summaryrefslogtreecommitdiffstats
path: root/include/asm-i386/pgtable.h
blob: 77c6497f416ed07905ea6d9ae847c9b907cdabfd (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
#ifndef _I386_PGTABLE_H
#define _I386_PGTABLE_H

#include <linux/config.h>

/*
 * The Linux memory management assumes a three-level page table setup. On
 * the i386, we use that, but "fold" the mid level into the top-level page
 * table, so that we physically have the same two-level page table as the
 * i386 mmu expects.
 *
 * This file contains the functions and defines necessary to modify and use
 * the i386 page table tree.
 */
#ifndef __ASSEMBLY__
#include <asm/processor.h>
#include <asm/fixmap.h>
#include <linux/threads.h>

#ifndef _I386_BITOPS_H
#include <asm/bitops.h>
#endif

#include <linux/slab.h>
#include <linux/list.h>
#include <linux/spinlock.h>

/*
 * ZERO_PAGE is a global shared page that is always zero: used
 * for zero-mapped memory areas etc..
 */
#define ZERO_PAGE(vaddr) (virt_to_page(empty_zero_page))
extern unsigned long empty_zero_page[1024];
extern pgd_t swapper_pg_dir[1024];
extern kmem_cache_t *pgd_cache;
extern kmem_cache_t *pmd_cache;
extern spinlock_t pgd_lock;
extern struct page *pgd_list;

void pmd_ctor(void *, kmem_cache_t *, unsigned long);
void pgd_ctor(void *, kmem_cache_t *, unsigned long);
void pgd_dtor(void *, kmem_cache_t *, unsigned long);
void pgtable_cache_init(void);
void paging_init(void);

/*
 * The Linux x86 paging architecture is 'compile-time dual-mode', it
 * implements both the traditional 2-level x86 page tables and the
 * newer 3-level PAE-mode page tables.
 */
#ifdef CONFIG_X86_PAE
# include <asm/pgtable-3level-defs.h>
# define PMD_SIZE	(1UL << PMD_SHIFT)
# define PMD_MASK	(~(PMD_SIZE-1))
#else
# include <asm/pgtable-2level-defs.h>
#endif

#define PGDIR_SIZE	(1UL << PGDIR_SHIFT)
#define PGDIR_MASK	(~(PGDIR_SIZE-1))

#define USER_PTRS_PER_PGD	(TASK_SIZE/PGDIR_SIZE)
#define FIRST_USER_ADDRESS	0

#define USER_PGD_PTRS (PAGE_OFFSET >> PGDIR_SHIFT)
#define KERNEL_PGD_PTRS (PTRS_PER_PGD-USER_PGD_PTRS)

#define TWOLEVEL_PGDIR_SHIFT	22
#define BOOT_USER_PGD_PTRS (__PAGE_OFFSET >> TWOLEVEL_PGDIR_SHIFT)
#define BOOT_KERNEL_PGD_PTRS (1024-BOOT_USER_PGD_PTRS)

/* Just any arbitrary offset to the start of the vmalloc VM area: the
 * current 8MB value just means that there will be a 8MB "hole" after the
 * physical memory until the kernel virtual memory starts.  That means that
 * any out-of-bounds memory accesses will hopefully be caught.
 * The vmalloc() routines leaves a hole of 4kB between each vmalloced
 * area for the same reason. ;)
 */
#define VMALLOC_OFFSET	(8*1024*1024)
#define VMALLOC_START	(((unsigned long) high_memory + vmalloc_earlyreserve + \
			2*VMALLOC_OFFSET-1) & ~(VMALLOC_OFFSET-1))
#ifdef CONFIG_HIGHMEM
# define VMALLOC_END	(PKMAP_BASE-2*PAGE_SIZE)
#else
# define VMALLOC_END	(FIXADDR_START-2*PAGE_SIZE)
#endif

