kmem_cache *
memcg_kmem_get_cache(struct kmem_cache *cachep, gfp_t gfp)
{
	return cachep;
}

static inline void kmem_cache_destroy_memcg_children(struct kmem_cache *s)
{
}
#endif /* CONFIG_MEMCG_KMEM */
#endif /* _LINUX_MEMCONTROL_H */

OpenPOWER on IntegriCloud