/*
 * The 4MB page is guessing..  Detailed in the infamous "Chapter H"
 * of the Pentium details, but assuming intel did the straightforward
 * thing, this bit set in the page directory entry just means that
 * the page directory entry points directly to a 4MB-aligned block of
 * memory. 
 */
#define _PAGE_BIT_PRESENT	0
#define _PAGE_BIT_RW		1
#define _PAGE_BIT_USER		2
#define _PAGE_BIT_PWT		3
#define _PAGE_BIT_PCD		4
#define _PAGE_BIT_ACCESSED	5
#define _PAGE_BIT_DIRTY		6
#define _PAGE_BIT_PSE		7	/* 4 MB (or 2MB) page, Pentium+, if present.. */
#define _PAGE_BIT_GLOBAL	8	/* Global TLB entry PPro+ */
#define _PAGE_BIT_UNUSED1	9	/* available for programmer */
#define _PAGE_BIT_UNUSED2	10
#define _PAGE_BIT_UNUSED3	11
#define _PAGE_BIT_NX		63

#define _PAGE_PRESENT	0x001
#define _PAGE_RW	0x002
#define _PAGE_USER	0x004
#define _PAGE_PWT	0x008
#define _PAGE_PCD	0x010
#define _PAGE_ACCESSED	0x020
#define _PAGE_DIRTY	0x040
#define _PAGE_PSE	0x080	/* 4 MB (or 2MB) page, Pentium+, if present.. */
#define _PAGE_GLOBAL	0x100	/* Global TLB entry PPro+ */
#define _PAGE_UNUSED1	0x200	/* available for programmer */
#define _PAGE_UNUSED2	0x400
#define _PAGE_UNUSED3	0x800

#define _PAGE_FILE	0x040	/* set:pagecache unset:swap */
#define _PAGE_PROTNONE	0x080	/* If not present */
#ifdef CONFIG_X86_PAE
#define _PAGE_NX	(1ULL<<_PAGE_BIT_NX)
#else
#define _PAGE_NX	0
#endif

#define _PAGE_TABLE	(_PAGE_PRESENT | _PAGE_RW | _PAGE_USER | _PAGE_ACCESSED | _PAGE_DIRTY)
#define _KERNPG_TABLE	(_PAGE_PRESENT | _PAGE_RW | _PAGE_ACCESSED | _PAGE_DIRTY)
#define _PAGE_CHG_MASK	(PTE_MASK | _PAGE_ACCESSED | _PAGE_DIRTY)

#define PAGE_NONE \
	__pgprot(_PAGE_PROTNONE | _PAGE_ACCESSED)
#define PAGE_SHARED \
	__pgprot(_PAGE_PRESENT | _PAGE_RW | _PAGE_USER | _PAGE_ACCESSED)

#define PAGE_SHARED_EXEC \
	__pgprot(_PAGE_PRESENT | _PAGE_RW | _PAGE_USER | _PAGE_ACCESSED)
#define PAGE_COPY_NOEXEC \
	__pgprot(_PAGE_PRESENT | _PAGE_USER | _PAGE_ACCESSED | _PAGE_NX)
#define PAGE_COPY_EXEC \
	__pgprot(_PAGE_PRESENT | _PAGE_USER | _PAGE_ACCESSED)
#define PAGE_COPY \
	PAGE_COPY_NOEXEC
#define PAGE_READONLY \
	__pgprot(_PAGE_PRESENT | _PAGE_USER | _PAGE_ACCESSED | _PAGE_NX)
#define PAGE_READONLY_EXEC \
	__pgprot(_PAGE_PRESENT | _PAGE_USER | _PAGE_ACCESSED)

#define _PAGE_KERNEL \
	(_PAGE_PRESENT | _PAGE_RW | _PAGE_DIRTY | _PAGE_ACCESSED | _PAGE_NX)
#define _PAGE_KERNEL_EXEC \
	(_PAGE_PRESENT | _PAGE_RW | _PAGE_DIRTY | _PAGE_ACCESSED)

extern unsigned long long __PAGE_KERNEL, __PAGE_KERNEL_EXEC;
#define __PAGE_KERNEL_RO		(__PAGE_KERNEL & ~_PAGE_RW)
#define __PAGE_KERNEL_NOCACHE		(__PAGE_KERNEL | _PAGE_PCD)
#define __PAGE_KERNEL_LARGE		(__PAGE_KERNEL | _PAGE_PSE)
#define __PAGE_KERNEL_LARGE_EXEC	(__PAGE_KERNEL_EXEC | _PAGE_PSE)

#define PAGE_KERNEL		__pgprot(__PAGE_KERNEL)
#define PAGE_KERNEL_RO		__pgprot(__PAGE_KERNEL_RO)
#define PAGE_KERNEL_EXEC	__pgprot(__PAGE_KERNEL_EXEC)
#define PAGE_KERNEL_NOCACHE	__pgprot(__PAGE_KERNEL_NOCACHE)
#define PAGE_KERNEL_LARGE	__pgprot(__PAGE_KERNEL_LARGE)
#define PAGE_KERNEL_LARGE_EXEC	__pgprot(__PAGE_KERNEL_LARGE_EXEC)

/*
 * The i386 can't do page protection for execute, and considers that
 * the same are read. Also, write permissions imply read permissions.
 * This is the closest we can get..
 */
#define __P000	PAGE_NONE
#define __P001	PAGE_READONLY
#define __P010	PAGE_COPY
#define __P011	PAGE_COPY
#define __P100	PAGE_READONLY_EXEC
#define __P101	PAGE_READONLY_EXEC
#define __P110	PAGE_COPY_EXEC
#define __P111	PAGE_COPY_EXEC

#define __S000	PAGE_NONE
#define __S001	PAGE_READONLY
#define __S010	PAGE_SHARED
#define __S011	PAGE_SHARED
#define __S100	PAGE_READONLY_EXEC
#define __S101	PAGE_READONLY_EXEC
#define __S110	PAGE_SHARED_EXEC
#define __S111	PAGE_SHARED_EXEC

/*
 * Define this if things work differently on an i386 and an i486:
 * it will (on an i486) warn about kernel memory accesses that are
 * done without a 'access_ok(VERIFY_WRITE,..)'
 */
#undef TEST_ACCESS_OK

/* The boot page tables (all created as a single array) */
extern unsigned long pg0[];

#define pte_present(x)	((x).pte_low & (_PAGE_PRESENT | _PAGE_PROTNONE))
#define pte_clear(mm,addr,xp)	do { set_pte_at(mm, addr, xp, __pte(0)); } while (0)

#define pmd_none(x)	(!pmd_val(x))
#define pmd_present(x)	(pmd_val(x) & _PAGE_PRESENT)
#define pmd_clear(xp)	do { set_pmd(xp, __pmd(0)); } while (0)
#define	pmd_bad(x)	((pmd_val(x) & (~PAGE_MASK & ~_PAGE_USER)) != _KERNPG_TABLE)


#define pages_to_mb(x) ((x) >> (20-PAGE_SHIFT))

/*
 * The following only work if pte_present() is true.
 * Undefined behaviour if not..
 */
static inline int pte_user(pte_t pte)		{ return (pte).pte_low & _PAGE_USER; }
static inline int pte_read(pte_t pte)		{ return (pte).pte_low & _PAGE_USER; }
static inline int pte_dirty(pte_t pte)		{ return (pte).pte_low & _PAGE_DIRTY; }
static inline int pte_young(pte_t pte)		{ return (pte).pte_low & _PAGE_ACCESSED; }
static inline int pte_write(pte_t pte)		{ return (pte).pte_low & _PAGE_RW; }

/*
 * The following only works if pte_present() is not true.
 */
static inline int pte_file(pte_t pte)		{ return (pte).pte_low & _PAGE_FILE; }

static inline pte_t pte_rdprotect(pte_t pte)	{ (pte).pte_low &= ~_PAGE_USER; return pte; }
static inline pte_t pte_exprotect(pte_t pte)	{ (pte).pte_low &= ~_PAGE_USER; return pte; }
static inline pte_t pte_mkclean(pte_t pte)	{ (pte).pte_low &= ~_PAGE_DIRTY; return pte; }
static inline pte_t pte_mkold(pte_t pte)	{ (pte).pte_low &= ~_PAGE_ACCESSED; return pte; }
static inline pte_t pte_wrprotect(pte_t pte)	{ (pte).pte_low &= ~_PAGE_RW; return pte; }
static inline pte_t pte_mkread(pte_t pte)	{ (pte).pte_low |= _PAGE_USER; return pte; }
static inline pte_t pte_mkexec(pte_t pte)	{ (pte).pte_low |= _PAGE_USER; return pte; }
static inline pte_t pte_mkdirty(pte_t pte)	{ (pte).pte_low |= _PAGE_DIRTY; return pte; }
static inline pte_t pte_mkyoung(pte_t pte)	{ (pte).pte_low |= _PAGE_ACCESSED; return pte; }
static inline pte_t pte_mkwrite(pte_t pte)	{ (pte).pte_low |= _PAGE_RW; return pte; }
static inline pte_t pte_mkhuge(pte_t pte)	{ (pte).pte_low |= _PAGE_PRESENT | _PAGE_PSE; return pte; }

#ifdef CONFIG_X86_PAE
# include <asm/pgtable-3level.h>
#else
# include <asm/pgtable-2level.h>
#endif

static inline int ptep_test_and_clear_dirty(struct vm_area_struct *vma, unsigned long addr, pte_t *ptep)
{
	if (!pte_dirty(*ptep))
		return 0;
	return test_and_clear_bit(_PAGE_BIT_DIRTY, &ptep->pte_low);
}

static inline int ptep_test_and_clear_young(struct vm_area_struct *vma, unsigned long addr, pte_t *ptep)
{
	if (!pte_young(*ptep))
		return 0;
	return test_and_clear_bit(_PAGE_BIT_ACCESSED, &ptep->pte_low);
}

static inline void ptep_set_wrprotect(struct mm_struct *mm, unsigned long addr, pte_t *ptep)
{
	clear_bit(_PAGE_BIT_RW, &ptep->pte_low);
}

/*
 * Macro to mark a page protection value as "uncacheable".  On processors which do not support
 * it, this is a no-op.
 */
#define pgprot_noncached(prot)	((boot_cpu_data.x86 > 3)					  \
				 ? (__pgprot(pgprot_val(prot) | _PAGE_PCD | _PAGE_PWT)) : (prot))

/*
 * Conversion functions: convert a page and protection to a page entry,
 * and a page entry and page directory to the page they refer to.
 */

#define mk_pte(page, pgprot)	pfn_pte(page_to_pfn(page), (pgprot))

static inline pte_t pte_modify(pte_t pte, pgprot_t newprot)
{
	pte.pte_low &= _PAGE_CHG_MASK;
	pte.pte_low |= pgprot_val(newprot);
#ifdef CONFIG_X86_PAE
	/*
	 * Chop off the NX bit (if present), and add the NX portion of
	 * the newprot (if present):
	 */
	pte.pte_high &= ~(1 << (_PAGE_BIT_NX - 32));
	pte.pte_high |= (pgprot_val(newprot) >> 32) & \
					(__supported_pte_mask >> 32);
#endif
	return pte;
}

#define page_pte(page) page_pte_prot(page, __pgprot(0))

#define pmd_large(pmd) \
((pmd_val(pmd) & (_PAGE_PSE|_PAGE_PRESENT)) == (_PAGE_PSE|_PAGE_PRESENT))

/*
 * the pgd page can be thought of an array like this: pgd_t[PTRS_PER_PGD]
 *
 * this macro returns the index of the entry in the pgd page which would
 * control the given virtual address
 */
#define pgd_index(address) (((address) >> PGDIR_SHIFT) & (PTRS_PER_PGD-1))
#define pgd_index_k(addr) pgd_index(addr)

/*
 * pgd_offset() returns a (pgd_t *)
 * pgd_index() is used get the offset into the pgd page's array of pgd_t's;
 */
#define pgd_offset(mm, address) ((mm)->pgd+pgd_index(address))

/*
 * a shortcut which implies the use of the kernel's pgd, instead
 * of a process's
 */
#define pgd_offset_k(address) pgd_offset(&init_mm, address)

/*
 * the pmd page can be thought of an array like this: pmd_t[PTRS_PER_PMD]
 *
 * this macro returns the index of the entry in the pmd page which would
 * control the given virtual address
 */
#define pmd_index(address) \
		(((address) >> PMD_SHIFT) & (PTRS_PER_PMD-1))

/*
 * the pte page can be thought of an array like this: pte_t[PTRS_PER_PTE]
 *
 * this macro returns the index of the entry in the pte page which would
 * control the given virtual address
 */
#define pte_index(address) \
		(((address) >> PAGE_SHIFT) & (PTRS_PER_PTE - 1))
#define pte_offset_kernel(dir, address) \
	((pte_t *) pmd_page_kernel(*(dir)) +  pte_index(address))

/*
 * Helper function that returns the kernel pagetable entry controlling
 * the virtual address 'address'. NULL means no pagetable entry present.
 * NOTE: the return type is pte_t but if the pmd is PSE then we return it
 * as a pte too.
 */
extern pte_t *lookup_address(unsigned long address);

/*
 * Make a given kernel text page executable/non-executable.
 * Returns the previous executability setting of that page (which
 * is used to restore the previous state). Used by the SMP bootup code.
 * NOTE: this is an __init function for security reasons.
 */
#ifdef CONFIG_X86_PAE
 extern int set_kernel_exec(unsigned long vaddr, int enable);
#else
 static inline int set_kernel_exec(unsigned long vaddr, int enable) { return 0;}
#endif

extern void noexec_setup(const char *str);

#if defined(CONFIG_HIGHPTE)
#define pte_offset_map(dir, address) \
	((pte_t *)kmap_atomic(pmd_page(*(dir)),KM_PTE0) + pte_index(address))
#define pte_offset_map_nested(dir, address) \
	((pte_t *)kmap_atomic(pmd_page(*(dir)),KM_PTE1) + pte_index(address))
#define pte_unmap(pte) kunmap_atomic(pte, KM_PTE0)
#define pte_unmap_nested(pte) kunmap_atomic(pte, KM_PTE1)
#else
#define pte_offset_map(dir, address) \
	((pte_t *)page_address(pmd_page(*(dir))) + pte_index(address))
#define pte_offset_map_nested(dir, address) pte_offset_map(dir, address)
#define pte_unmap(pte) do { } while (0)
#define pte_unmap_nested(pte) do { } while (0)
#endif

/*
 * The i386 doesn't have any external MMU info: the kernel page
 * tables contain all the necessary information.
 *
 * Also, we only update the dirty/accessed state if we set
 * the dirty bit by hand in the kernel, since the hardware
 * will do the accessed bit for us, and we don't want to
 * race with other CPU's that might be updating the dirty
 * bit at the same time.
 */
#define update_mmu_cache(vma,address,pte) do { } while (0)
#define  __HAVE_ARCH_PTEP_SET_ACCESS_FLAGS
#define ptep_set_access_flags(__vma, __address, __ptep, __entry, __dirty) \
	do {								  \
		if (__dirty) {						  \
			(__ptep)->pte_low = (__entry).pte_low;	  	  \
			flush_tlb_page(__vma, __address);		  \
		}							  \
	} while (0)

#endif /* !__ASSEMBLY__ */

#ifdef CONFIG_FLATMEM
#define kern_addr_valid(addr)	(1)
#endif /* CONFIG_FLATMEM */

#define io_remap_page_range(vma, vaddr, paddr, size, prot)		\
		remap_pfn_range(vma, vaddr, (paddr) >> PAGE_SHIFT, size, prot)

#define io_remap_pfn_range(vma, vaddr, pfn, size, prot)		\
		remap_pfn_range(vma, vaddr, pfn, size, prot)

#define MK_IOSPACE_PFN(space, pfn)	(pfn)
#define GET_IOSPACE(pfn)		0
#define GET_PFN(pfn)			(pfn)

#define __HAVE_ARCH_PTEP_TEST_AND_CLEAR_YOUNG
#define __HAVE_ARCH_PTEP_TEST_AND_CLEAR_DIRTY
#define __HAVE_ARCH_PTEP_GET_AND_CLEAR
#define __HAVE_ARCH_PTEP_SET_WRPROTECT
#define __HAVE_ARCH_PTE_SAME
#include <asm-generic/pgtable.h>

#endif /* _I386_PGTABLE_H */
OpenPOWER on IntegriCloud